

carmelo.demaria@centropiaggio.unipi.it

* Obiettivi

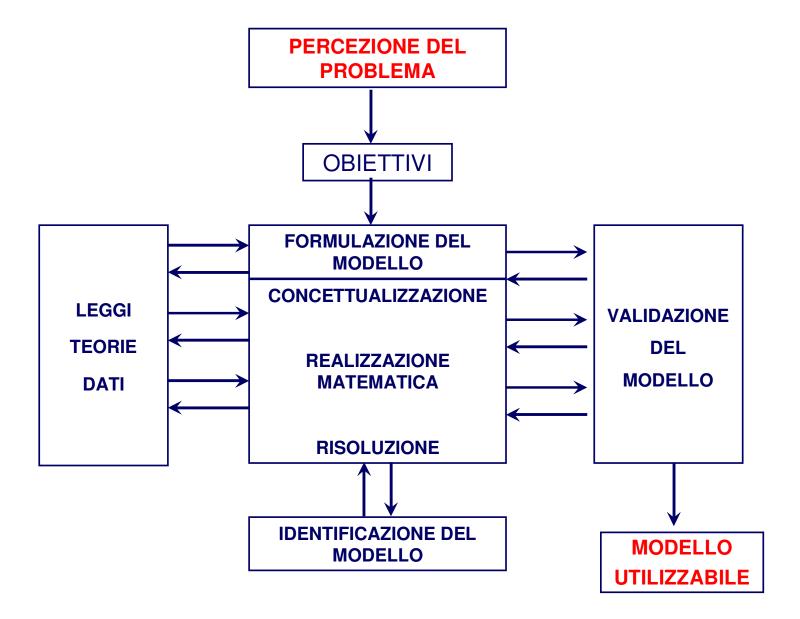
 Apprendere le tecniche matematiche per l'analisi della cinetica dei traccianti utilizzati per lo studio di sistemi endocrinometabolici e del metabolismo d'organo Una disciplina ha tanto più la dignità della scienza quanto più fa uso dello strumento matematico

Galileo Galilei

Per parlare di matematica applicata alla biologia non basta introdurre dei metodi quantitativi nella descrizione dei fenomeni, occorre anche trovare delle connessioni e dei legami di tipo matematico, ovvero formulare dei modelli che abbiano carattere predittivo e servano a risolvere problemi specifici.

⁺ Esempio

- Modelli che descrivono il metabolismo del glucosio, il metabolismo dei lipidi e l'azione dell'insulina che influenza sia il metabolismo del glucosio che quello dei lipidi.
- Farmacocinetica


* Farmacocinetica

- La farmacocinetica studia quantitativamente l'assorbimento, la distribuzione, il metabolismo e l'eliminazione dei farmaci.
- I farmaci vengono assorbiti, distribuiti, metabolizzati ed eliminati dall'organismo al quale vengono somministrati
- Le velocità di assorbimento, distribuzione, metabolismo ed eliminazione sono determinanti per gli effetti di un farmaco.
- Un insieme di equazioni differenziali può descrivere i tempi e i modi in cui un farmaco viene assorbito, metabolizzato ed eliminato dall'organismo.

Costruzione di un modello matematico

- Gli elementi da tener presente per costruire un modello valido possono essere in prima istanza suddivisi in:
 - Obiettivi
 - Ruolo delle conoscenze teoriche ed empiriche
 - Struttura topologica ed analitica del modello
 - Formulazione
 - Identificazione
 - Validazione

† Identificazione del modello 1/2

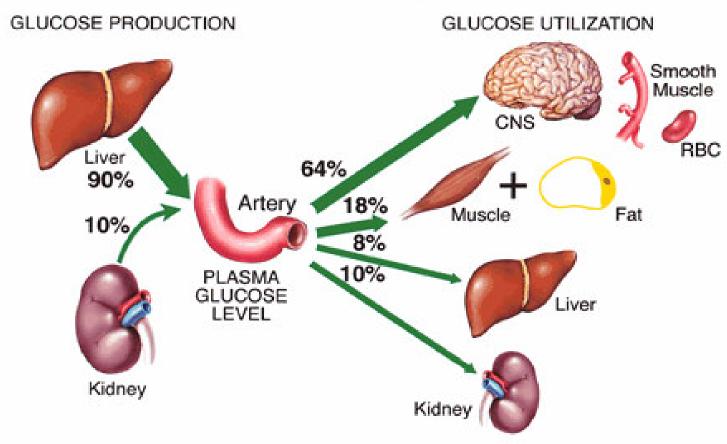
 Con il termine identificazione ci si riferisce ai procedimenti con i quali si determina sia la struttura del modello matematico, sia il valore dei parametri che in esso figurano, in modo da ottenere la corrispondenza tra il comportamento del modello ed un adeguato complesso di dati sperimentali.

† Identificazione del modello 2/2

Le principali fasi del processo di identificazione sono:

- determinazione della struttura del modello, in base alle conoscenze a priori sulle leggi fisico-chimiche che regolano i fenomeni studiati o in base all'esigenza di far corrispondere le soluzioni delle equazioni ai dati sperimentali, anche senza attribuire un particolare significato fisico;
- progetto ed esecuzione dell'esperimento, quindi applicazione di "ingressi" e la misura delle "uscite", cercando un compromesso opportuno tra significatività dell'esperimento ai fini dell'identificazione e i vincoli di natura etica e pratica (in particolare, un'identificazione a priori che l'esperimento sia o no in grado di fornire i valori incogniti dai dati sperimentali, e se eventualmente la stima sia unica);
- **stima dei parametri**, utilizzando algoritmi idonei e valutando la bontà della stima eseguita (accuratezza dei risultati) nel quadro del problema detto di identificazione a posteriori;
- messa a punto e ottimizzazione dell'esperimento progettato.

* Validazione del modello


- È la serie di prove con cui si testa la validità del modello.
- Il concetto di validità è molto ampio e richiede un criterio di valutazione. Ma tale criterio, molte volte rischia di essere soggettivo, soprattutto nei metri di misura. In linea generale:
 - Criteri interni, basati sulle caratteristiche interne del modello:
 - <u>Coerenza</u>, in base alla quale non si devono presentare contraddizioni logiche, matematiche o fisiche.
 - <u>Validità algoritmica</u>, relativa all'esigenza che le equazioni siano risolvibili in modo efficace e diano risultati con la precisione voluta.
 - Criteri esterni, legati agli scopi, alle teorie e ai dati sperimentali:
 - Validità empirica, relativa alla corrispondenza del comportamento tra sistema e modello
 - *Validità teorica*, relativa alla coerenza tra le ipotesi implicite e quelle accettate.
 - Validità pragmatica, riferita all'efficacia del modello di raggiungere gli obiettivi. Resta comunque complesso definire una misura oggettiva di tale efficacia.
 - Validità euristica, relativa alla capacità del modello di fornire suggerimenti per l'interpretazione dei fenomeni, per la verifica delle ipotesi e l'individuazione di nuovi temi di ricerca.

Struttura analitica del modello

- Modelli deterministici, in cui le variabili di stato ed i parametri sono variabili deterministiche.
- Modelli stocastici, in cui le variabili di stato ed i parametri sono variabili aleatorie o processi stocastici.
- Modelli stocastici/deterministici, in cui le variabili di stato appartengono alla prima classe e i parametri all'altra, o viceversa.
- Modelli lineari e non, in cui le relazioni tra le variabili sono lineari o meno.
- Modelli a parametri concentrati, in cui si concentrano le cause e gli effetti in compartimenti e si costruiscono le relazioni tra le variabili di tali compartimenti.
- Modelli a parametri distribuiti, in cui cause ed effetti non possono essere compartimentalizzati.

Modello del metabolismo del glucosio a digiuno

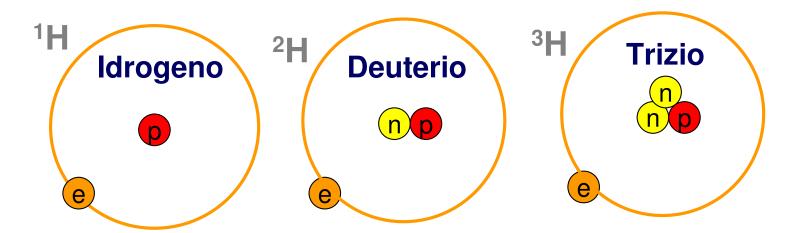
GLUCOSE HOMEOSTASIS AFTER AN 18 HOUR FAST GLUCOSE PRODUCTION GLUCOSE

Modello del metabolismo del glucosio a digiuno

- Poiché spesso il sito d'interesse non è accessibile, si effettua un prelievo di sangue (arterioso o venoso) e, tramite modelli matematici, si stimano i parametri d'interesse.
 - Produzione di glucosio (input)
 - Utilizzo di glucosio

Modello del metabolismo del glucosio a digiuno

- Dal prelievo di sangue a digiuno misuriamo la concentrazione del glucosio [G].
- [G] è funzione sia della produzione (input) che dell'utilizzazione (output).
- Se sia l'input che l'output aumentano, [G] rimane costante. Quindi la sola conoscenza di [G] non ci permette di conoscere indipendentemente input e output e abbiamo bisogno di una sostanza che "tracci" il glucosio senza perturbarne lo stato stazionario.

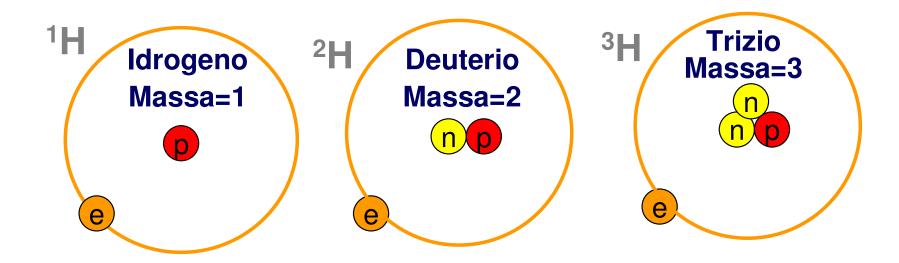

TRACCIANTI

[†] Tracciante

- È una sostanza marcata con un isotopo con le stesse caratteristiche chimico-fisiche ma diversa massa:
 - 1. si comporta come la sostanza che vogliamo studiare (sost. tracciata)
 - possiamo misurare separatamente il tracciante dalla sost. tracciata

⁺ Isotopi

 Gli isotopi (lett. nello stesso luogo) sono atomi dello stesso elemento chimico, e quindi con lo stesso numero atomico (cioè numero di protoni), ma con differente numero di massa, e quindi massa atomica.



⁺ Isotopi

- La differenza delle masse è dovuta a un diverso numero di neutroni presenti nel nucleo dell'atomo.
- Se 2 nuclei contengono lo stesso numero di protoni, ma un numero differente di neutroni, i due nuclei avranno lo stesso comportamento chimico (con delle minime differenze nei tempi di reazione e nell'energia di legame), ma avranno comportamenti fisici differenti, essendo uno più pesante dell'altro.

⁺ Isotopi

Possono essere sia stabili che radioattivi.

* Breve richiamo

```
Atomic number (Z) = number of protons in nucleus

Mass number (A) = number of protons + number of neutrons

= atomic number (Z) + number of neutrons

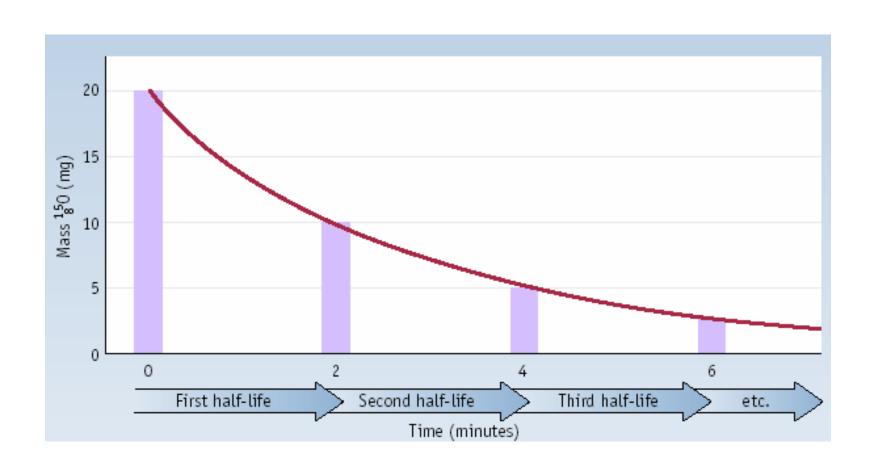
Mass Number → A
Atomic Number → Z
Atomic Number → Z
```

Isotopi radioattivi

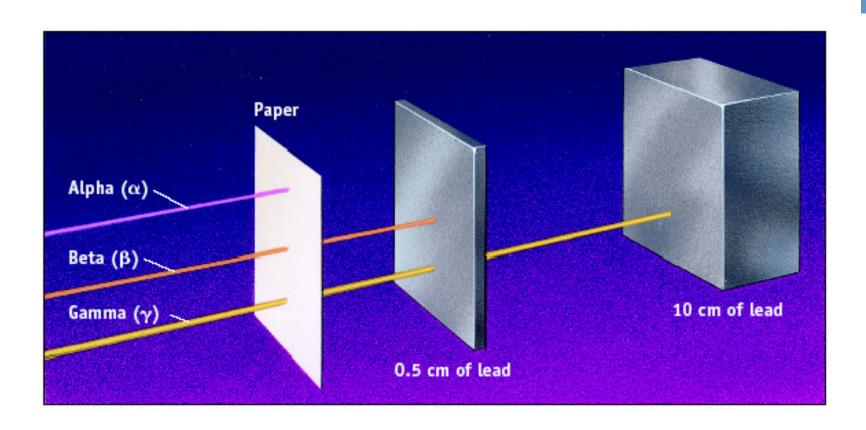
- La radioattività è causata dal rilascio spontaneo di particelle e/o energia elettromagnetica dal nucleo di un atomo.
- La radioattività risiede nei NUCLEI INSTABILI.
- Nucleo decade con EMISSIONE DI RADIAZIONI.
- I traccianti radioattivi si caratterizzano per sviluppare un processo di decadimento con disintegrazione e produzione di nuovi elementi.
- Nel corso della disintegrazione vengono emesse radiazioni, la cui misura permette di seguire lo svolgersi dei processi in atto.
- La radioattività è misurata in: disintegrazioni/tempo.
- L'unità standard sono i bequerel (Bq), corrispondente ad 1 decadimento per secondo
- Un'altra unità di misura è il curie (Ci), equivalente a 3.7 x 10¹⁰ disint./sec.

Proprietà dei radioisotopi

- Tipo di emissione
- Emivita
- Energia di emissione


⁺ Tipi di emissione

- Particelle α: nuclei di elio (isotopi pesanti;
 Z>82)
- Particelle β: negatroni (elettroni) o positroni
- Raggi γ: radiazioni elettromagnetiche derivate da riarrangiamenti nucleari


Velocità del decadimento radioattivo

- Il decadimento segue una cinetica di I ordine:
 - $-dN(t)/dt = \lambda N$
 - $-\lambda$ = costante di decadimento
- Integrando:
 - $\ln N(t)/No = \lambda t$
- In pratica la velocità di decadimento è espressa come emi-vita o tempo di dimezzamento $t_{1/2}$, cioè il tempo necessario perché l'attività decada del 50 %:
 - $-\ln 0.5 = -\lambda t_{1/2}$
 - $-2.3\log_{10} 2 = \lambda t_{1/2}$
 - $-t_{1/2} = 0.693/\lambda$

[†] Emivita

⁺ Capacità di penetrazione

* Radioisotopi in medicina

- 24 Na, $t_{1/2}$ = 14.8 hr, β emitter, blood-flow tracer
- 131 I, $t_{1/2} = 14.8$ hr, β emitter, thyroid gland activity
- 123 I, $t_{1/2} = 13.3$ hr, γ -ray emitter, brain imaging
- 18 F, $t_{1/2} = 1.8$ hr, β^+ emitter, positron emission tomography
- 99m Tc, $t_{1/2} = 6$ hr, γ -ray emitter, imaging agent

* Reazioni Chimiche vs Nucleari

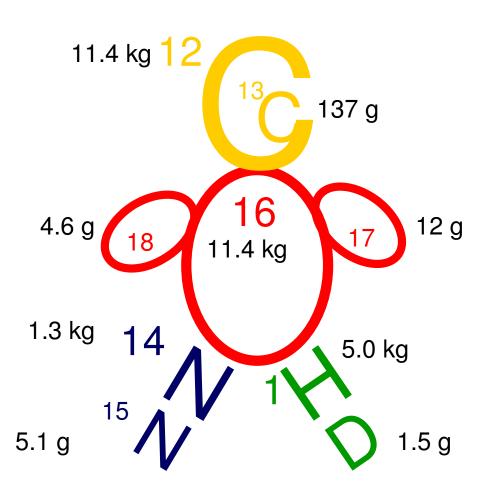
Reazioni Chimiche	Reazioni Nucleari
Gli atomi sono riarrangiati attraverso la rottura e la formazione di legami chimici	Gli elementi (o gli isotopi di uno stesso elemento) vengono convertiti uno nell'altro
Solamente gli elettroni negli orbitali atomici o molecolari sono coinvolti nella formazione o nella rottura dei legami	Protoni, neutroni, elettroni ed altre particelle elementari possono essere coinvolti
Le reazioni sono accompagnate dall'assorbimento o dal rilascio di una piccola quantità di energia	Le reazioni sono accompagnati dall'assorbimento o dal rilascio di una grande quantità di energia
La velocità di reazione sono influenzate da temperatura, pressione, concentrazione e catalisi	La velocità di reazione è normalmente non influenzata da temperatura, pressione e catalisi

Isotopi maggiormente utilizzati nella ricerca biologica

Common Stable	Rar	e stable	Radioactive
¹ H	² H	(0.02%)	³ H
12 C	¹³ C	(1.1%)	14 C
¹⁴ N	¹⁵ N	(0.37%)	*
160	¹⁸ O	(0.04%)	*

⁺ Isotopi stabili vs radioattivi

Isotopi stabili	Isotopi radioattivi
Sicuri, non tossici	Radiazioni ionizzanti
Possono essere utilizzati in neonati, bambini e donne in gravidanza	Non posso essere utilizzati in tutta la popolazione
Diversi traccianti possono essere utilizzati contemporaneamente in studi ripetuti	Limitazioni nel numero di traccianti e in studi ripetuti
Il costo di alcuni traccianti è davvero elevato	Non esistono isotopi a lunga vita per O e N
È necessaria una grande quantità di tracciante (elevato rumore di fondo)	Non ci sono problemi di rumore di fondo, è necessaria una piccola quantità di tracciante
Attrezzature costose, personale tecnico qualificato	Attrezzature semplici e poco costose


[†] Tracciante

- È una molecola in cui uno o più atomi sono stati sostituiti ("marcati") con isotopi e che si comporta come la sostanza che vogliamo studiare (sost. tracciata).
- Nel caso che il tracciante si comporti sensibilmente diversamente dalle molecole che sostituisce (una massa diversa può influire su velocità di diffusione e di reazione chimica) si parla di effetto di frazionamento dell'isotopo.

† Tracciante

- Da notare che le sostanze comunemente elaborate dai sistemi biologici sono in molti casi ognuna già una mistura di isotopi, anche se uno di essi è presente in quantità percentuale molto maggiore.
- Nell'uso dei traccianti non si fa quindi altro che aumentare la percentuale di uno degli altri isotopi, così da permettere una più facile analisi dei processi in gioco. Oppure si introduce del tutto un nuovo isotopo.

† Isotopi stabili nel corpo umano

* Esempi tracciante

$$\begin{array}{c|c} & NH_2 \\ & | \\ & | \\ H & CH_2 - C - H \\ & COOH \end{array}$$

L-Phenylalanine

L-[ring-³H₅]Phenylalanine

²H = D (deuterium)
$$NH_2$$

D

 CH_2 — C — H
 $COOH$

L-[ring-2H₅]Phenylalanine

L-[2-¹⁵N]Phenylalanine

L-[1-13C]Phenylalanine

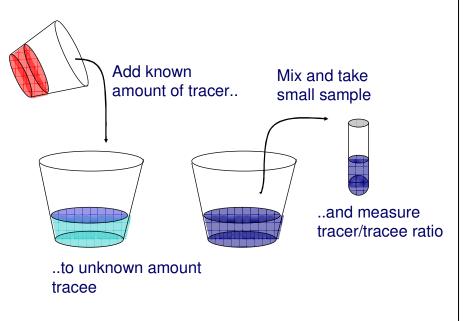
Come misurare i traccianti (1/4)

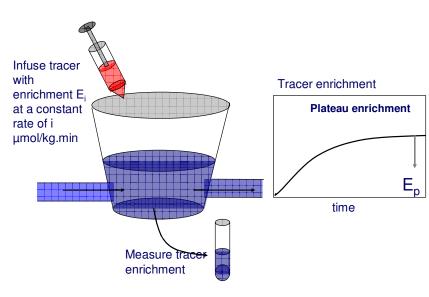
- Contatori di radioattività:
 - Per ionizzazione (contatore Geiger-Muller),
 - Per eccitazione (scintillatori gamma counter, beta counter)
- Spettrometro di massa: massa delle molecole o degli atomi all'interno delle molecole dopo combustione o conversione in gas (CO₂, N₂, H₂)

Come misurare i traccianti (2/4)

- Traccianti radioattivi
- I traccianti radioattivi si caratterizzano per sviluppare un processo di decadimento con disintegrazione e produzione di nuovi elementi.
- Nel corso della disintegrazione vengono emesse radiazioni, la cui misura permette di seguire lo svolgersi dei processi in atto.
- Unità di misura nella pratica: unità di conto/tempo (fornisce la quantità di radiazione effettivamente rilevata).
- A pari condizioni di emissione, il valore in unita di conto è minore (al massimo uguale) rispetto quello teorico.
- Per effetto della geometria del sistema ricevitore ed altre sostanze presenti, la radiazione rilevabile è minore di quella teorica.

[†] Come misurare i traccianti (3/4)

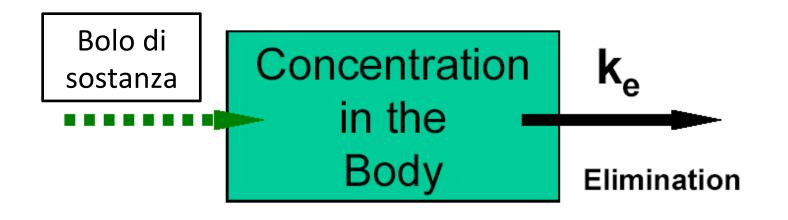

- Attività specifica:
 - radioattività/(massa) = unità di conto /(massa tempo)
- Quantità tracciante: quantità minima di tracciante da immettere, che permette:
 - di studiare 1 o più compartimenti.
 - di essere piccola abbastanza da creare il minimo disturbo al sistema (in particolare per le radiazioni emesse).
- Nella pratica si opera con quantità inferiori al 1%.


Come misurare i traccianti (4/4)

- Traccianti stabili
- Non emettono radiazioni, per cui sono rilevati in base a misure legate alla differenza di massa con analoghi isotopi più comuni.
- Unità di misura:
 - molecole marcate/ totale molecole d'interesse presenti (altre unità di misura sono comunque usate).
- Attività specifica:
 - molecole marcate/ totale molecole d'interesse presenti/massa (altre unità di misura coincidono direttamente con a.s.)
- Essendo il metodo di misura meno sensibile di quello usato per i traccianti radioattivi, è necessario impiegare una maggiore quantità di tracciante, per altro permessa dalla minore pericolosità.

Utilizzo di isotopi in studi del metabolismo umano

- Principio di diluizione del tracciante
 - Modelli statici
 - Modelli dinamici

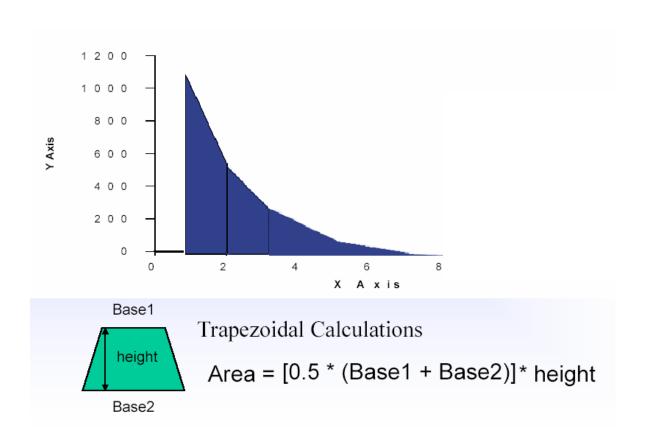


MODELLI NON-COMPARTIMENTALI

* Approccio non compartimentale

- Nessuna assunzione circa la distribuzione della sostanza all'interno del corpo
- Conoscenza descrittiva
- Scarsa correlazione rispetto alle specifiche funzioni di un organo
- La mancanza di assunzioni a priori consente di minimizzare gli eventuali bias dovute alla modellazione
- Descrizione dei dati sperimentali tramite delle curve esponenziali

⁺ Esperimento



Approccio non compartimentale

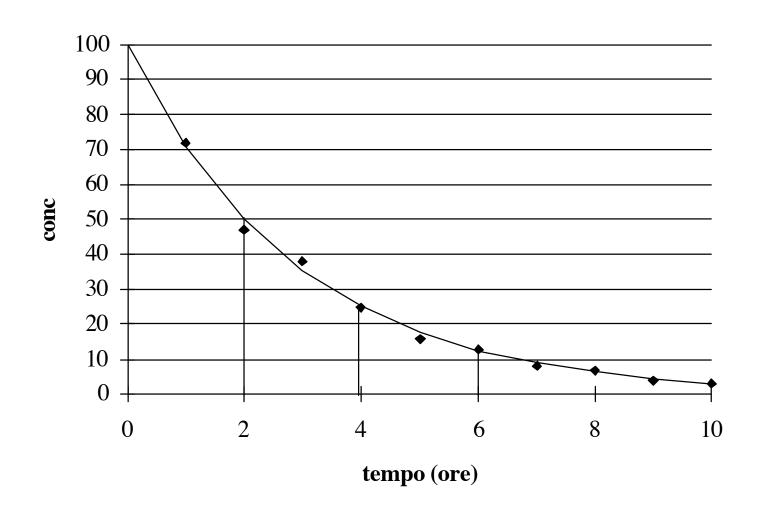
- Dati noti:
 - Dose
- Osservare:
 - C_{max} (concentrazione massima) e T_{max} (istante a cui si verifica la concentrazione massima)
- Calcolare:
 - AUC (Area under curve area sotto la curva; attraverso la regola dei trapezi oppure integrando una curva teorica (es. esponenziali) che descrive i dati sperimentali)
 - Clearance (CL)
 - Emivita $T_{1/2}$, Fractional Removal rate (k) and mean residence times ()
 - Volume di distributione

[†] Area sotto la curva

Metodo dei trapezi

⁺ Clearence

 Collega la concentrazione con la velocità di eliminazione


Elimination rate (Rd)= Concentrat x Clearance mg\min mg/ml ml/min

- L' unità di misura dell'elimination rate è massa per unità di tempo (mg/min)
- L'unità di misura della Clearance è volume per unità di tempo (ml/min)

* Clearance

- Volume dal quale il farmaco viene rimosso in una data unità di tempo (volume / tempo)
- E' una costante rispetto alla dose e al tempo
- Può essere calcolato da:
- Excretion rate (Rd) / Concentration
 - (mg/min) / (mg/ml) = ml/min
- Dose / AUC (dimostrazione)
 - (mg) / (mg/ml*min) = ml/min

* Emivita (parte I)

Modellazione tramite somma di esponenziali

$$C(t) = C_0 \cdot e^{-k \cdot t}$$
$$k > 0$$

$$\int_0^\infty C(t)dt = \int_0^\infty C_0 \cdot e^{-k \cdot t} dt$$

$$\left(-\frac{C_0}{k} \cdot e^{-k \cdot t} \right) |_{t=\infty} - \left(-\frac{C_0}{k} \cdot e^{-k \cdot t} \right) |_{t=0}$$

$$AUC = \frac{C_0}{k}$$

Generalizzazione per curve a più esponenziali

⁺ Emivita (parte II)

[†] Volume di distribuzione

 V_d lega la concentrazione della sostanza alla quantità di sostanza (A) (tracciante/farmaco) presente nel corpo

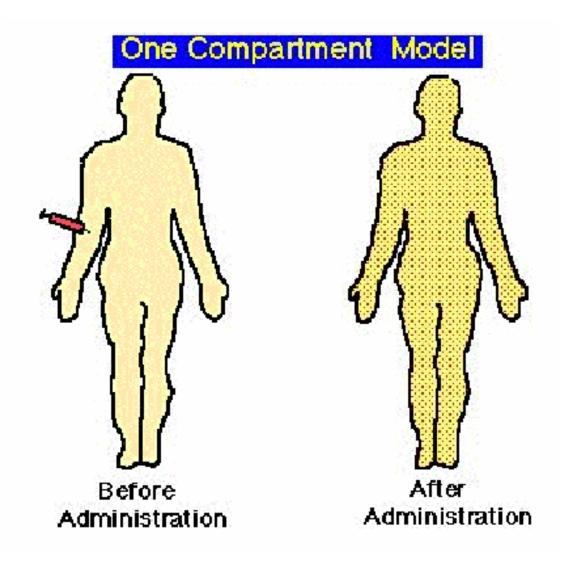
$$-A=CxV_d$$

- V_d una costante rispetto alla dose e al tempo
- V_d=[Dose/(AUC_{0-∞} *k)]=CL/k
- Se diamo un bolo, la concentrazione estrapolata al tempo 0: C₀=Dose/V_d
- Cosa succede per curve multiesponenziali?

[†] Tempo medio di residenza

- Mean Residence Time (MRT)
 - Tempo che mediamente una molecola di farmaco trascorre all'interno del corpo
- Mette in relazione la clearence con il volume di distribuzione
- MRT=V_d/CL

MODELLI COMPARTIMENTALI


Modelli compartimentali

- I modelli compartimentali traggono il loro nome dalla scomposizione del sistema in varie parti (compartimenti).
- Per compartimento si intende un insieme di materia che per l'organismo si comporta in maniera omogenea (sia dal punto di vista della distribuzione che del comportamento cinetico all'interno del compartimento).
- L'approccio prevede l'impiego di *n* variabili funzioni del tempo e legate da equazioni differenziali ordinarie.
- Tali equazioni vengono scritte a partire da un unico concetto base: il rispetto della conservazione della massa.

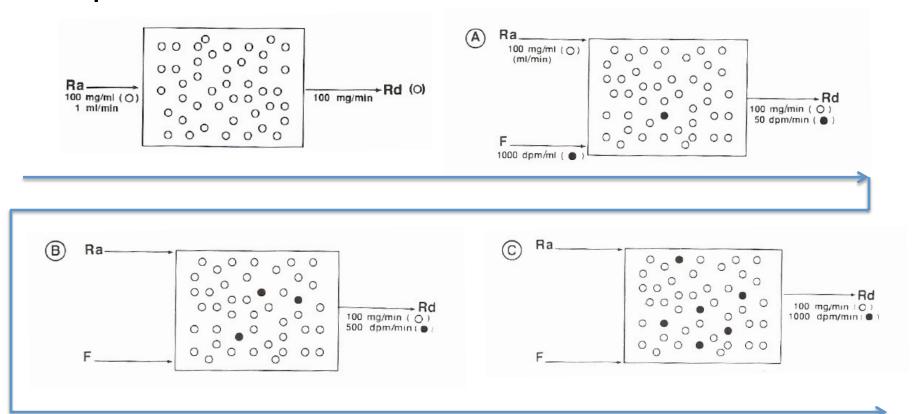
† I compartimenti

- I compartimenti sono volumi ideali, non necessariamente volumi reali, nei quali la sostanza (e il tracciante o il farmaco) entra, si distribuisce, esce.
- Un compartimento può essere un insieme di tessuti differenti che possiedono un'affinità per il farmaco e una perfusione sanguigna molto simile.
- Il numero di compartimenti si stabilisce in base alla differenza più o meno elevata che c'è tra una costante di velocità e l'altra. Il modello cinetico che ricorre più spesso e il più semplice e il modello mono- compartimentale aperto.

* Modello mono compartimentale

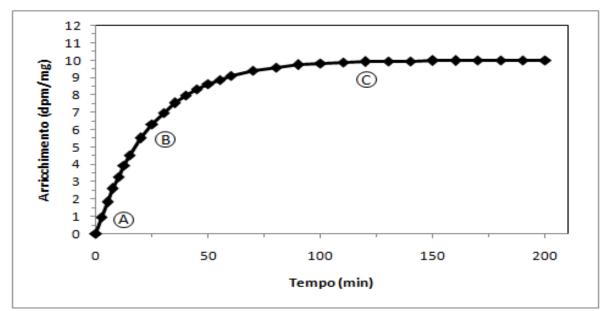
* Modello mono compartimentale

Assunzioni:


- Il corpo costituisce un unico processo
- Miscelamento istantaneo
 - Il tracciante (farmaco) si miscela istantaneamente nel sangue o nel plasma
 - Un compartimento
 - Il tracciante (farmaco) che si trova nel sangue (plasma)
 è in equilibrio rapido con il tracciante (farmaco) che si trova nei tessuti extravascolari.
- Modello lineare
 - L'eliminazione del farmaco segue una cinetica del primo ordine

* Modello monocompartimentale

- Calcolare la cinetica di un substrato significa determinare la velocità di comparsa (rate of appearance, Ra) di un substrato e, perlomeno nello stato stazionario, la velocità di scomparsa dello stesso (rate of disappearance, Rd).
- Possono inoltre essere derivati altri parametri come l'emivita, il tempo medio di residenza e la clearance.


* Modello monocompartimentale

 Andamento del tracciante durante un esperimento di infusione continua

* Modello monocompartimentale

 Andamento del tracciante durante un esperimento di infusione continua

