

Introduzione alla fabbricazione 3D

g.vozzi@centropiaggio.unipi.it

Nano-structured Microstructures

Nano-structured Microstructures

Molecular Imprinting

Molecular Imprinting is a technology that allows to realise matrix or surface, usually made of organic polymers, with specificic and selective sites of recognition of a selected molecule (template) thanks to the steric and chemical complementarity

Method:

- **1.** realisation of PDMS mold
- 2. modification of its superficial chemical properties
- **3.** functionalisation of its surface
- 4. cell culture test

Vozzi G et al Biotechnol Bioeng. 2010;106(5):804-17.

Realisation of mold

Mask layout

2

master

SORD W COL

PDMS mold

3

Techniques of surface modification

Surface of PDMS is Hydrophobic

Physical and/or chemical treatment in order to increase wettability of PDMS

On the basis of state of art...

- 1. UV Exposure (λ = 350 nm)
- 2. Treatment with Argon plasma

On the basis of experimental experience...

- 3. Dipping in Pirhana solution $(H_2SO_4:H_2O_2 30\% \text{ m/m} \text{ in water} = 3:1 \text{ v/v})$
- 4. Dipping in H_2O_2 30% m/m in water

Functionalisation of mold

- > Derivatisation with poly-functional silanes in toluene solution
- 3-aminopropyl-trimethoxysilane
 H₂N-(CH₂)₃₋Si-(OCH₃)₃
- 3-mercaptopropyl-trimethosilane
 HS-(CH₂)₃-Si-(OCH₃)₃

Activation of reaction between Carboxylic and nucleophilic groups solution of N-ethyl-N'-(3-dimethylamminopropyl)-carbodiimmide (EDC)

and N-hydroxysuccinimmide (NHS) in water

Cell adhesion test

protocol:

- Fabrication of PDMS mold functionalised with a protein (Gelatin)
- Realisation of polymer scaffold with micromolding method using 20% polymethylmethacrylate (PMMA) solution in CHCl₃
- Rebonding of protein with imprinted scaffold
- Cell seeding with Murine Fibroblasts (NIH-3T3)
- Cell Fixing and staining at different time intervals (6/24/48 h)

Example of PMMA scaffold

Cell adhesion and Proliferation

UV exposure amino-silane 48 h

Pirhana solution mercapto-silane 48 h

Argon Plasma mercapto-silano 48 h

Control (Film of PMMA) 48 h

Control (Gelatin) 48 h

Synthesis of results

Imprinting cells

PDMS mold

Functionalisation of PDMS mold

Cell Seeding and fixing

Polymer Casting

Realisation of Polymer Scaffold

Cell Seeding on functionalised polymer scaffold

Imprinting cells

24h

Imprinting cells

48h

72h

Rapid Prototyping (RP) Techniques

Three main groups:

 \circ laser systems

 \circ nozzle based systems

 \circ direct writing systems

Risultati

Figure 1: Platform technology for patient specific scaffolds TE.

Risultati

Materials? Speed? Price? Fidelity?

Risultati

Laser as a cutter

Materials? Speed? Price? Fidelity?

Risultati

Laser Sinterising

Risultati

Bioplotter sterile compressed air UV-lamp for sterile filter desinfection JV, plotting medium plotting material Sterile (with cells) Thermostat environment 3D-objects (laminar flow) (with cells)

+

Risultati

Plunger driven

(PAM2)

Materials? Speed? Price? Fidelity?

Vozzi, G., Tirella. A., Ahluwalia, A., Computer-Aided Tissue Engineering, Springer (2010); Tirella, De Maria, Vozzi, Ahluwalia Rapid Prot. J (2012); Tirella, Orsini, Vozzi, Ahluwalia Biofabrication (2009),

The PAM2 system Robotic 3 axis micropositioner.

- ✓ PAM
- ✓ PAM2
- ✓ Diode laser
- ✓ Temperature control
- ✓ PAM² software
- 4 Position controlled brushless motors (resolution of 10 μm ± 1 μm)
- Working space 100×100×80 mm
- Working velocity 1-15 mm
 ·s⁻¹
- Design of z-stage to locate
 Msaveral modules

Speed? Price?

Fidelity?

Tirella, De Maria, Vozzi, Ahluwalia Rapid Prot. J (2012);

Inkjet Printing

Inkjet technology is a *contact free dot matrix printing* procedure. Ink is issued from a small aperture directly onto a specific position on a substrate

Materials? Speed? Price? Fidelity?

🗘 💿 delta-z

prints per layer -

time (min)

16.1 °C

Plate:

60.0

40.0

1/15

Load Image

Delete Image

Materials? Speed? Price? Fidelity?

Open source FDM machine: RepRap Project

- RepRap is first general-purpose self-replicating manufacturing machine.
- An open source project with several forks

iRP using Open Source FDM

Extruded material	Casted Materials	Extraction method	Resolution (µm)
Carbohydrate-glass (with a subsequent coating with PDLGA)	Agarose, Alginate, PEG, Fibrin, Matrigel	Water dissolution	500

JS Miller et al, Nature Materials Letters: Published online 1 July 2012

J 3D System Multi-jet Modeling

+Shape Deposition Manufacturing

Indirect Rapid Prototyping (iRP)

- Molds realised with RP devices (CAD/CAM)
- Casting of the desired (bio-) material
- Extraction of the final object

Advantages? Limitations? DW Hutmacher et al., Trends in Biotechnology, 22(7): 354 – 362, 2004

