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Abstract Most of the neuroscientific results on synergies and their technical im-
plementations in robotic systems, which are widely discussed throughout this book
(see e.g. Chapters 1, 2, 3, 7, 9, 11 and 12), moved from the analysis of hand kine-
matics in free motion or during the interaction with the external environment. This
observation motivates both the need for the development of suitable and manage-
able models for kinematic recordings, as described in Chapter 13, and the calling
for accurate and economic systems or “gloves” able to provide reliable hand pose
reconstructions. However, this latter aspect, which represents a challenging point
also for many human-machine applications, is hardly achievable in economically
and ergonomically viable sensing gloves, which are often imprecise and limited. To
overcome these limitations, in this Chapter we propose to exploit the bi-directional
relationship between neuroscience and robotic/artificial systems, showing how the
findings achieved in one field can inspire and be used to advance the state of art in
the other one, and vice versa. More specifically, our leading approach is to use the
concept of kinematic synergies to optimally estimate the posture of a human hand
using non-ideal sensing gloves. Our strategy is to collect and organize synergistic
information and to fuse it with insufficient and inaccurate glove measurements in
a consistent manner and with no extra costs. Furthermore, we will push forward
such an analysis to the dual problem of how to design pose sensing devices, i.e. how
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and where to place sensors on a glove, to get maximum information about the actual
hand posture, especially with a limited number of sensors. We will study the optimal
design of gloves of different nature. Conclusions that can be drawn take inspiration
from and might inspire further investigations on the biology of human hand recep-
tors. Experimental evaluations of these techniques are reported and discussed.

1 Introduction

The problem to achieve a correct and reliable hand pose estimation through Hand
Pose Reconstruction (HPR) systems or “gloves” ([12, 34]) has gained an increas-
ing importance for human-machine interactions in numerous applications such as
robotics, rehabilitation, virtual reality and motion analysis. Furthermore, the study
of human hand in psychophysical and neuroscientific studies requires accurate
biomechanic and postural measurements together with refined kinematic models
[18] to test and analyze theoretical motion control hypotheses [29], as it is widely
discussed e.g. in Chapters 1, 2, 3 and 13.

Unfortunately, all current HPR methods are limited due to non - idealities, such
as an imperfectly known relationship between the measurements and the complexity
of the mechanical Degrees of Freedom (DoFs) of the human hand as well as con-
siderations that tend to discourage the usage of many sensors. Regarding this last
point, economic motivations are crucial to determine the choice of both the tech-
nology solution in use and the number of sensing elements. Under this regard, a
meaningful example is the CyberGlove (CyberGlove System LLC, San Jose, CA –
USA), which is one of the most popular HPR glove-based systems: such a glove can
come equipped with 18 or 22 piezoresistive sensors but its overall cost grows from
12,297 USD to 17,795 USD (2010 quotes). On the other side, the need of enabling
mass diffusion has led to the development of more economic but inaccurate devices:
e.g. Mattel’s PowerGlove (Mattel Inc., El Segundo, CA–USA), which usually met
with scarce acceptance due to their imprecision. Ideally, the goal is to have systems
that are economic but effective.

This Chapter, which is based on [1, 3], gives a global vision of the twofold prob-
lem of (i) optimally estimating human hand posture from partial and noisy HPR data
– hence improving their accuracy at no extra costs – and (ii) how to optimally de-
sign pose sensing devices, i.e. how and where to place sensors on the human hand,
to get maximum information about the actual hand pose despite limitations on their
number and capabilities. This last point can be inspired from and offers interest-
ing insights into biological investigations on human mechanoreceptors, as it will be
discussed later in Section 2. Such a bi-directional relationship between natural and
artificial side will be deeply analyzed in this Chapter, representing the leitmotif of
this work and all this book.

Indeed, the leading idea of our approach is the concept of “human hand syn-
ergies” [29, 30, 31] (see also Chapters 1 - 5, 7, 9, 11 and 12): i.e. although very
complex and possibly different in size and shape, human hands share many com-
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monalities in how they are shaped and used in frequent everyday tasks. We will
exploit such an information on the most frequent and probable hand postures to ad-
vance the state of art of hand sensing systems and robotics and, at the same time,
to provide technical and theoretical tools to improve neuroscientific knowledge on
human hand, in a mutual inspiration between biology and artificial sciences.

2 Biology and Artificial Systems: a Mutual Inspiration

As deeply discussed throughout this book, in recent years numerous studies have
inquired in how the brain can organize the huge sensory – motor complexity of the
human hand, with particular reference to grasping. One of the main findings is that
there is a reduced number of coordination patterns, or synergies, related to both
biomechanical [15] and neural factors [22], which correlate both joint motions and
force exertions of multiple fingers [31] (see Chapters 1 - 5, 7 - 12). Multivariate
statistical methods over a grasping data set also revealed that a limited amount of
so–called principal components (or eigenpostures [25] 1) can explain a great part of
hand pose kinematic variability [29]. All these results suggest that it is possible to
reduce the number of DoFs to be used according to a desired level of approximation.

Such an idea has been extensively used in robotics from a controllability point
of view to define simplified strategies for the design and control of artificial hands
[8, 9, 17] as it is discussed in Chapter 7. However, synergy concept can be also
profitably exploited from the observability point of view, i.e. how to reduce the
number of independent DoFs to be measured in order to obtain reliable hand pose
estimations (cf. [26] for an application in hand avatar animation). Indeed, if the hu-
man hand moves according to patterns of most frequent use, it could be possible
to exploit this information to improve hand pose reconstruction despite measure-
ments, which are in general noisy and reduced in number. This observation suggests
a strong relationship between sensory and motor side, which lays the foundations of
the concept we defined as sensory-motor synergies, as discussed in Chapter 4 and
in particular in Chapter 6.

In this Chapter we will deal with such an observability problem. More specifi-
cally, in the first part we will provide Minimum Variance Estimation techniques to
fuse synergistic kinematic information with partial and noisy glove measurements.
In the second part, we will push forward such an analysis, wondering: “and if I were
the designer, how could I choose and place the sensors on a glove to maximize hand
postural information?”.

This last question is extremely important since it further reveals deep relation-
ships between the artificial and natural side. Indeed, that the optimal distribution of
sensitivity for HPR is not trivial is strongly suggested by the observation of the hu-
man example. Let us consider the role of cutaneous information and its relationship
with proprioception and kinaesthesia of human hands and fingers, as it was investi-

1 Hereinafter, in this Chapter the terms synergies and principal components will be used as syn-
onyms.
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(a) Slowly adapting (SA)
units location.

(b) Fast adapting (FA)
units location.

(c) Mechanoreceptor afferent
units responding to ≥ 1 joint.

Fig. 1 Location of cutaneous mechanoreceptive units in the dorsal skin of the human hand.
Adapted from [13], courtesy of the authors.

gated in [13] where the response to finger movements of cutaneous mechanorecep-
tors in the dorsal skin of human hand was studied. Two main classes of mechanore-
ceptors involved in this response were roughly identified: Fast Adapting afferents of
the first type (FAI), and Slow Adapting afferents, of both the first and second type
(SAI and SAII, respectively). These two classes have non–uniform distributions as
it is shown in figure 1(a) and 1(b). Indeed, FA units, which have a more localized
response to movements about one or, at most, two nearby joints, are primarily close
to joints, while SA units, which respond to several joints at the same time, can be
found more uniformly distributed (see figure 1(c)).

Conclusions that can be drawn suggest that in the human hand sensory system
there are different typologies of proprioceptive sensors on the skin with different
distributions and densities, thus producing a non–uniform map of sensitivities to
joint angles. Nonetheless the functional motivations of these data is still unclear, a
fascinating interpretation might be the different importance of different elementary
percepts in building an overall representation of the hand pose. These biological re-
sults motivate our approach to deal with the problem of searching for a preferential
distribution and density of different typologies of sensors, which optimize the ac-
curacy of glove–based HPR systems, especially when restrictions on the production
costs limit both the number and the quality of sensors. As kinematic synergies is the
leading idea for our optimal estimation approach and, together with the observations
on the biology of human mechanoreceptors, the motivation for the optimal design
of hand pose sensing systems, results we have achieved on the artificial side might
further inspire biological investigations, providing theoretical and technical tools to
advance the study of human hand sensory – motor apparatus.
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3 Performance Enhancement

The approach we propose to improve the reconstruction accuracy of existing sensing
gloves can deal with noisy measured data and relies on classic Minimum Variance
Estimation (MVE). To validate this technique, we used a set of grasp postures ac-
quired with a low cost sensing glove, which provides few noisy measurements, and
an optical tracking system, which represents the accurate ground – truth for pose
reconstruction.

3.1 The Hand Posture Estimation Algorithm

Let us consider a set of measures y ∈Rm given by a sensing glove. By using a n de-
gree of freedom kinematic hand model, let us assume a linear relationship between
joint variables x ∈ Rn and measurements y given by

y = Hx+ν , (1)

where H ∈Rm×n (m< n) is a full rank matrix, which represents the relation between
measures and joint angles, and ν ∈ Rm is a vector of measurement noise. The goal
is to determine the hand posture, i.e. the joint angles x, by using a set of measures
y whose number is lower than the number of DoFs describing the kinematic hand
model in use. As a consequence, (1) represents a system where there are fewer equa-
tions than unknowns and hence is compatible with an infinite number of solutions,
described e.g. as

x = H†y+Nhξ , (2)

where H† is the pseudo-inverse of matrix H, Nh is the null space basis of matrix H
and ξ ∈ R(n−m) is a free vector of parameters. Among these possible solutions, the
least-squared solution resulting from the pseudo-inverse of matrix H for system (1)
(hereianfter referred to as Pinv) is a vector of minimum Euclidean norm given by

x̂ = H†y . (3)

However, the hand pose reconstruction resulting from (3) can be very far from the
real one. The goal is to improve the accuracy of the pose reconstruction, choosing,
among the possible solutions to (2), the most likely hand pose, taking into account
the fact that finger motions in grasping tasks are strongly correlated according to
some coordination patterns, or synergies [29] (cf. Section 2 and Chapters 1, 2 and
7).

To achieve this goal, we use as a priori information the synergistic information
obtained by collecting a large number N of grasp postures xi with n DoFs into a ma-
trix X ∈ Rn×N . This information can be summarized by means of a covariance ma-
trix Po ∈ Rn×n, which is a symmetric matrix computed as Po =

(X−x̄)(X−x̄)T

N−1 , where
x̄ is a matrix n×N whose columns contain the mean values for each joint angle ar-
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ranged in vector µo ∈ Rn. We assume that the above described a priori information
is multivariate normal distributed, and hence can be described by the covariance
matrix Po.

3.1.1 Minimum Variance Estimation

Minimum Variance Estimation (MVE) technique minimizes a cost functional that
expresses the weighted Euclidean norm of deviations, i.e. cost functional J =∫

X (x̂− x)T S(x̂− x)dx, where S is an arbitrary, semidefinite positive matrix. Under
the hypothesis that ν has zero mean and Gaussian distribution with covariance ma-
trix R, the solution for the minimization of J is achieved as x̂ = E[x|y], where E[x|y]
represents the a posteriori probability density function (pdf) expectation value of
the multivariate normal distribution. This function is expressed by [35] as

f (x) =
1√

2π‖Po‖
exp
{
−1

2
(x−µo)

T P−1
o (x−µo)

}
. (4)

The estimation x̂ can be obtained as in [19] by

x̂ = (P−1
o +HT R−1H)−1(HT R−1y+P−1

o µo) , (5)

where matrix Pp = (P−1
o +HT R−1H)−1 is the a posteriori covariance matrix, which

has to be minimized to increase information about the system. This result represents
a very common procedure in applied optimal estimation when there is redundant
sensor information. In under-determined problems, it is only thanks to the a priori
information, represented by Po and µo, that equation (5) can be applied (indeed,
HT R−1H is not invertible).

When R tends to assume very small values, the solution described in equation (5)
might encounter numerical problems. However, by using the Sherman-Morrison-
Woodbury formulae,

(P−1
o +HT R−1H)−1 = Po−PoHT (HPoHT +R)−1HPo (6)

(P−1
o +HT R−1H)−1HT R−1 = PoHT (HPoHT +R)−1 , (7)

equation (5) can be rewritten as

x̂ = µo−PoHT (HPoHT +R)−1(Hµo− y) , (8)

and the a posteriori covariance matrix becomes Pp =Po−PoHT (HPoHT+R)−1HPo.
By placing R = 0 in (8), it is possible to obtain equation (7) and the a posteriori
covariance matrix becomes

Pp = Po−PoHT (HPoHT )−1HPo (9)
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DoFs Description
TA Thumb Abduction
TR Thumb Rotation
TM Thumb Metacarpal
TI Thumb Interphalangeal
IA Index Abduction
IM Index Metacarpal
IP Index Proximal

MM Middle Metacarpal
MP Middle Proximal
RA Ring Abduction
RM Ring Metacarpal
RP Ring Proximal
LA Little abduction
LM Little Metacarpal
LP Little Proximal

Fig. 2 Kinematic model of the hand with 15 DoFs. Markers are reported as red spheres.

Notice that, (8) with R = 0 can also be obtained by maximizing the pdf (4), that
is equivalent to solving the following optimal control problem (see [4] for details):x̂ = argmin

x̂

1
2 (x−µo)

T P−1
o (x−µo)

Subject to y = Hx .
(10)

It is interesting to give a geometrical interpretation of the cost function in (10),
which expresses the square of the Mahalanobis distance [24]. The concept of Ma-
halanobis distance, which takes into account data covariance structure, is widely
exploited in statistics, e.g. in Principal Components Analysis, mainly for outlier
detection [21]. Accordingly, to assess if a test point belongs to a known data set,
whose distribution defines an hyper-ellipsoid, its closeness to the centroid of data
set is taken into account as well as the direction of the test point w.r.t. the centroid
itself. In other words, the more samples are distributed along a given direction, the
higher is the probability that the test point belongs to the data set even if it is further
from the center.
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Fig. 3 The sensing glove used in our study (on the left) and the sensing glove with added markers
(on the right).

3.2 Data Acquisition

To assess hand pose reconstruction effectiveness, without loss of generality, we used
a 15 DoF model for the hand2, which was also considered in [17, 29] and reported
in Fig. 2. We collected a large number of static grasp positions using 19 active
markers and an optical motion capture system (Phase Space, San Leandro, CA,
USA). More specifically, all the grasps of the 57 imagined objects described in [29]
were performed twice by subject AT (M,26), in order to define a set of 114 a priori
data. We characterized such an a priori information in terms of Po and µo.

Moreover, 54 grasp poses of a wide range of different imagined objects were
executed by subject LC (M,26) 3. The set of the latter poses will be referred here-
inafter as validation set, since these poses can be assumed to represent accurate
reference angular values for successive comparisons with the obtained hand pose
reconstructions. For this reason, these data were recorded in parallel with the sens-
ing glove, whose performance we wanted to optimize, as it will be described later
in this Section, and the Phase Space system, in order to achieve also glove calibra-
tion. The processed hand poses acquired with Phase Space can be considered as
reliable approximations of real hand positions, given the high accuracy provided by
this optical system to detect markers (the amount of static marker jitter is inferior
than 0.5 mm, usually 0.1 mm) and assuming a linear correlation (due to skin stretch)
between marker motion around the axes of rotation of the joint and the movement of
the joint itself [40]. Since the sensing glove perfectly adapts to subject hand shape
when it is worn, the latter assumption is still reasonable also in this case, even if
departures from real reference configurations can happen. None of the subjects had
physical limitations that would affect the experimental outcomes. Data collection
from subjects in this study was approved by the University of Pisa Institutional Re-
view Board. For the markerization protocol and additional details on the acquisition,
the reader is invited to refer to [1].

2 The human hand, considering only fingers and metacarpal joints, has 23 DoFs [12]. Various
models have been proposed in literature, which try to reproduce hand and wrist kinematics at
different levels of approximation, e.g. [16, 18, 33]
3 All these data and more information about hand pose acquisitions are available at
http://handcorpus.org/
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Real Hand Postures

Pi
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Fig. 4 Hand pose reconstructions with Pinv and MVE algorithms, with measures given by the
sensing glove. In blue the “real” hand posture whereas in white the estimated one.

3.3 Experimental Results

The reconstruction procedure was tested using a sensorized glove based on Conduc-
tive Elastomer (CE) [36]. CE strips are printed on a Lycra R©/cotton fabric in order
to follow the contour of the hand, see Fig. 3.

Since CE materials present piezo-resistive characteristics, sensor elements corre-
sponding to different segments of the contour of the hand length change as the hand
moves. These movements cause variations in the electrical properties of the mate-
rial, which can be revealed by reading the voltage drop across such segments.The
sensors are connected in series thus forming a single sensor line while the connec-
tions intersect the sensor line in the appropriate points.

In the present study, long finger flexion-extension recognition was obtained
by means of an updated multi-regressive model having the metacarpophalangeal
(MCP) flexion-extension angles of the five long fingers as dependent variables and
the outputs of CE sensor covering MCP joints as independent ones. According to
the hand kinematic model adopted in this work they are referred as to TM, IM,
MM, RM, LM. The model parameters were identified by measuring the sensor sta-
tus in two different position: (1) hand totally closed (90 degrees), (2) hand totally
opened (0 degrees). For more information about the design and structure of the here
described sensing glove and the signal processing system employed, the reader is
invited to refer to [23, 36, 37].

Although this sensorized glove can be regarded as one of the most recent and in-
expensive envisions in glove device literature, it is limited under several aspects that
can reduce its performance, e.g cloth support that affects measurement repeatability
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DoF
Mean±Std Max Error

p-values
MVE Pinv MVE Pinv

TA 12.12±9.98 14.37±10.78 36.63 34.28 0.28
TR 9.20±7.13 26.46±10.49 26.34 46.43 0

TM∗ 4.36±3.73 6.43±4.44 13.25 18.50 0.0093
TI 14.56±9.96 7.84±5.47 33.25 22.38 0.0008
IA 9.82±6.89 7.10±5.08 29.60 21.18 0.0381

IM∗ 15.27±11.86 16.48±12.62 46.76 43.58 0.58
IP 9.60±7.65 31.47±14.70 27.40 61.11 0

MM∗ 14.40±12.84 19.88±14.58 53.03 51.47 0.0232
MP 6.80±6.49 24.36±9.85 24.74 43.72 0
RA 6.20±4.31 5.69±4.72 15.72 20.90 0.51

RM∗ 19.00±13.44 19.22±11.81 61.98 46.32 0.67
RP 8.98±8.91 31.51±13.98 32.24 60.62 0
LA 11.42±8.50 32.24±6.98 29.59 48.11 0

LM∗ 17.37±12.51 17.98±11.81 58.40 45.05 0.26
LP 8.43±6.36 23.90±12.53 26.07 56.21 0

1←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−0
p-values

∗ indicates a measured DoF.
Table 1 Average estimation errors and standard deviations for each DoF [◦], for the sensing glove
acquisitions. MVE and Pinv methods are considered. Maximum errors are also reported as well
as p-values from the evaluation of DoF estimation errors between MVE and Pinv. A color map
describing p-values is also added to simplify result visualization. � indicates that standard two-
tailed t-test (Teq) is exploited for the comparison. ‡ indicates a modified two-tailed T-test (Behrens-
Fisher problem), Tneq test. When no symbol appears near the tabulated values, it means that Mann-
Whitney U-test (U-test) is used. Bold value indicates no statistical difference between the two
methods under analysis at 5% significance level. When the difference is significative, values are
reported with a 10−4 precision. p-values less than 10−4 are considered equal to zero.

as well as hysteresis and non linearities due to piezo-resistive material properties.
Indeed, although this kind of glove is suitable for general opening/closening hand
movement measurement, it is not the best choice for sensing fine hand adjustments.
Moreover, the assumptions done for data processing (the relationship between joint
angles and sensors as well as the linearity between hand aperture and electrical prop-
erty changes) and the calibration phase based only on two-points fitting can act like
aditional potential sources of errors. To overcome this last point we performed a
new calibration to estimate the measurement matrix.

3.3.1 Results and Discussions

First, we obtained an estimation of the glove measurement matrix Hg, i.e. Ĥg. For
this purpose, a calibration phase was performed by collecting a number of poses
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N in parallel with the glove and the position optical tracking system. This number
has to be larger or equal than the dimension of the state to estimate, i.e. N ≥ 15.
Xc ∈ R15×15 collects the reference poses, while matrix Zc ∈ R5×15 organizes the
measures from the glove. These measures represent the values of the signals re-
ferred to measured joints veraged over the last 50 acquired samples (@250 kS/s).
Matrix Ĥg can be obtained by exploiting the relation Zc = ĤgXc as Ĥg = Zc((XT

c )†)T .
Measurement noise was characterized in terms of fluctuations w.r.t. the aforemen-
tioned average values of the measures, thus obtaining noise covariance matrix R.
Noise level is less than 10% measurement amplitude. However consistent errors in
the measurement matrix estimation might be obtained due to intrinsic non-linearities
and hysteresis of glove sensing elements. Once the measurement matrix Ĥg was ob-
tained, we applied MVE estimation techniques to the measurements provided by the
glove and compared the results with those achieved using simple pseudo-inversion
(Pinv) (2).

Pose estimation errors (i.e. the mean of DoF absolute estimation errors computed
for each pose ei =

1
n ∑

n
i=1 |xi− x̂i|), and DoF absolute estimation errors are consid-

ered and averaged over all the number of reconstructed poses.
Results clearly show that MVE outperforms Pinv in terms of estimation out-

comes. Indeed, the average absolute pose estimation error with MVE is 10.94±
4.24◦, while it is equal to 19.00± 3.66◦ by using Pinv. Statistical difference was
observed between the two techniques (p-value less than 10−4). Notice that MVE
exhibits best pose reconstruction performances also in terms of maximum errors
(25.18 ◦ for MVE vs. 30.30 ◦ for Pinv). Absolute average reconstruction errors for
each DoF are reported in table 1. MVE produces the best results which are statisti-
cally different w.r.t. Pinv algorithm, see table 1, except, respectively, for those DoFs
which are directly measured (i.e. IM, RM and LM), for RA DoF, which exhibits a
limited average estimation error (≈ 6◦), and finally TA. For TI the smallest average
estimation is observed with Pinv; a possible explanation for this might be still re-
lated to the difficulties in kinematic modeling thumb phalanx kinematics. IA DoF
presents the smallest absolute average estimation error with Pinv, although p-values
from the comparisons between the two techniques for the estimation of this DoF are
close to the significance threshold. Maximum DoF reconstruction errors for MVE
are observed especially for those measured DoFs with potentially maximum varia-
tions in grasping tasks; this fact may be probably due to the non linearities in sens-
ing glove elements leading to inaccurate estimation of Hg, and hence to inaccurate
measures. Furthermore, MVE aims at minimizing the error statistics and guaran-
tees that the mean squared norm of the joint error vector (i.e. the Mean Squared
Error, MSE = 1

N ∑
N
i=1 ‖x̂− x‖2, where N represents the number of predictions) is

minimized, but not necessarily the value of each single component. For this reason,
some worst-case sensing results can be found.

To conclude, except for some singular poses, the best estimation performance is
provided by MVE for which a good robustness to errors in measurement process
modeling is also observed. However, the latter errors are not taken numerically into
account in these analyses. Moreover, as it can been seen in Fig. 4, reconstructed hand
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configurations obtained by MVE preserve likelihood with real poses, as opposed to
pseudo-inverse based algorithm.

4 Optimal Design

In this part of the Chapter, we extend the analysis to the optimal design of sensing
gloves. The objective is to choose the optimal sensor distribution that maximizes
the information on the actual posture. This information, used with the estimation
method previously discussed, will lead to the minimization of the reconstruction
error statistics.

As explained in Section 2, there is a strong biological evidence that the optimal
distribution of sensitivity for a sensing glove should not be trivial. However, while
most results in optimal experimental design [6, 10, 20] refer to the case where the
number of measurements is redundant or at least equal to the number of variables
to be estimated, the opposite case that fewer sensors are available than the hand
variables is of main concern in our problem. To circumvent this limit, it is natural
to think of exploiting synergistic a priori knowledge to disambiguate poses from
scarce data.

In previous sections, synergistic prior knowledge on how humans most fre-
quently use their hands is fused with partial and noisy data provided by any given
glove device, to maximize reconstruction accuracy. Here, the goal is to characterize
a design that enables for optimally exploiting – in a Bayesian sense – such an a
priori information.

The optimization goals become particularly relevant when restrictions on the
production costs limit both the number and the quality of sensors. In these cases,
a careful design is instrumental to obtain good performance. Furthermore, different
technologies and sensor distributions can be considered to realize the devices. At the
physical level, sensors for gloves can be classified as either lumped (as e.g. a me-
chanical angular encoder about a joint or Hall-effect sensors, as in the Humanglove
by Humanware s.r.l. (Pisa, Italy) ) or distributed (e.g. a flexible optic fiber running
along a finger from base to tip or conductive elastomeric strips as in the glove used
in our experiments [36]). At the signal level, glove sensors can be coupled (if more
than one hand joint angle influences the reading) or uncoupled. Of course, all dis-
tributed sensors are coupled, but also lumped sensors can exhibit cross–coupling.

Different sensor arrangements generate different measurement matrices H: the
row corresponding to a lumped, uncoupled sensor has a non–zero element only in
correspondence to the measured joint, hence (up to rescaling) it is a binary “selec-
tion” matrix. We will call such a matrix discrete, i.e. Hi j ∈ {0,1}— a discrete set of
values. Conversely, a coupled sensor with general weights, i.e. a distributed sensor
or a lumped sensor with not negligible cross–coupling, produces a matrix whose
row elements are real numbers, i.e., up to rescaling, Hi j ∈ [−1, 1]⊂R — a continu-
ous set of values. In the following, we will call such a matrix continuous. Finally, a
glove employing both lumped (uncoupled and coupled) and distributed sensors will
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generate a hybrid measurement matrix, which consists of a continuous part and a
discrete one.

Lumped, uncoupled sensing devices, which generate a discrete measurement ma-
trix, are probably the easiest to be implemented, as they require to individually mea-
sure single joints according to the optimal measurement matrix. Common sensing
strategies include Hall–effect or piezoresistive sensors (e.g. CyberGlove, by Cyber-
Glove System LLC), directly placed on the joints to be measured, hence obtaining
a lumped device. On the other hand, distributed sensors, which generate an opti-
mal continuous matrix like the sensing glove used in the experiments described in
Section 3.3, should provide measurements in terms of (optimally) weighted linear
combinations of the contributions of different DoFs, e.g. using, among the different
techniques, resistive ink printed on flexible plastic bends that follow the movement
of hand joints (e.g. PowerGlove by Mattel Inc., El Segundo, CA–USA), or capaci-
tive sensors (as e.g. in the Didjiglove by Dijiglove Pty. Ltd., Melbourne, AUS) [12].
Finally, the above discussed technologies (lumped, uncoupled and distributed) can
be adopted and combined in an efficient manner to optimally realize devices that
can be modeled by a hybrid measurement matrix. Notice that the human hand sens-
ing distribution can be considered to belong to the latter glove class, as it will be
discussed later in this Chapter.

4.1 Problem Definition

In the ideal case of noiseless measures (R = 0), Pp becomes zero when H is a full
rank n matrix, meaning that the available measures contain a complete information
about the hand posture. In the real case of noisy measures and/or when the number
of measurements m is less than the number of DoFs n, Pp can not be zero. In these
cases, the following problem becomes very interesting: find the optimal matrix H∗

such that the hand posture information contained in a reduced number of measure-
ments is maximized. Without loss of generality, let assume H to be full row rank
and consider the following problem.

Problem 1. Let H be an m× n full row rank matrix with m < n and V1(Po,H,R) :
Rm×n→ R be defined as V1(Po,H,R) = ‖Po−PoHT (HPoHT +R)−1HPo‖2

F , find

H∗ = argmin
H

V1(Po,H,R)

where ‖ · ‖F denotes the Frobenius norm defined as ‖A‖F =
√

tr(AAT ), for A ∈
Rn×n.

Frobenius norm has been already used in literature for optimization in measurement
problem, e.g. [27]. Here the squared Frobenius norm is adopted to exploit its useful
relation with matrix trace operator in order to simplify the derivation of the matrix
gradient flow later defined. To solve problem 1 means to minimize the entries of
the a posteriori covariance matrix: the smaller the values of the elements in Pp,
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the greater is the predictive efficiency. Next sections will be dedicated to describe
solutions to problem 1 for different sensor distributions and hence measurement
matrices, i.e. continuous, discrete and hybrid, the latter containing both lumped and
distributed sensors.

Let us introduce some useful notations. If M is a symmetric matrix with dimen-
sion n, let its Singular Value Decomposition (SVD) be M =UMΣMUT

M , where ΣM is
the diagonal matrix containing the singular values σ1(M) ≥ σ2(M) ≥ ·· · ≥ σn(M)
of M and UM is an orthogonal matrix whose columns ui(M) are the eigenvectors of
M, known as Principal Components (PCs) of M, associated with σi(M). For exam-
ple, the SVD of the a priori covariance matrix is Po = UPoΣPoUT

Po
, with σi(Po) and

ui(Po), i = 1,2, . . . ,n, the singular values and the principal components of matrix Po,
respectively.

4.2 Continuous Sensing Design

In this case, each row of matrix H is a vector in Rn and hence can be given as a
linear combination of a Rn basis. Without loss of generality, we can use the principal
components of matrix Po, i.e. columns of previously defined matrix UPo , as a basis of
Rn. Consequently, naming Hc such a type of matrix related to a continuous sensing
device, the measurement matrix can be written as Hc = HeUT

Po
, where He ∈ Rm×n

contains the coefficients of the linear combinations. Given that Po =UPoΣPoUT
Po

, the
a posteriori covariance matrix becomes

Pp =U
[
Σo−ΣoHT

e (HeΣoHT
e +R)−1HeΣo

]
UT , (11)

where, for simplicity of notation Σo ≡ ΣPo .
We will analyze the optimal continuous sensing design both under a numerical

and analytical point of view. For this purpose, let us introduce the set of m×n (with
m < n) matrices with orthogonal rows, i.e. satisfying the condition HHT = Im×m,
and let denote it as Om×n.

4.2.1 Numerical Solution: Gradient flows on Om×n

A differential equation that solve problem 1 is proposed. The following proposition
describes an algorithm that minimizes the cost function V1(Po,H,R), providing the
gradient flow which can be used to improve the method of steepest descent.

Proposition 1. The gradient flow for the function V1(Po,H,R) : Rm×n→ R is given
by,

Ḣ =−∇‖Pp‖2
F = 4

[
P2

p PoHT
Σ(H)

]T
, (12)

where Σ(H) = (HPoHT +R)−1.

All the calculation to obtain the gradient can be found in the Appendix of [2].
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Let us observe that rows of matrix H can be chosen, without loss of generality,
such that HiPoHT

j = 0, i 6= j that imply that measures are uncorrelated, i.e. satis-
fying the condition HHT = Im. Of course, in case of noise-free sensors, this con-
straint is not strictly necessary. On the other hand, in case of noisy sensors, the
minimum of V1(Po,H,R) can not be obtained since it represents a limit case that
can be achieved when H becomes very large (i.e. an infimum) and hence increasing
the signal-to-noise ratio in an artificial manner. Therefore, it is possible to use the
constraint HHT = Im to reduce the search space in order to find solutions.

To solve this constrained problem it is possible to use the Rosen’s gradient pro-
jection method for linear constraints [28], which is based on projecting the search
direction into the subspace tangent to the constraint itself.

Having the search direction for the constrained problem, the gradient flow is
given by

Ḣ =−4W
[
P2

p PoHT
Σ(H)

]T
(13)

where Σ(H) = (HPoHT +R)−1. The gradient flow (12) guarantees that the optimal
solution H∗ will satisfy H∗(H∗)T = Im, if H(0) satisfies H(0)H(0)T = Im, i.e. H ∈
Om×n

4.
Notice that both Om×n and V1(Po,H,R) are not convex, hence the problem could

not have a unique minimum. To overcome this common problem in gradient meth-
ods, a multi-start search represents a classic procedure. The here described gradient-
based technique can be useful to characterize optimal solutions also for discrete
sensing design, in case of large dimension problem. Moreover, they can furnish in-
teresting suggestions about a possible hybrid approach later discussed.

4.2.2 Analytical Solutions

Let us first consider the case of noiseless measures, i.e. R = 0. Let A be a non-
negative matrix of order n. It is well known (see [27]) that, for any given matrix B
of rank m with m≤ n,

min
B
‖A−B‖2

F = α
2
m+1 + · · ·+α

2
n , (14)

where αi are the eigenvalues of A, and the minimum is attained when

B = α1w1w1
T + · · ·+αmwmwm

T , (15)

where wi are the eigenvector of A associated with αi. In other words, the choice of
B as in (15) is the best fitting matrix of given rank m for A. By using this result we
can determine when the minimum of (11), and hence of

‖Σo−ΣoHT
e (HeΣoHT

e )
−1HeΣo‖2

F , (16)

4 H(0) indicates the starting point at t = 0 for the gradient flow.
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can be reached. Let us observe that the row vectors (hi)e of He can be chosen, with-
out loss of generality, to satisfy the condition (hi)e Σo (h j)e = 0, i 6= j, which implies
that the measures are uncorrelated. As previously said, Om×n denotes the set of m×n
matrices, with m < n, whose rows satisfy the aforementioned condition, i.e. the set
of matrices with orthonormal rows (HeHT

e = I). By using (14), the minimum of (16)
is obtained when (see [27])

ΣoHT
e (HeΣoHT

e )
−1HeΣo = σ1(Σo)u1(Σo)uT

1 (Σo)+ · · ·+σm(Σo)um(Σo)uT
m(Σo) .

(17)
Since Σo is a diagonal matrix, ui(Σo)≡ ei, where ei is the i-th element of the canon-
ical basis. Hence, it is easy to verify that (17) holds for He = [Im |0m×(n−m)]. As a
consequence, row vectors (hi)c of Hc are the first m principal components of Po,
i.e. (hi)c = ui(Po)

T , for i = 1, . . . ,m.
From these results, a principal component can be defined as a linear combination

of optimally-weighted observed variables meaning that the corresponding measures
can account for the maximal amount of variance in the data set. As reported in [27],
every set of m optimal measures can be considered as a representation of points in
the best fitting lower dimensional subspace. Thus the first measure gives the best
one dimensional representation of data set, the first two measures give the best two
dimensional representation, and so on.

In case of noisy measures, (15) can not be verified since it represents a limit
case that can be achieved when H becomes very large and hence increasing the
signal-to-noise ratio. We hence describe an optimal solution for problem 1 in the set
A = {H : HHT = Im}. This problem was discussed and solved in [11], providing
that, for arbitrarily noise covariance matrix R,

min
H∈A

V1(H) =
m

∑
i=1

σi(Po)

1+σi(Po)/σm−i+1(R)
+

n

∑
i=m+1

σi(Po) , (18)

and it is attained for H = ∑
m
i=1 um−i+1(R)ui(Po).

Hence, if A consists of all matrices with mutually perpendicular, unit length
rows, the first m principal components of Po are always the optimal choice for H
rows. As shown in [11] this situation changes under the Frobenius norm constraint,
i.e. A = {H : ‖H‖F ≤ 1} (see [11] for details).

Conclusions that can be drawn from this part is that in case of noise-free mea-
sures, the invariance of the cost function w.r.t. changes of basis, i.e. V1(Po,H,0) =
V1(Po,MH,0) with M ∈ Rm an invertible full rank matrix, suggests that there might
exist a subspace in Rn where the optimum is achieved. Indeed, gradients become
zero when rows of matrix H are any linear combination of a subset of m principal
components of the a priori covariance matrix, or synergies [29]. Unfortunately, this
does not happen in case of noisy measures and gradients become zero only for a
particular matrix H which depends also on the principal components of the noise
covariance matrix. In other terms, in case of continuous sensing gloves the sensing
elements must be placed on the human hand in order to provide measurements that
are related to the joints according to the first m PC weights.
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4.3 Discrete Sensing Design

Let us consider now the case that each measure y j, j = 1, . . . ,m from the glove
corresponds to a single joint angle xi, i = 1, . . . ,n. The problem here is to find the
optimal choice of m joints or DoFs to be measured.

Measurement matrix becomes in this case a full row rank matrix where each
row is a vector of the canonical basis, i.e. matrices which have exactly one nonzero
entry in each row: let Hd be such a type of matrix. The optimal choice H∗d can
be easily computed, by substituting all the possible sub-sets of m vectors of the
canonical basis in the cost function V1(Po,H,R). However, a more general approach
to compute the optimal matrix is provided in order to obtain the solution also when
a model with a large number of DoFs is considered, and eventually extended to all
human body.

Let Nm×n denote the set of m× n element-wise non-negative matrices, then
Pm×n = Om×n∩Nm×n, where Pm×n is the set of m×n permutation matrices (see
lemma 2.5 in [39]). This result implies that if we restrict H to be orthonormal and
element-wise non-negative, we get a permutation matrix. We extend this result in
Rm×n, obtaining matrices which have exactly one nonzero entry in each row and the
problem to solve becomes:

Problem 2. Let H be a m× n matrix with m < n, and V1(Po,H,R) : Rm×n → R
be defined as V1(Po,H,R) = ‖Po−PoHT (HPoHT +R)−1HPo‖2

F , find the optimal
measurement matrix

H∗ = argmin
H

V1(Po,H,R)

s.t. H ∈Pm×n .

4.3.1 Numerical Solution: Gradient Flows on Pm×n

A solution for this problem can be obtained defining a cost function that penalizes
negative entries of H. In [39] authors defined a function V2(P) with P ∈ Rn×n that
forces the entries of P to be as “positive” as possible. In this Chapter, we extend this
function to measurement matrices H ∈ Rm×n with m < n and hence, I consider a
function V2 : Om×n→ R as

V2(H) =
2
3

tr
[
HT (H− (H ◦H))

]
, (19)

where A◦B denotes the Hadamard or elementwise product of the matrices A = (ai j)
and B = (bi j), i.e. A◦B = (ai jbi j). The gradient flow of V2(H) is given by [39]

Ḣ =−H
[
(H ◦H)T H−HT (H ◦H)

]
, (20)

which minimizes V2(H) converging to a permutation matrix if H(0) ∈ Om×n.
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Up to this point, we have introduced two gradient flows given by (13) and (20),
both on the space of orthogonal matrices, that respectively minimize their cost func-
tion, while the second one also converges to a permutation matrix. By combining
these two gradient flows a solution for Problem 2 can be achieved. Of course, we
can combine the gradient flows in two different ways: by adding them in a con-
vex combination or firstly ignoring the non-negativity requirement and switching
to the permutation gradient flow when the objective function has been sufficiently
minimized [39].

Theorem 1. Let H ∈ Rm×n with m < n the measurement process matrix and let me
assume that H(0) ∈ Om×n. Moreover, I suppose that H(t) satisfies the following
matrix differential equation,

Ḣ = 4(1− k)W
[
P2

p PoHT
Σ(H)

]T
+ k H

[
(H ◦H)T H−HT (H ◦H)

]
, (21)

where k ∈ [0, 1] is a positive constant and Σ(H) = (HPoHT +R)−1. For sufficiently
large k (near one), limt→∞ H(t) = H∞ exists and approximates a permutation ma-
trix that also minimizes the squared Frobenius norm of the a posteriori covariance
matrix, ‖Pp‖2

F .

A proof for this theorem can be obtained directly by using results from [39] and
further details can be found in [3].

4.4 Hybrid Sensing Design

In previous sections, optimal solutions for continuous and discrete sensing cases
have been provided. However, in order to take advantage from both of them (the
amount of information achievable vs low-cost implementation and feasibility) an
hybrid sensing device which combines continuous and discrete sensors might rep-
resent a valid improvement, as it can be found also in biology. Indeed, human hand
can be regarded – to some extent – as an example of hybrid sensory system. As pre-
viously discussed, among the cutaneous mechanoreceptors in the hand dorsal skin
that were demonstrated to be involved in the responses to finger movements, and
hence that possibly contribute to kinaesthesia, it is possible to find Fast Adapting
(FA) type ones, which mainly respond to movements around one or at most two
nearby joints and that can be regarded as “discrete” sensors, as well as the discharge
rate of Slow Adapting (SA) afferents, which are influenced by several joints and can
be regarded as “continuous” type sensors [14].

Up to re–arranging the sensor numbering, we can write a hybrid measurement
matrix Hc,d ∈ Rm×n as

Hc,d =

Hc

Hd

 ,
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where Hc ∈Rmc×n defines the mc rows of the continuous part, whereas Hd ∈Pmd×n

describes the md single–joint measurements of the discrete part, with mc +md = m.
Neither the closed–form solution valid for the continuous measurement matrix, nor
the exhaustion method used for discrete measurements are applicable in the hybrid
case. Therefore, to optimally determine the hybrid measurement matrix, we will
recur to gradient–based iterative optimization algorithms.

By combining the continuous and discrete gradient flows, previously defined
in (12) and (20), respectively, and constraining the solution in the sub–set Hc,d =
{Hc,d : Hc,dHT

c,d = Im}, we obtain

Ḣc,d = 4(1− k)
[
P2

p PoHT
c,dΣ(Hc,d)

]T
W + k H̄d

[
(H̄d ◦ H̄d)

T H̄d− H̄T
d (H̄d ◦ H̄d)

]
,

(22)
where k ∈ [0, 1] is a positive constant, Pp = Po−PoHT

c,d(Hc,dPoHT
c,d +R)−1Hc,dPo,

W = In−HT
c,d(Hc,dHT

c,d)
−1Hc,d , Σ(Hc,d) = (Hc,dPoHT

c,d +R)−1, and

H̄d =

0mc×n

Hd

 .

Starting from any initial guess matrix Hc,d ∈ Hc,d , the gradient flow defined
in (22) remains in the sub–set Hc,d and, on the basis of Theorem 1, it converges
toward a hybrid measurement matrix, (locally) minimizing the squared Frobenius
norm of the a posteriori covariance matrix. Multi–start strategies have to be used to
circumvent the problem of local minima.

When noise is not negligible, without constraining the solution in Hc,d by W , the
gradient search method of (22) would tend to produce measurement matrices whose
continuous parts, Hc, are very large in norm. This is an obvious consequence of
the fact that, for a fixed noise covariance R, larger measurement matrices H would
produce an apparently higher signal–to–noise ratio in (1).

4.5 Continuous and Discrete Sensing Optimal Distribution

Results we have described in the past Sections show that, in case of continuous
sensing design, the optimal choice H∗c of the measurement matrix H ∈Rm×n is given
by the first m principal components of the a priori covariance matrix Po. Figure 5
shows the hand sensor distribution for a number m = 1, 2, 3 of noise-free measures
(for lack of space we have reported only the continuous case).

In case of discrete sensing, H∗d does not have an incremental behaviour, especially
in case of few measures. In other words, the set of DoFs which have to be chosen
in case of m measures does not necessarily contain all the set of DoFs chosen for
m−1 measures (for further details the reader is invited to refer to [3]).
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Legend (see fig ure 2) m = 1 m = 2 m = 3
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Fig. 5 Optimal continuous sensing distribution for m = 1, i.e. the first PC of Po, for m = 2, i.e. the
first two PCs of Po and for m = 3, i.e. the first three PCs of Po. The greater is the weight pwi of
the joint angle in the optimal measures, the darker is the color of that joint. I assume the weight of
the i-th joint in the optimal measures given as pwi = ∑

m
k=1 |hk,i|, where hk,i is the (k, i)th entry of

matrix H, normalized w.r.t. the maximum value of pwi. For example, for m = 3, weight of LA joint
is 0.53, whereas for LM joint is 0.74 and the maximum value is for TA joint.
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Fig. 6 Squared Frobenius norm of the a posteriori covariance matrix with noise–free measures in
case of H∗c , H∗d and H∗c,d (mc = 1) with an increasing number of noise-free measures. A zoomed
detail of the graph is shown for m = 2,3,4,5 measures.

Figure 6 shows the values of the squared norm of the a posteriori covariance
matrix for increasing number m of measures. In particular, in figure 6 values of V1
for matrices H∗c and H∗d are reported, for noise-free measures.
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By analyzing how much V1 reduces with the number of measurements w.r.t. the
value it assumes for zero measures (Pp ≡ P0), two types of observations can be done.
First, the observed information quantified through V1 (squared Frobenius norm of
the a posteriori covariance matrix) is greatest for continuous case, while hybrid case
provides better performance than the discrete one. Second, for the continuous case
with noise–free measures, what is noticeable from the observability viewpoint is
that a reduced number of measures coinciding with the first three principal compo-
nents enable for' 97% reduction of the squared Frobenius norm of the a posteriori
covariance matrix. An analogous result can be found also under the controllability
point of view. In [29] authors state that three postural synergies are crucial in grasp
pre–shaping since they take into account for ' 90% of pose variability in grasping
tasks.

4.6 Estimation Results with Optimal Discrete Sensing Devices

In this section, we compare the hand posture reconstruction obtained by Hs (which
measured the joints (T M, IM, MM, RM and LM) with the one obtained by using
the optimal matrix H∗d with the same number of measurements in case of noisy
measures (TA, MM, RP, LA and LM), where an additional random noise was arti-
ficially added on each measure. A zero–mean, Gaussian noise with standard devia-
tion 0.122 rad ( 7◦) was chosen based on data about common technologies and tools
used to measure hand joint positions [32], thus obtaining a noise covariance matrix
R≈ diag(0.0149).

Measures were provided by grasp data from the validation set, where degrees of
freedom to be measured were chosen on the basis of optimization procedure out-
comes, while the entire pose was recorded to produce an accurate reference posture.
In order to compare reconstruction performance achieved with Hs and H∗d we used
as evaluation indices the average pose estimation error and average estimation error
for each estimated DoF. Maximum errors are also reported.

In case of noise, performance in terms of average absolute estimation pose er-
rors ([◦]) obtained with H∗d is better than the one exhibited by Hs (5.96±1.42
vs. 8.18±2.70). Moreover, maximum pose error with H∗d is the smallest (9.30◦

vs. 15.35◦ observed with Hs). Statistical difference between results from Hs and
H∗d is found (p=0.001). In table 2 average absolute estimation error with standard
deviations are reported for each DoF. Also in this case, for the estimated DoFs, per-
formance with H∗d is always better or not statistically different from the one referred
to Hs. Maximum estimation errors with H∗d are usually inferior to the ones obtained
with Hs.
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Posture estimations by using noisy measures
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Fig. 11 Hand pose reconstructions MVE algorithm by using matrix Hs which allows to measure
T M, IM, MM, RM and LM and matrix H∗d which allows to measure TA, MM, RP, LA and LM (see
figure 2). In color the real hand posture whereas in white the estimated one.

5 Conclusions and Future Works

In this Chapter we have dealt with the problem of achieving reliable hand pose
reconstructions through sensing gloves. More specifically, we have exploited the
synergistic information on how humans use most frequently their hands to optimize
estimation performance and optimally design sensing systems, when constraints on
the number and quality of the sensors can limit measurement outcomes. Results
show that the exploitation of a priori information on kinematic synergies can be
profitably used to advance the state of art of sensing devices, offering new insights
to further investigate the biology of human hand, e.g. in conjunction with the tech-
niques described in Chapter 13, in a bi-directional inspiration and relationship be-
tween neuroscience and robotic/artificial systems.

Future works will aim at physically realizing an optimal sensing glove. We
are considering different technological solutions, e.g. knitted piezoresistive fabrics
(KPF) textile goniometer technology that was developed by coupling two piezore-
sistive layers through an electrically insulating middle layer [38]. Such a technology
was already used to develop an under-sensed glove whose measurements were com-
pleted through synergistic information for functional grasp recognition [5].

The driving idea will be the synergy-based strategy described in this Chapter
and protected by an Italian Patent [7], with the mid long-term of enabling mass
production and commercialization for human-machine applications.
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DoF
Mean Error [◦] Hs vs. H∗d Max Error [◦]

Hs H∗d p-values Hs H∗d
TA⊗ 6.7±5.62 4.87±3.57 0.19 23.35 15.93
TR 7.65±5.57 7.54±5.00 0.91 � 27.46 22.73

TM◦ 2.81±1.75 2.63±1.90 0.61 � 7.2 8.78
TI 6.08±4.63 5.42±4.74 0.32 19.6 19.10
IA 10.74±5.6 11.52±5.81 0.32 27.31 28.46

IM◦ 4.15±3.17 6.91±5.00 0.003 11.66 21.49
IP 14.61±7.93 6.61±6.01 0 31.85 38.07

MM◦⊗ 4.59±3.08 4.71±3.19 0.77 11.43 15.72
MP⊗ 13.71±8.07 4.08±2.98 0 ‡ 37.61 13.71
RA 3.12±2.37 3.28±2.45 0.71 9.18 9.37

RM◦ 4.03±3.07 6.30±4.72 0.01 ‡ 12.94 12.91
RP 16.78±11.07 6.89±3.82 0 ‡ 50.66 16.34
LA 8.97±5.11 9.86±5.45 0.38 � 20.86 21.48

LM◦⊗ 3.82±3.05 4.82±4.30 0.44 11.33 14.26
LP⊗ 14.64±9.68 3.94±2.95 0 48.61 11.03

1←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−0
p-values

◦ indicates a DoF measured with Hs⊗ indicates a DoF measured with H∗d
Table 2 Average estimation errors and standard deviation for each DoF [◦] for the simulated acqui-
sition considering Hs and H∗d both with five noisy measures. Maximum errors are also reported as
well as p-values from the evaluation of DoF estimation errors between Hs and H∗d . � indicates Teq
test. ‡ indicates Tneq test. When no symbol appears near the tabulated values, U test is used. Bold
value indicates no statistical difference between the two methods under analysis at 5% significance
level. When the difference is significative, values are reported with a 10−4 precision. p-values less
than 10−4 are considered equal to zero. Symbol “–” is used for those DoFs which are measured by
both Hs and H∗d . For further details on statistical tools, the reader is invited to refer to Table 1.
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