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ABSTRACT2

Human beings can achieve a high level of motor performance that is still unmatched in robotic3
systems. These capabilities can be ascribed to two main enabling factors: (i) the physical4
proprieties of human musculoskeletal system, and (ii) the effectiveness of the control operated5
by the central nervous system. Regarding point (i), the introduction of compliant elements in6
the robotic structure can be regarded as an attempt to bridge the gap between the animal body7
and the robot one. Soft articulated robots aim at replicating the musculoskeletal characteristics8
of vertebrates. Yet, substantial advancements are still needed under a control point of view,9
to fully exploit the new possibilities provided by soft robotic bodies. This paper introduces a10
control framework that ensures natural movements in articulated soft robots, implementing11
specific functionalities of the human central nervous system, i.e. learning by repetition, after-effect12
on known and unknown trajectories, anticipatory behavior, its reactive re-planning, and state13
covariation in precise task execution. The control architecture we propose has a hierarchical14
structure composed of two levels. The low level deals with dynamic inversion and focuses on15
trajectory tracking problems. The high level manages the degree of freedom redundancy, and16
it allows to control the system through a reduced set of variables. The building blocks of this17
novel control architecture are well-rooted in the control theory, which can furnish an established18
vocabulary to describe the functional mechanisms underlying the motor control system. The19
proposed control architecture is validated through simulations and experiments on a bio-mimetic20
articulated soft robot.21
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1 INTRODUCTION
Daily activities of human beings are a clear example of the exceptional versatility of their motor control24
system. Tasks that are still challenging for robots are indeed easily executed by people. Responsible for25
such a high level of performance are the musculoskeletal system and the Central Nervous System (CNS).26
The musculoskeletal system allows to exert forces and to percept the external world through a multitude of27
receptors. One of the main characteristics of this system is its compliant nature. Indeed, body flexibility28
provided by muscles and tendons enables features like energy efficiency, power amplification and shock29
absorption (Roberts and Azizi, 2011).30

The same feature are usually hard to be achieved by traditional rigid robots. Inspired by the effectiveness31
of the biological example, researchers developed robots with compliant elements to mimic the animal32
body. This novel generation of systems, namely soft robots, can be categorized as invertebrate-inspired or33
vertebrate-inspired (Della Santina et al., 2020). The latter class includes articulated soft robots, which are34
systems with rigid links and elasticity lumped at the joints (Albu-Schaffer et al., 2008). In this paper, we35
focus on the latter category, i.e., robots actuated by series elastic actuators (SEA) (Pratt and Williamson,36
1995) or variable stiffness actuators (VSA) (Vanderborght et al., 2013). The musculoskeletal system of37
vertebrates allows to adjust its dynamics, for instance, it allows to vary joint stiffness via co-contraction of38
antagonistic muscles. Agonistic-antagonist VSAs mimic this mechanism as described in (Garabini et al.,39
2017), thus they try to replicate the working principle of the human musculoskeletal system.40

Several works in literature describe how the features of a flexible body can be conferred also to a robot41
through different solutions (Pfeil et al., 2020; Landkammer et al., 2016; Zhang et al., 2019). Particularly42
relevant are the solutions that completely replicate the whole structure of the human musculoskeletal43
system. For examples, Kenshiro (Asano et al., 2016) is a humanoid robot reproducing the human skeleton44
and muscle arrangement. (Marques et al., 2010) presents ECCE, an anthropomimetic humanoid upper45
torso. (Jäntsch et al., 2013) proposes Anthrob, a robot mimicking a human upper limb.46

Yet, controlling soft robots still remains a very challenging task. The reason is that articulated soft47
robots have highly nonlinear dynamics, presenting also hysteresis, bandwidth limitation and delays.48
Therefore, obtaining an accurate and reliable dynamic model is not a trivial task that could directly affect49
the performance of model-based control techniques. Moreover, articulates soft robots present anatomical50
degrees of freedom (DoFs) redundancy, because they typically have more than one motor per joint, and51
they may have kinematic DoFs redundancy, depending on the platform. The majority of existing model-52
based control approaches has the strong drawback of requiring an accurate model identification process,53
which is hard to be accomplished and time-consuming. In (Buondonno and De Luca, 2016) feedback54
linearization of VSA is faced. In (Zhakatayev et al., 2017) an optimization framework to minimize time55
performance is proposed. In (Keppler et al., 2018) the Authors propose a controller to achieve motion56
tracking while preserving the elastic structure of the system and reducing the link oscillations. On the other57
hand, model-free algorithms are promising, but usually require long-lasting learning procedures and face58
generality issues (Angelini et al., 2018; Hofer et al., 2019).59

However, the complexity of the articulated soft robot body is analogous to that of their source of60
inspiration. Indeed, the human body is a complex system that presents an unknown nonlinear dynamics61
and redundancy of degrees of freedom (DoFs). Despite that, the CNS is able to cope with these issues,62
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fully exploiting the potential of the musculoskeletal system. For this reason, in this work, we analyze the63
effectiveness of a bio-inspired algorithm to control bio-mimetic robots.64

To the authors best knowledge, despite the variety of approaches in the motor control field, an architecture65
based on control theory able to present at the same time various CNS behavior is still lacking for articulated66
soft robots Ansari et al. (2019); Cao et al. (2018). The study of the human CNS has been already exploited67
to enhance robot capability. For instance, in (Medina et al., 2019) the Authors propose a method for68
modeling human motor behavior in physical and non-physical human-robot interactions. Based on previous69
observations, the developed model is able to predict the force exerted during the interaction. (Capolei et al.,70
2019) presents a cerebellar-inspired controller for humanoid robot moving in unstructured environment.71
The controller is based on machine learning, artificial neural network, and computational neuroscience. In72
(Kuppuswamy et al., 2012) the Authors propose a motor primitive inspired architecture for redundant and73
compliant robots. (Lee et al., 2018) proposes a model of human balancing with the goal of designing a74
controller for exoskeleton.75

In this work, our goal is to make a step further towards the development of human-inspired controllers76
for articulated soft robots: taking inspiration from motor control theories, we implemented a hierarchical77
control architecture exhibiting well-known characteristics of human motor control system (i.e. learning by78
repetition, anticipatory behavior, synergistic behavior). Such a control framework is a proper combination79
of feedback control, feedforward, Iterative Learning Control and Model Predictive Control. The goal is80
to design a bio-mimetic control architecture for bio-inspired robots, focusing on trajectory planning and81
tracking tasks.82

A major contribution of this work is to show how well-established paradigms belonging to the control83
theory can be used to approach the motor control problem. Finally, the authors want to clearly state that is84
beyond the scope of this work to infer possible neurophysiological implications based on the presented85
control framework.86

Our belief is that a control system able to work like the CNS, such the one proposed here, can successfully87
manage a soft robotic system. We test here this hypothesis, among with the human-like behaviors, both in88
simulation and in experiments, using as testbed robots actuated by VSAs.89

2 THE BIOLOGICAL INSPIRATION
The unparalleled performance of the animal CNS are an ambitious goal for the robotic community,90
especially because the issues faced by the CNS are very similar to the ones occurring in robots. i.e.91
unknown nonlinear dynamics and redundancy of degrees of freedom. These are (Latash, 2012):92

•Unknown nonlinear dynamics. The human body is a complex system, with strong nonlinearities at every93
level. Moreover, environmental force fields can not be known a priori.94
•Degree of freedom (DoF) redundancy. The human body presents three types of redundancy. Anatomical -95
human body is characterized by a complex highly redundant structure. The number of joints is greater96
than the number of DoFs necessary to accomplish a generic task, and the number of muscles is greater97
than the number of joints. Kinematic - infinite joints trajectories can achieve the same task, or simply98
perform the same end effector point to point movement. Neurophysiological - each muscle consists of99
hundreds of motor units, and they are activated by moto-neurons that can spike with different frequency100
(hundreds of variables).101

For this reason, we use the motor control theory as a source od inspiration for our controller.102

Frontiers 3



Angelini et al. Soft robots human-like control

Figure 1. Representation of some human behavior considered in this work. Learning by repetition (A): a subject
is able to reach a series of point in space with its end effector, when a force field is imposed the trajectories result
deformed, repeating the reaching trials many times the subject results able to restore the initial behavior. Aftereffect in
known trajectories: (B) Hand trajectories of a typical point to point movement. The typical movement is a strict line.
If a force field is introduced the trajectory is firstly deformed. After some repetitions the strict movement is recovered.
If the force field is then removed the hand trajectory is deformed in a way specular to the first deformation. This is
called aftereffect. Aftereffect in unknown trajectories: (C) Hand trajectories of typical point to point movements.
When the force field is introduced the subject make experience through learning by repetition of just trajectories 3
and 5. When the force field is removed aftereffect is present on trajectories not experienced closer to trajectories 3
and 5: trajectory 4 presents maximum aftereffect, trajectories 1 and 7 presents negligible aftereffect. (Image obtained
from an elaboration of images in (Gandolfo et al., 1996))

2.1 Hierarchical Nature of the Central Nervous System103

There are several evidences that the Central Nervous System can cope with the incredible complexity104
of the musculoskeletal apparatus by relying on a hierarchical organization of subsequent simplifications105
of the control problem (Hordacre and McCambridge, 2018; Swanson, 2012). For example, the Bernstein106
classification (Bemstein, 1967) categorizes the construction of movement in six levels, from symbolic107
reasoning to muscle tone activation. Level A is called rubro-spinal level or paleokinetic level, and it108
provides reflex function and manages muscle tone. Level B, i.e. thalamo-pallidal level, is the level of109
synergies and patterns and produces coordinate movement patterns. Finally, level C1, is the striatal or110
extrapyramidal level. This is one of the two levels of the spatial field level, and it specifies a way to111
reach performance defined by higher levels. The other three levels, C2, D and E, describe higher level of112
abstractions, as meaningful actions and information transmission. Therefore, they will not be treated in by113
the proposed control architecture.114
2.2 Some Salient Characteristics of the Human Motor Control115

In this section we list a few of salient characteristics of the neural control architecture that we consider of116
paramount importance for the human motion performance, and that we aim at replicating on the considered117
bio-mimetic robots. In the remainder of the article we will often refer to them as (i)-(v). These peculiar118
characteristics of the CNS are:119

i)Learning by repetition (Shadmehr and Mussa-Ivaldi, 1994): CNS inverts an unknown dynamic over a120
trajectory, repeating it several times. Figure 1A represents a classical experiment. It is possible to notice121
that the subject is asked to reach some points in the workspace. Then a force field is introduced. Initially,122
trajectories are strongly deformed. After repetitions of the same movements, performances obtained123
before the introduction of the force field are achieved again. The same behavior can be found in the124
development, where the CNS needs to adapt to its own dynamics.125

ii)Anticipatory behavior (Hoffmann, 2003): ability of CNS to usually anticipate the necessary control action126
relying on sensory-motor memory. The acquired previous experiences cause a shift in the control action127
from closed loop to open loop. Anticipatory behavior is fundamental in many human activities such as128
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Figure 2. Representations of the synergistic behavior. In the figure there are different possible distributions of task
configuration in task space. The dashed line is locus of configurations that meets the task. Vgood is the variance of
the distribution along the dashed line, Vbad is the variance in the orthogonal directions. The fact that Vgood >Vbad
indicates that a task synergy exists (1). If Vgood wVbad no synergy exists (2). If Vgood <<Vbad a destabilizing synergy
exists (3).

manipulation (Fu et al., 2010), coordinated (Flanagan and Wing, 1993) and fast movements (Haith et al.,129
1988).130

iii)Aftereffect over a learned trajectory (Lackner and Dizio, 1998) and aftereffect over unknown trajectories131
(Gandolfo et al., 1996). After recovering the performance loss due to the introduction of the external132
force field, by removing the force field, subjects exhibit deformations of the trajectory specular to the133
initial deformation due to the force field introduction. This behavior is called mirror-image aftereffect134
Fig.1B. This effect arises also in novel trajectories as depicted in Fig. 1C.135

iv)Synergistic behavior (Latash, 2010): synergy can be defined as “[...] a hypothetical neural mechanism136
that ensures task-specific co-variation of elemental variables providing for desired stability properties137
of an important output (performance) variable”. Given an “important output variable” we can define138
two variables Vgood and Vbad. Vgood is the variance through the directions where output is constant and the139
constraints are verified (named uncontrolled manifold), while Vbad is the variance in the other directions140
(Scholz and Schöner, 1999). The system presents a synergistic behavior when Vgood >Vbad. Fig. 2 visually141
explains this point.142

v)Re-plan of anticipatory action: CNS modifies the anticipatory motor actions on-line if the goal changes143
(e.g. (Soechting and Lacquaniti, 1983)), or if the sensory outcome is different from the expected one (e.g.144
(Engel et al., 1997)). Note that this is fundamentally different from feedback. Indeed, feedback actions145
are proportional the the instantaneous error, while re-plan of anticipatory action depends on the outcome146
of the task.147

3 PROBLEM STATEMENT
Inspired by the biological example, we design the control architecture with a hierarchic structure similar to148
the one of CNS. In particular we reproduce the first three levels of the Bernstein classification (Bemstein,149
1967) (briefly summarized in Sec. 2.1) with the goal of executing a task reference ν generated by the three150
higher abstraction levels. Furthermore, the controller has to reproduce the peculiar behaviors of the the151
human CNS described in Sec. 2.2.152
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Figure 3. Similarity between humans and robots. Variable definitions in humans (A) and robots (B). q ∈ Rn are
the Lagrangian variables, x = [qT, q̇T]T ∈ R2n is the state vector, u ∈ Rm is the input and y ∈ Rl is the output. These
variables are valid both for biological systems and articulated soft robots. Experimentally measured force–length
characteristics in natural (C) and robotic (D) system. (C Elastic characteristic of agonist and antagonist muscles
acting on the elbow joint in the human, taken from (Gribble et al., 1998). (D)) Elastic characteristic of a agonist and
antagonist variable stiffness actuator (Garabini et al., 2017).

We refer to a generic dynamic system, which may represent both articulated soft robots and biological153
models (Fig. 3A-B), i.e., ẋ(t) = f (x(t),u(t)), y(t) = h(x(t)), where f is the dynamic function, x =154
[qT, q̇T]T ∈ R2n is the state vector, q ∈ Rn are the Lagrangian variables, y ∈ Rl is the output variable, and155
h(x) is the output function. It is worth mentioning here that human muscles and agonistic antagonistic156
variable stiffness actuators share similar characteristics as depicted in Fig. 3C-D (Garabini et al., 2017). We157
propose a bio-mimetic control architecture for bio-inspired robots. The architecture is divided into two158
layers and summarized in Fig. 4. The whole controlled system is organized in four building blocks: the159
two control levels, the dynamic system, and the output function h(x) selecting the portion of the state from160
which depends the task to be accomplished.161

The low level features characteristics similar to level A of the Bernstein classification, i.e., it provides162
low level feedback and dynamic inversion. Thus, it generates as output the efferent action u depending163
on afferent proprioceptive inputs, i.e. q, q̇, and higher level reference ρ ∈ Rp, generated by the high level164
control, relying on q and y. Thus, given a desired output trajectory ŷ : [0, tf)→ Rl , where tf is the terminal165
time, the low level control is an appropriate controller able to track that trajectory. On the other hand, the166
high level control is inspired by level B and level C1 and provides task management.167

The low level controller has to present three behaviors: learning by repetition (i), anticipatory behavior168
(ii), and aftereffect over known and unknown trajectories (iii). The high level control will present synergistic169
behavior (iv) and ability of re-plan the anticipatory action (v).170

To design the control architecture we assume the desired robot impedance behavior as given. Future171
extension of this work will also consider a direct learning of the optimal impedance depending on the task.172
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Figure 4. Control structure. u is the low level control variable or efferent action, ρ is the high level control variable,
nu is the reference in the task space, q is the position vector, q̇ is the speed vector, x = [q, q̇] is the state vector, y is
the output vector, h(·) is the output function. The control system is supposed equipped by a complete proprioception.

4 FROM MOTOR CONTROL TO MOTION CONTROL
In this section we describe the proposed control architecture and its components. To obtain learning173
by repetition (i) we will employ a learning algorithm able to cope with the nonlinear dynamics of the174
studied class of robots. In particular, we rely on the Iterative Learning Control (ILC) framework (Bristow175
et al., 2006). The employed ILC method merges a low gain feedback with a feedforward action. Through176
repetitions the feedforward action will prevail over the feedback action leading to the desired anticipatory177
behavior (ii). It is worth mentioning that ILC is a local method and requires a new learning phase for every178
novel desired trajectory. Conversely, humans are able to generalize the motion learned through repetitions179
(Sternad, 2018). To obtain the same feature, we employ Gaussian Process Regression (GPR) (Rasmussen,180
2006) to create a map of learned trajectories. We aim at obtaining also aftereffect - i.e. behavior (iii) - to test181
the level of bio-mimecity of the proposed architecture. We base the high level controller on an optimization182
problem to define the desired task and to solve the redundancy issue. From this optimization problem a183
synergistic behavior (iv) results. Finally, to re-plan an anticipatory action (v) we propose two different184
approaches, one based on proportional control and the other one based on Model Predictive Control (MPC).185
Both methods will be tested and compared. We also focus on a trade off between problem dimensionality186
and accuracy.187

4.1 Low Level Control188

Le us define the error signal as e := x̂− x, where x is the measured state vector, while x̂ is the desired189
evolution, given by higher levels of the architecture. In addition, let us define the inverse functional190
W : C1[0, tf)→C0[0, tf), mapping a desired state trajectory x̂ into the input û able to track that trajectory.191
The purpose of the low level controller is to perform dynamic inversion of the system given any desired192
trajectory x̂, thus to find a map approximating W . In addition, we aim at replicating the CNS features (i),193
(ii) and (iii). To this end, we propose a new algorithm combining Iterative Learning Control (ILC) and194
Gaussian Process Regression (GPR).195

4.1.1 Learning to Track a Trajectory196

The learning by repetition behavior (i) can be achieved using a learning technique. (Emken et al., 2007)197
presents a model of learning by repetition process, derived from a statistic model of error evolution over198
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iterations199
ui+1 = α ui +βei , (1)

where α,β ∈ R+ are two positive constants, while ui and ei are the control action and the error at the200
i−th iteration, respectively. In this way an input sequence is iteratively computed such that the output of201
the system is as close as possible to the desired output. Iterative Learning Control (ILC) (Bristow et al.,202
2006) permits to embed this rule in a general theory, and already achieved good results when applied to203
VSA robots Angelini et al. (2018). ILC exploits the whole previous iteration error evolution to update a204
feedforward command, according to the law205

ui+1 = L(ui)+ z(ei) , (2)

where the function z(ei) identifies the iterative update, while L(ui) is a function1 mapping the control action206
of the previous iteration ui into the current one.207

While in works such as (Tseng et al., 2007) is described the pure contribution of error signals, there are208
evidence, such as (Kawato, 1996), that feedback motor correction plays a crucial role in motor learning.209
Hence, a more general algorithm able to merge all of these contribution is needed. Thanks to the described210
inclusion we can design an ILC controller merging both feedback and feedforward, applying a control law211
such as212

ui+1 = L(ui)+ z(ei,ei+1) , (3)

where the presence of the error of the current iteration ei+1 leads to the feedback action. The combination213
of feedback and feedforward actions, allows to profitably collect sensory-motor memory implementing214
also the described anticipatory behavior (ii). Furthermore, relying mostly on a feedforward action, ILC215
allows a limited stiffening of the robot (Della Santina et al., 2017a).216

Among all the ILC algorithms, in order to opportunely generalize (1) maintaining its intrinsic model-free217
structure, in this work we use an PD-ILC law in the form of the ones proposed e.g., in (Shou et al., 2003;218
Ruan et al., 2007), to obtain a minimal dependence on a model of the system dynamics. The proposed219
approach has been already preliminarly introduced in (Angelini et al., 2020a). The adopted iterative update220
is221

z(t, i) = ΓFFp ei(t)+ΓFFd ėi(t)+ΓFBp ei+1(t)+ΓFBd ėi+1(t) , (4)

where, ei is the error evolution at the i−th iteration, ΓFFp ∈ Rm×2n and ΓFFd ∈ Rm×2n are the PD control222
gains of the iterative update while ΓFBp ∈ Rm×2n and ΓFBd ∈ Rm×2n are the PD feedback gains. We choose223
a decentralized structure for the ILC controller, hence, the gain matrices are block diagonal. The gains of224
the control algorithm can be chosen through several methods. Trial and error approaches could be adopted,225
but they are usually time consuming and the final performance depends on the experience of the human226
operator. The ILC framework proposes several techniques to guarantee the convergence of the iterative227
process depending on the control gains. Thus, other tuning approaches rely on these convergence condition228
to choose the gains. Some relevant examples of convergence conditions can be found in (Arimoto et al.,229
1984), (Ahn et al., 1993), (Bristow et al., 2006), (Wang et al., 2009), (Moore, 1999). In (Angelini et al.,230
2018) an algorithm to automatically tune the control gains is proposed. Finally, it is worth mentioning231
that the feedback gains should be set low to avoid alteration of the softness of the controlled system232
(Della Santina et al., 2017a), (Angelini et al., 2018).233

1 L(ui) is typically a smoothing function.
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The adopted solution achieves aftereffect over known trajectories (iii). Indeed, the method is able to234
compensate also unmodeled potential external force field, because it is model-free and learning based.235
This means that the learned action depends on the external force disturbances that were present during236
the learning phase. Furthermore, since the method is mostly feedforward, when the external force field is237
removed, the system presents the desired aftereffect (iii).238

4.1.2 Generalization of the Learned Trajectories239

Given a desired trajectory x̂, ILC returns an input û such that û =W (x̂), thus it returns a pair (x̂,W (x̂)).240
However, the method lacks of generality. Indeed, ILC is a local method, and it requires a novel learning241
phase for each novel desired trajectory x̂. Conversely, humans are capable of effectively performing novel242
tasks exploiting and generalizing the previously acquired experiences (Sternad, 2018). (Angelini et al.,243
2020b) proposes a method to generalize the control actions w.r.t. to time execution given a limited set of244
pairs (x̂,W (x̂)). Given a desired trajectory x̂, the method allows to track x̂ with any desired velocity, without245
any knowledge of the robot model. In this paper, we are interested in generalizing the learning control246
action w.r.t. the joint evolution, replicating the feature of human beings. To this end, we apply GPR on a set247
of learned pairs (x̂,W (x̂)), in order to regress a map - approximating W - able to track any novel desired248
trajectory x̂. Then, the system will present also the desired behavior aftereffect over unknown trajectories249
(iii). This is achieved because the regressed map will be based on the learned feedforward control actions.250

Several approaches can be applied to compute the inverse functional W . Some methods contemplate the251
independent estimation of a complete model of the system (e.g. (Purwin and D’Andrea, 2009), (Arif et al.,252
2001)). The limitations of complete model estimation (Nguyen-Tuong et al., 2008) approaches are well253
known (e.g. computational onerous). Conversely, in our approach we will focus on a reduced space of254
control actions and trajectories, in order to limit the computational burden.255

W is the functional mapping the functional space of the state trajectories into the functional space of256
the input signals. Computing the regressor of a functional is not a trivial task. For this reason, we reduce257
the problem complexity limiting our analysis to an approximated solution. In particular we transform the258
functional W into a function through the introduction of two parameterization functions. Then, we focus259
on the regressor of this approximated solution.260

Let us define:261

•a parameterization B of a subspace of the trajectories space F⊆C1[0, tf) , with dimension p, B : Rp→ F.262
•a parameterization S of a subspace of the input space V⊆C0[0, tf), with dimension d, S : Rd → V.263

The trajectory parameterization B constraints low level controller to manage only a sub-set F of the264
possible evolutions. The parameterization S defines an approximation of control actions, reducing them265
to the ones included in V. Hence, with an abuse of notation, we indicate with S−1 the application that,266
given a control action u, returns the set of parameters that identifies its approximation, and such that267
S−1(S(µ)) = µ ∀µ ∈ Rd . Hence M(ρ) : Rp→ Rd is so defined268

M(ρ) : ρ 7→ S−1(W (B(ρ))) . (5)

M(·) is the map we are interested for (Fig. 5). ρ is the array of parameters defining the desired trajectory. The269
map can then be approximated using a nonlinear regression technique. We can then use the approximated270
map to estimate the control action needed to track a new trajectory. We employ here Gaussian Process271
Regression (GPR), because it achieves good performance, while maintaining low the computational cost. In272
particular, in the GPR algorithm implementation, we employ the squared exponential as covariance function273
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(Rasmussen, 2006) described as kc(x1,x2) = σ2
f e

−(x1−x2)
2

2γ2 +σnδ (x1−x2) ,where δ (·) is the Kronecker delta,274
and σf, σn and γ are free parameters.275

Each novel control action will update the map used for generalization. However, to further limit the276
number of regressed points, for each pair (ρ̄, S−1(W (B(ρ̄)))), we remove all the stored points from the277
map which are in a sphere of radius δerr, centered in ρ̄ .

Figure 5. Proposed regression approach: instead of trying to regress the whole inverse functional W (·), the idea is
to regress the function M(·), which provides an approximation (defined by S(·)) of control action needed to induce a
reduced set of evolution (defined by B(·)).

Figure 6. Low level control scheme. u = ufb +uff is the resulting afferent action, and ufb and uff are respectively
the closed loop and the open loop control components, u0

ff is the a-priori feedforward estimation returned by the map
S−1(W (B(·))), ρ is the parameter array, x is the configuration vector. The Feedback Controller is a PD controller,
the Learning Algorithm is the ILC algorithm, the block Parametrization implements the B(·) function. Dashed lines
indicates flux of information.

278

The parametrization of the sub-spaces F and V can be chosen freely, with the primary goal of keeping279
low the method complexity without compromising its generality. Several solutions could be implemented280
and tested. For instance, F can be set as a space of polynomial with a fixed order, or as a space of sums of281
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sinusoidal signals. On the other hand, V can be approximated as a Gaussian space, or simply a discretization282
of the signal Herreros et al. (2016).283

Regarding the choice of the sub-space F, we would like to adopt trajectories that mimic the human284
motions. Which are the main characteristics of a motion that make it human-like is still an ongoing debate285
in literature. In (Mombaur et al., 2010), the Authors apply inverse optimal control to define a model of286
human locomotion path and to exploit it for humanoid robot motion generation. In (Tomić et al., 2018) it287
is studied the problem of human dual-arm motion in presence of contacts with the environment, and it is288
proposed an algorithm merging inverse optimal control and inverse kinematics to map human motion to289
humanoid robot motion. An additional method to characterize the human-likeness of robot motion is the290
adoption of functional synergies directly extracted from human examples as base space (Averta et al., 2017).291
Without any claim about the solution of this debate, in this work, we adopt the hypothesis formulated in292
(Friedman and Flash, 2009; Flash and Hogan, 1985), which states that human movements minimize the293
jerk. Minimum jerk trajectories are 5-th order polynomial (Flash and Hogan, 1985), thus - without any294
claim of exhaustiveness - we set the vector ρ as the coefficients of the polynomial.295

For what concerns the input space parametrization, in this work we focus on piece-wise constant functions296
with a fixed number d of constant length segments, and we implement S−1 as a time discretization, since it297
is one of the more natural signal approximation in control. Future work will analyze different choices of298
parametrization of the input and output spaces.299

In Fig. 6 we report the resulting low level control scheme. The input ρ is used in the form of B(ρ) as300
efferent copy for feedback compensation, and through M(ρ) = u0

ff as estimated anticipatory action. Then,301
this action can be refined through the learning algorithm. It is worth to be noticed that the proposed low302
level controller combines learned anticipatory actions and feedback control, working mainly in feedforward303
when the map reaches the convergence.304

It is worth remarking that the adopted solution achieves aftereffect over unknown trajectories (iii). Indeed,305
the regressed map depends on the learned actions. These actions depend on the external force disturbances306
that were present during the learning phase. Therefore, when the external force field is removed, the system307
presents the desired aftereffect (iii).308

The acquired control inputs and, more in general, the regressed map depends on the impedance behavior.309
This was assumed as provided by an higher level of control in this article (Sec. 3). However, future310
extension of this work will aim at learning the optimal impedance behavior too, imitating the human311
capabilities (Burdet et al., 2001). In (Mengacci et al., 2020) it is presented a method to decouple the control312
input to track a trajectory and the control input to regulate the robot impedance, removing the dependency313
between learned control input and desired stiffness profile. This, in combination with GPR, could be used314
to generalize the acquired control input w.r.t the desired stiffness profile and the desired task.315

4.2 High Level Control316

The role of the high level controller is to perform DoFs management in task execution. In particular we317
are interested in reproducing two of the characteristics of the CNS: synergistic behavior (iv) (i.e. given the318
desired output h(x), Vgood >Vbad in the configuration space) and re-plan of anticipatory action (v).319

The degrees of freedom redundancy in humans is classified as anatomical, kinematic or neurophysiologi-320
cal (Sec. 2). Here we focus on the kinematic redundancy, and the proposed high level control produces a321
synergistic behavior for this class of synergies. However, we believe that it could be extended also to the322
anatomical redundancy. Future work will focus on this point. The neurophysiological redundancy does not323
have a counterpart in robotics, so it is the Authors’ opinion that it is not required to deal with it.324
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Several works report evidences of the discrete nature of the higher levels of the neural control of325
movements (e.g. (Morasso and Ivaldi, 1982; Loram et al., 2011)). In particular, in (Neilson et al., 1988) is326
postulated that the CNS does not plan a new movement until the previous one is finished. This happens327
because the CNS plan a new motion after receiving the desired perceptual consequences of a movement328
in a finite interval of time. In order to replicate this behavior we choose a time-discrete control approach.329
Hereinafter we will use the superscript [k], k ∈ R to indicate the k−th planned movement. Each interval330
will have the same fixed duration tf.331

Low level controller abstracts the largely unknown and nonlinear system into a discrete one which depends332
on the choice of the subspace. As a trade-off between complexity and accuracy, we heuristically chose333
a smaller subspace: 5-th order monic polynomial with two constraints, which reduces space dimension334
to 3, while ensuring that subspace elements juxtaposition is of class C2. In particular we will focus on335
trajectories fulling these constraints336

∂ 2q
∂ t2

∣∣∣∣
t={0,tf}

= 0 , qf = qs + q̇ftf , (6)

where qs and qf are the starting and final values of the polynomials respectively. Following this choice,337
we find that ρ = [qs, q̇s, q̇f]. Given this definition of ρ , the resulting curve is a polynomial spline, and the338
abstracted dynamics is a discrete integrator339

q[k+1] = q[k]+ tf ρ
[k]
3 , (7)

where ρ
[k]
3 is the third element of ρ [k]. Note that ρ

[k]
1 and ρ

[k]
2 are constrained by the initial conditions, thus340

they do not appear in (7).341

Hence, the high level controller uses ρ as control variable, and its role is to choose the sequence of ρ
[k]
3 ,342

generating a polynomial spline reference.343

Level C2 in Bernstein classification (Bemstein, 1967) specifies the task to be accomplished. Analogously,344
we aim at replicating the same behavior in the proposed high level controller. We define as task a cost345
function and a set of constraints. Thus, the high level controller is defined by a solver and an optimization346
problem formulated as347

min
∆ρ,q

J(ŷ−h(q),q[k],∆ρ3)

s.t. ‖gq(q[k])‖ ≤ λq ,∀k
‖gρ(∆ρ3)‖ ≤ λρ

q[k+1] = q[k]+ tfρ
[k]
3 ,

(8)

where J is the cost function. h(·) is the output function selecting the variables of interest for the task.348
∆ρ3 is the difference between two consecutive control commands, i.e. at the k−th interval we have349

∆ρ3 := ρ
[k]
3 −ρ

[k−1]
3 . gq and gρ are generic constraint functions, while λq ∈ R and λρ ∈ R are the values of350

the upper bounds. It is worth noting that ‖∆ρ3‖R assumes the role of actuation cost, while the difference351
between the desired and the actual output ‖ŷ−h(q)‖Q is a metric for performance.352

We test two different solvers for the high level control:353
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•Proportional Control (P): it consists in pre-solving the problem and controlling the system over xopt354
through a proportional controller, which is a dead beat controller for the discrete integrator if P = t−1

f I,355
with the the identity matrix.356
•Model Predictive Control (MPC): it consists in recalculating the optimum on-line at each time interval,357
using the first element of the resulting control sequence (Köhler et al., 2020). Conventionally, MPC is358
hardly applicable to mechanical systems due to their high bandwidths, but the architecture here presented359
allows MPC application because it is sufficient to apply it only each tf seconds.360

P control and MPC usually present much different performance and implementation complexity. For361
this reason, we decided to test both of them to check if a simpler P solver is effective enough, or if the362
difference in performances can justify the use of a more demanding method such as MPC.363

The high level feedback loop consists in a periodical re-plan of the control sequence, if the actual sensory364
outcomes are different from the expected ones.365

To obtain the desired synergistic behavior (iv), we rely on the uncontrolled manifold theory (Scholz366
and Schöner, 1999). As briefly described in Sec. 2.2, the uncontrolled manifold is the variance through367
the directions where output is constant and the constraints are verified. This means that the uncontrolled368
manifold can be identified as the manifold such that h(q)− ŷ = 0. Focusing on the regulation of the output,369
rather than on the joint error, is sufficient to obtain the desired synergistic behavior (iv).370

It is worth noting that the quality of the task execution is strongly affected by the accuracy of the learned371
low level map. A pre-learning of the map is time consuming and generally not required. So will use an372
online approach to generate the map: if a new task is not properly executed (i.e. its error is greater than373
a certain threshold ηth) then the accuracy of the map should be improved through the introduction of374
a new point, obtained through an ILC execution along the failed trajectory. This approach results in a375
task-oriented learned map: most of the points will be collected in the portions of the subspace F that are376
more useful for the tasks, obtaining a very good trade-off between map dimension and accuracy.377

5 VALIDATION
In this section, we test the effectiveness of the proposed control architecture through simulations and experi-378
ments. In both cases, we employ as testbed a two degrees of freedom robotic arm, actuated by VSAs (Fig. 7).379
Specifically, we employ two qbmoves Maker Pro (Della Santina et al., 2017b), which are bio-metitic vari-380
able stiffness actuators presenting characteristics similar to human muscles (Garabini et al., 2017). In both381
validations we consider the following gains for the algorithm ΓFFp is blkdiag([1,0.1], [1.25,0.0375]),382
ΓFFd is blkdiag([0.1,0.001], [0.0375,0.001]), ΓFBp is blkdiag([0.25,0.025], [0.25,0.025]), and ΓFBd is383
blkdiag([0.025,0.001], [0.025,0.001]). The parameters of the squared exponential as covariance function384
in GPR algorithm are σf = 1, σn = 0.05, γ = 2 and δerr = π/20.385

For performance evaluation we use the error norm 1 of the tracking error evolution, i.e. the integral over386
time of the norm of the error, mean error hereinafter. Furthermore, we refer as total error evolution the387
sum of the absolute tracking error of each joint at a given time.388

In Sec. 5.1 we present simulations proving that the proposed control architecture presents the desired389
behaviors (i)-(v) separately. In Sec. 5.2 we present experiments testing the complete control architecture.390

5.1 Simulation results391

The employed model is a two degrees of freedom arm. Each link wights 0.5kg and is 0.5m long. Viscous392
friction equal to 1.2Ns on output shaft is considered. Joints limits are [0, π

2 ]rad. The model of the actuators393
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Figure 7. Two degrees of freedom robotic arm used as validation setup. The manipulator is actuated by two
qbmoves Maker Pro, which are bio-metitic VSAs.

Figure 8. Simulation results of the tracking performance of 50 trajectories randomly selected from F. (A) Total
error over iterations. The control architecture presents the learning by repetitions behavior. (B) Ratio between the
feedforward and the feedback action. The control architecture presents the anticipatory behavior.

takes into account hardware parameters, such as measure noise, communication delays, saturations, motors394
dynamics2. In the following the test separately the low level and the high level controllers.395

5.1.1 Low Level Control396

In this section, we verify that the proposed low level control achieves the human-like behaviors described397
in (i)-(iii). We present a set of three simulations to test each behavior. First, we validate the presence of398
learning by repetition (i) and anticipatory action (ii). Then, we test the effectiveness of the learned map.399
Finally, we verify that the system presents aftereffect over know and unknown trajectories (iii).400

First, we perform trajectory tracking over 50 trajectories randomly selected in F through a uniform401
distribution. Results are shown in Fig. 8. Fig. 8A shows that the system profitably implements learning402
by repetition (behavior (i)), reducing the error by repeating the same movement. Fig. 8B shows that the403
controller is able to capitalize the sensory-motor memory over a trajectory increasing the role of anticipatory404
action (behavior (ii)).405

2 The simulink model is available online at www.naturalmachinemotioninitiative.com
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Figure 9. Mean error of 2 ·103 simulations. (A) No map is used. The mean error is 1.5929rads with a variance of
0.6272rad2s2. (B) A learned map is used. The mean error is 0.226rads with a variance of 0.0055rad2s2.

Then, we validate the effectiveness of the map. To this end, we test two scenarios: trajectory tracking406
without any map and trajectory tracking with a pre-trained map. In the latter case the map is trained on407
the 50 learning phases performed in the previous simulation. Given the two scenarios, we simulate 2 ·103408
trajectories randomly selected in F through a uniform distribution. The results are reported in Fig. 9. Results409
show that the performance using the map learned with only 50 random repetitions are more than one order410
of magnitude better than the ones without the map, and with a sensibly lower variance.411

Finally, we verify the presence of the aftereffect - i.e. behavior (iii). Results are shown in Fig. 10,412
specifically we show aftereffect over known trajectories in Fig. 10A, and aftereffect over unknown413
trajectories in Fig. 10B. In the first case, the green asterisk line represents the motion of the robot at the end414
of the learning phase. Then, we introduce an external force field, which acts on the joints as an external415
torque described by ∆1(q, q̇) =−q̇3

1−2q1 +π and ∆2(q, q̇) =−q̇3
2−0.4q2, for the first and second joint,416

respectively. The trajectory is deformed as a consequence of the force field introduction (diamond red line).417
We repeat the learning process to recover from performance loss, and the system is again able to follow the418
initial trajectory (again, green asterisk line). Finally, the field is removed, and the end-effector presents the419
mirror-image aftereffect, i.e. the trajectory (circle blue line) is specular to the red one.420

In the second case we test presence of the aftereffect on unknown trajectories. To this end, we simulate a421
motor control experiment accounted in (Gandolfo et al., 1996). The controller experiences the unknown422
force field only on two trajectories. In this simulation the external torque is described by ∆1(q, q̇) =423
−0.5q̇1− 0.15 and ∆2(q, q̇) = −0.5q̇2 + 0.15. After field removal, we track five additional trajectories.424
Each one presents aftereffect. Moreover, its effect is more evident near in the trajectories close to the425
experienced ones. This result proves that the proposed control architecture presents a typical behavior of426
the CNS, validating its human resemblance.427
5.1.2 High Level428

In this section, we verify that the proposed high level control achieves the human-like behaviors described429
in (iv)-(v). We present a set of two simulations to test each behavior. First, we validate the ability to re-plan430
an anticipatory action (v) and we compare the two approaches (P and MPC). Then, we verify that the431
system presents a synergistic behavior (iv).432

We evaluate the iterative procedure through 20 tasks. As output we employ the task position of the433
end-effector along the x axis, i.e. h(x) = acos(q1)+acos(q1+q2), where a is the length of both links. Each434
task consists in moving the arm such that ‖h(x)− ȳ j‖ is minimized, where ȳ j is the desired evolution of435
task j. The map is regressed online with a threshold ηth = tf π

10 = π

20 . This means that there is no pre-learned436
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Figure 10. Simulations present aftereffect over known and unknown trajectories. before field introduction are the
tracking performance before the introduction of the external force field. The reference trajectory can be considered
overlapped. after field introduction is the trajectory deformed by the external force field. aftereffect is the trajectory
after the field removal. (A) known trajectory. (B) Two known trajectories and five unknown trajectories.

Figure 11. (A) Average number of low level evolution tracking which fails the error test at each iteration. (B) Error
distributions with the two approaches at the first step of the learning process: the MPC approach presents lower error
than P approach exploiting the task redundancy.

map and a a new learning process is executed each time the tracking error is greater than ηth. Fig. 11 shows437
the result. Fig. 11A reports the average number of sub-tasks that presents error greater than ηth at each438
iteration. It is worth noting that the map converges to a complete representation of the inverse system, i.e.439
no more learning is needed, after ∼ 8 tasks, with both P and MPC algorithms. Fig. 11B shows that the440
MPC performance are better than the P one. This occurs thanks to the re-optimization at each iteration that441
permits to fully exploit task redundancies. In other terms, if the system moves to a state x̃ different from442
the desired one x̂, but such that h(x̃) = h(x̂), then the P controller reacts trying to regulate the two states to443
be the same, while the MPC recognizes that the task is accomplished and does not generate any further444
control action.445

In terms of tracking, the P controller presents good performance but worse than MPC. Therefore, due to446
the greater complexity of the latter method it would be possible to opt for the P controller. However, we447
are also interested in obtaining a synergistic behavior (iv). To this end, the MPC approach is preferable.448
To verify the presence of the synergistic behavior (iv), we track a reference trajectory with different449
initial conditions. In particular, we randomly select 250 initial conditions using a normal distribution with450
standard deviation equal to 0.03 and mean value equal to the correct initial condition value. Fig. 12A shows451
high variability in joints evolution, while Fig. 12B highlights that the task performance are preserved.452
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Figure 12. Synergistic behavior. The same task is executed 250 times with randomly selected initial conditions
using a normal distribution with standard deviation equal to 0.03 and mean value equal to the correct initial condition
value. (A) The evolution of the joint present high variability. (B) The evolution in the task space presents an analogous
behavior, thus the performance are unvaried. (C) The distribution in configuration space highlights the synergy-like
behavior of the high level controller.

Considering the definition of synergy reported in section 4.1, this simulation shows the presence of a453
synergistic behavior of the controlled system, presenting Vgood >>Vbad in the configuration space (Fig.454
12C).455

5.2 Experimental results456

In this section we test the complete control architecture, and we verify that it presents the desired behavior457
(i)-(v). Three experiments are presented, one testing the learning by repetition (i) and anticipatory behavior458
(ii), one testing the aftereffect (iii), and one testing the performance of the online map learning. It is459
worth noting that the reference trajectory is provided by the high level control, validating the complete460
architecture.461

The robotic platform is the two degrees of freedom planar arm depicted in Fig. 7. The output function462
h(x) is the end-effector position given by h(x) = [bcos(q1)+bcos(q1 +q2) , bsin(q1)+bsin(q1 +q2)],463
where b = 0.1m is the length of the links. Given a desired position ȳ, and a discrete time interval k̄, the464
experimental task is to maximize the velocity of the end effector in the desired position ȳ at the desired465
time step k̄. This task can be modeled as the optimization problem466

min
∆π,q
‖ȳ−h(q[k̄])‖Qp−‖h(q[k̄])−h(q[k̄−1])‖Qv +‖∆π‖R

s.t.
¯
λq ≥ q[k] ≥ λ̄q , ∀k = 1, . . . ,10

q[k+1] = q[k]+ tfπ
[k]
3 , ∀k = 1, . . . ,9 ,

(9)

where
¯
λq and λ̄q are the joint limits. R, Qp and Qv are the weight matrices of the input, the final position cost,467

and the final velocity, respectively, and their value is set as R = 0.1 I20×20, Qp = 20 I2×2 and Qv = 10 I2×2.468

Fig. 13A shows the solution of the optimization problem (9) with parameters tf = 0.5s,
¯
λq = [0, 0]T and469

λ̄q = [π/2, π/2]T, k̄ = 9, ȳ = [0.2 0]T. This is the reference trajectory of the fist experiment, and it is equal470
for both joints.471

The results are shown in Fig. 13. The proposed algorithm learns the task through repetitions: in 40472
iterations the achieved performance are satisfying. Fig. 13B shows the tracking error evolution over473
time, for a few meaningful iterations. Fig. 13C proves that the system implements learning by repetition474
(behavior (i)), reducing the error exponentially by repeating the same movement. The mean error decreases475
approximately about 63.7% w.r.t its initial value in 10 iterations, and of the 95% in 40 iterations. Finally,476
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Figure 13. ILC experiment. (A) Reference trajectory resulting from the optimization problem (9). The trajectory is
equal for both joints. (B) Tracking error evolution for different meaningful iteration of the ILC algorithm. (C) The
evolution of the error over iterations shows the learning by repetitions behavior. (D) The ratio between feedforward
and feedback actions shows an anticipatory behavior.

Fig. 13D depicts the ratio between total feedforward and feedback action, over learning iterations. This477
shows the predominance of anticipatory action at the growth of sensory-motor memory (behavior (ii)). It is478
worth to be noticed that feedback it is not completely replaced by feedforward, which is coherent with479
many physiological evidences (e.g. (Shadmehr et al., 2010)).480

The second experiment has two goals. First, it tests the ability of the control algorithm to cope with481
aggressive external disturbances as springs in a parallel configuration (Fig. 14A). Then, it validates the482
presence of mirror-image aftereffect (behavior (iii)). The robotic arm learns to move its end-effector483
following the movement depicted in Fig.14B (green asterisk line). After the learning process we introduced484
an external force field. The unknown external force field is generated by a couple of springs of elastic485
constant 0.05Nm−1, connected as in Fig. 14A. Due to the spring introduction, the robot end-effector486
evolution is altered as depicted in 14B (red diamond line). At this point, the algorithm recovers the original487
performance after few iterations, proving its ability to cope with external disturbances (learning process488
not shown for the sake of clarity). Finally the springs are removed, and the end-effector follows a trajectory489
(blue circle line in Fig. 14B), which is the mirror w.r.t. the nominal one, of the one obtained after field490
introduction, therefore proving the ability of the proposed algorithm to reproduce mirror-image aftereffect491
(behavior (iii)).492

To conclude we test the map in the complete control architecture. The idea is to repeatedly perform493
similar tasks, and to quantify the map performance. In particular, we are interested in verifying that the map494
capitalizes upon the information of the previous task executions in the new trials. In this experiment, we495
sequentially perform 10 tasks. The task parameters are tf = 0.5s,

¯
λq = [0, 0]T and λ̄q = [π/2, π/2]T, and496
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Figure 14. The designed control architecture presents aftereffect on known trajectories. (A) An unknown external
force field is applied to the robotic arm through the addition of springs. (B) The introduction of the force field
deforms the trajectory (red line) After some repetitions the strict movement is recovered. If the force field is then
removed the trajectory (blue line) is deformed in a way specular to the first deformation.

ȳ = [0.2 0]T. In this experiment, k̄ is chosen randomly with a uniform distribution in the interval {2, . . . ,10}497
for each task. This means that each task aims to maximize the link velocity at a different time step. The498
resulting trajectory has a form similar to the one depicted in Fig. 13A, eventually scaled on the abscissa499
axis respect to the value of k̄, and on the ordinate respect to the values of

¯
λq and λ̄q: the system moves as500

slow as possible (i.e. in k̄−1 steps) in the configuration that is most distant from the starting point (i.e.501
λ̄q), then in a time step it moves at the maximal possible speed to the initial position, finally it remains502
stationary.503

For each task we performed a learning process lasting for 40 iterations. The resulting low level control is504
used for map regression. This process is repeated 20 times. Hereinafter each of these repetition is referred505
as trial. To analyze the results we define two error metrics E and Ii. For every i−th task in the j−th trial506
we evaluate (i) ei, j

nm i.e., the tracking error without the use of the map, and (ii) ei, j
wm i.e., the tracking error507

with the map learned with previous trajectories.508

It is worth to be noticed that both error values ei, j
nm and ei, j

wm are not correlated with index j. However,509
while ei, j

nm is neither correlated with index i, ei, j
wm appears to be correlated with task i, due to the presence of510

the map.511

What we are interested in evaluating is how much the error ei, j
wm decreases respect to the performance512

without map ei, j
nm. Hence we define the metric513

E =
1

Ni Nj
∑

i=1,...,Ni
j=1,...,Nj

 1
T

T∫
0

‖ei, j
nm(t)‖dt

 , (10)

where T = 10tf is the task duration, Ni = 10 is the number of tasks in a sequence of learning, Nj = 20 is514
the number of trials. Hence E is the mean value of error without map, and it will be used for normalization515
purpose.516
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Therefore the considered error index for the i−th task is defined as517

Ii =
1
E

1
Nj

∑
j=1,...,Nj

 1
T

T∫
0

‖ei, j
wm(t)‖dt

 . (11)

Ii represents the normalized mean controlled system behavior over trials at the i−th task. Ii > 1 indicates518
that the map degrades the performance of the system, Ii = 1 indicates that the map does not modify the519
system behavior, Ii ∈ [0,1) indicates that the map increases the system performance.520

However, it is worth noticing that the regressed map has the goal of improving the performance also521
of trajectories that differ from the ones stored in the map itself. In particular, the regressed map aims at522
improving the performance of dynamically similar tasks, while maintaining unaltered the performance of523
dynamically different tasks. To analyze this point, we test it in presence of a novel different trajectory w. Ii

w524
represent index (11) for the novel reference. Specifically, the employed trajectories are: s, i.e. dynamically525
similar, and r, i.e. dynamically different526

sk =
π

4
sin
(

3π

2
k
)[

1
1

]
, rk =

π

4
sin
(

3π

2
k
)[
−2
1

]
. (12)

The two trajectories are presented in Fig. 15A and 15B, respectively. It is worth noticing that the s motion527
is more similar to the task trajectories than the r motion since both joint evolution are concordant.528

This experiment has been performed with two different scenarios: low and high stiffness. The results are529
reported in Fig. 15C and Fig. 15D, respectively. Both figures show that the map converges to a complete530
inversion of the system in the set of tasks of interest in ∼ 5 iterations i.e., when 5 tasks are included in the531
map there is no more improvement and the best performance are achieved. Furthermore, the method is532
able to reduce the error on the trajectory dynamically similar, without degrading the performance of the533
trajectory dynamically different. This result is achieved both in the low stiffness case and in the high one.534

6 CONCLUSIONS AND FUTURE WORK
In this work a novel control architecture that simultaneously shows the main characteristics of human motor535
control system (learning by repetition, anticipatory behavior, aftereffect, synergies) has been stated. The536
effectiveness of the proposed control framework has been validated in simulations and via experimental537
tests. The experiments have been conducted on a robotic platform, the qbmoves, closely resembling the538
muscular system and in which the control inputs, namely reference position and stiffness preset, have539
their biological counterpart in the reciprocal and co-activation, as per Equilibrium Point Hypothesis.540
The proposed control architecture translates elements of the main motor control theories in well-stated541
mechanisms belonging to control theory. Control Engineering could provide a useful framework for theory542
falsification in motor control, and it could give an already well-formed global language for problem543
definition. Furthermore, human behavior can be used to ensure human-like performance in robotic systems,544
and hence be used as a starting point for novel control models. We will further analyze this point in future545
work.546

Future work will also aim at increasing the human-likeness of the proposed control architecture. First we547
will focus on merging the generalization method proposed in (Angelini et al., 2020b) and the generalization548
method based on GPR that was presented in this paper. The union of the two approaches will grant to549
the robot the ability to track any desired trajectory, with any desired velocity, considerably limiting the550
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Figure 15. Experimental map evaluation. (A) dynamically similar trajectory. (B) dynamically different trajectory.
Evolution of the error index (11) used for map evaluation in soft (C) and stiff (D) scenario. The error index Ii on the
set of tasks of interest converges to the best reachable performance after ∼ 5 tasks in both cases. Then, two different
trajectories are tested: s which is dynamically similar and r which is dynamically different. The map reduces the error
on the dynamically similar trajectory (Ii

s), and it leaves unadulterated the performance on the dynamically different
trajectory (Ii

r).

amount of required learning procedures. This solution will further close the gap between robot and human551
capability in terms of previous experience exploitation. Then, we will aim at replicating the impedance552
behavior learning that is typical of human beings, and it is generally related to the performed task. Indeed,553
thanks to our control architecture the robot compliance is not altered, meaning that it can be freely exploited.554
Additionally, we will exploit functional synergies extracted from recorded human motions to increase the555
human-likeness of the robot movements (Averta et al., 2020). Finally, this work focused on robot powered556
by mono-articular actuators, i.e. platforms where each motor separately drives each link. However, some557
systems, e.g. human musculoskeletal system, present a poly-articular structure. In (Mengacci et al., 2020),558
a few preliminary insights about the application of ILC to poly-articular systems have been discussed.559
Starting from these results, future work will also study the application of the proposed control architecture560
to poly-articular robots, achieving also a anatomical synergistic behavior.561
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