

Indirect Rapid Prototyping

Micro e Nano Sistemi

1343

SUZ

carmelo.demaria@centropiaggio.unipi.it

Indirect Rapid Prototyping (iRP)

- Molds realised with RP devices (CAD/CAM)
- Casting of the desired (bio-)material
- Extraction of the final object

+

iRP – General concepts

- Wide rage of (bio-)materials
- Known also as rapid tooling
- Less waste
- High fidelity
- Microporosity by:
 - critical point drying
 - free-drying
 - leaching
- Use in surgery room

+ iRP – Stereolitography

Casted Materials	Extraction method	Resolution (µm)
Thermoplastic Elastomer	Mechanical	≈1000
НА	Pyrolysis	400
PCL, PLLA, PLGA, Chitosan, alginate	Basic Solution	200-400

R Sodian et al,. ASAIO Journal, 48(1), 2002 T-MG Chu et al., Journal of Materials Science: Materials in Medicine, 12:471–478, 2001 YJ Seol Microelectronic Engineering, 86(4-6):1443–1446, Apr 2009 HW Kang and DW Cho. Tissue Eng Part C Methods. 2012 Sep;18(9):719-29

+ iRP – Fused Deposition Modeling

Casted Materials	Extraction method	Resolution (µm)
Alumina, TCP	Pyrolysis	300-500
Agarose, Alginate, PEG, Fibrin, Matrigel	Water dissolution	500

S Bose et al. Materials Science and Engineering: C, 23(4):479 – 486, 2003 JS Miller et al, Nature Materials Letters: Published online 1 July 2012

⁺ iRP – 3D printing

Casted Materials	Extraction method	Resolution (µm)
PLGA	Calcium Reagent	800

Casted Materials	Extraction method	Resolution (µm)
НА, ТСР	Pyrolysis	300-400
Collagen, Silk, PLLA	Organic Solvent	200-400

E Sachlos et al., Biomaterials, 24(8):1487– 97, Apr 2003 MJJ Liu et al.,Med Eng Phys, Nov 2011 M Schumacher et al., J Mater Sci: Mater Med, 21(12):3119–3127, Dec 2010 JM Taboas et al, Biomaterials, 24(1):181 – 194, 2003

⁺ iRP – main problem

- Difficulty to extract the final object
 - Mechanical
 - Pyrolysis
 - (Organic) solvent
- IDEA:

CASTING INTO LOW MELTING POINT MOLDS

Investment Casting Using Rapid-Prototyped Wax Parts

 Manufacturing steps for investment casting that uses rapid-prototyped wax parts as blanks. This method uses a flask for the investment, but a shell method also can be used. Source: Courtesy of 3D Systems, Inc.

Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

+ PAM²

- Modular CAD/CAM system
- A 3-axes robotic stages:
 - position ±50 mm;
 - velocity 0-15 mm/s;
 - resolution 1 μm;
 - different extrusion modules;
 - layer-by-layer processing.

Tirella A, De Maria C, Criscenti G, Vozzi G, Ahluwalia A. The PAM² system: a multilevel approach for fabrication of complex three-dimensional microstructures. Rapid Prototyping J 2012;18(4):5-5

TCD module

Temperature Controlled Deposition plane

- Peltier Cell
- H-Bridge drivers
- Control algorithm based on step strategy
- ± 40°C respect to room temperature

Plotting low melting point waxes

-

⁺ Drop formation

Chang B et al., Commun Nonlinear Sci Numer Simulat 17 (2012) 2045–2051

⁺ Drop formation

• Just before drop detachment:

$$\gamma \pi D_0 \cos(\theta) = \rho g \left(\frac{\pi D^3}{6} \right)$$

◆ T=70°C ■ T=80°C ▲ T=90°C

System calibration preliminary tests

- Volumetric shrinking
 - Casting into an aluminium mold
- Contact angle
 - Several material tested

Bhola R, Chandra S, J. MATER SCI 34 (1999) 4883– 4894

Processing parameter in PAM²

Low melting point mold – 2D

- Hexagonal path:
 - Side 2 mm, linewidth 400 μm
 - Side 1 mm, linewidth 300 μm
- 60% W/V HA in gelatin gel (5% W/V), crosslinked with genipin 0.5 W/V
- Volumetric change < 1%

Low melting point mold – 2D

• Hexagonal path:

+

- Side 2 mm, linewidth 400 μ m
- Side 1 mm, linewidth 300 μ m
- Pentagonal path:
 - Side 2 mm, linewidth 300 μ m
- 5% gel-collagen 1:1 + 0.2% GP
- Volumetric change < 6 %

Low melting point mold for microfluidic devices

- Serpentine path
 - Length 20 mm, height 2
- Casting with 5% w/v gelatin gel crosslinked with genipin

Low melting point mold for microfluidic devices

- Hexagonal path
 - Side 2 mm, linewidth 400 um
- Casting with PDMS

SHAPE DEPOSITION MANUFACTURING (SDM)

Shape Deposition Manufacturing

- Rapid production method with repetitive addition and selective removal of materials.
- It uses conventional machining facilities, hence also achieves the same order of machining tolerances.
- Multi-material parts can be created to compose functional mechanisms, also with embedded functional parts such as sensors and actuators.
- Cross-boundary embedding is the key for realizing highly integrated structures.

http://www-cdr.stanford.edu/biomimetics Motohide Hatanaka: motohat@cdr.stanford.edu

Shape Deposition Manufacturing

- Developed at Stanford & Carnegie Mellon
- Is it a pure SFM process?
- 1. Deposition material is added by plasma or laser based welding techniques
- 2. Filler material is deposited around part and Material is shaped using conventional CNC
- 3. Solid is stress relieved
- 4. Components can be embedded
- 5. Filler is removed to leave only finished part

 Why not add material in bulk and then selectively remove?

Why not add material in bulk and then selectively remove?

Comparison between common RP methods and SDM

RP	SDM
 Limited material variation Limited fabrication tolerance Requires special equipment 	 Wide variety of materials Fabrication tolerance comparable to conventional machining Conventional machining tools used. Can embed parts (sensors, actuators,

reinforcement)

SDM capabilities

Multi-material molding

Component embedding

Fabric-reinforced flexural hinges

- Left: Kinematic prototype of stroke extension linkage with 31 parts
- Center: Single component SDM linkage with thick flexures
- Right: SDM linkage with thin fabric-reinforced flexures (2001)

Biology is a target for complex integrated structures manufacturing

SDM is suited for complex integration

•Material properties can be locally altered by multimaterial fabrication.

•Components can be assembled without fasteners, hence easier and more room for complex integration.

•Semi-automated process allows detailed fabrication.

Cross-boundary embedding

 Selectively adding, removing or otherwise processing material around the flexible strands without damaging them or being hindered by them.

Capillary effect for selective deposition

Example:

Small string-suspended gimbals with two rotational degrees of freedom. Developed for attitude control of solar panels on a small satellite (100mm-side cube).

Selective deposition

÷

Selective removal

of part material

╺╋╸

Selective removal of sacrificial material

Manual Selective Removal

Example:

Spring-loaded hinge with partially embedded coil-spring and fiber-reinforced flexure. Developed for deploying solar-panels for a small satellite.

Selective removal

4

Material property alteration by post-processing

Selective removal by photo-lithography

Example:

A small flexural hinge with embedded electrical wires.

Selective removal by photo-lithography

