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Abstract— It is known that brain dynamics significantly
changes during motor imagery tasks of upper limb involving
different kind of interactions with an object. Nevertheless, an
automatic discrimination of transitive (i.e., actions involving
an object) and intransitive (i.e., meaningful gestures that do
not include the use of objects) imaginary actions using EEG
dynamics has not been performed yet. In this study we exploit
measures of EEG spectra to automatically discern between
imaginary transitive and intransitive movements of the upper
limb. To this end, nonlinear support vector machine algorithms
are used to properly combine EEG-derived features, while a
recursive feature elimination procedure highlights the most
discriminant cortical regions and associated EEG frequency
oscillations.

Results show the significance of γ (30−45Hz) oscillations over
the fronto-occipital and ipsilateral-parietal areas for the auto-
matic classification of transitive-intransitive imaginary upper
limb movements with a satisfactory accuracy of 70.97%.

I. INTRODUCTION

Human body is indeed an extraordinary source of inspi-
ration for the design of artificial systems [1], with special
focus on the hand and arm as the primary tools humans
rely on to interact with the environment, with important for
applications in rehabilitation, simplified design and control
guidelines, advanced human-robot interaction [2], [3].

The investigation of the underpinning neural mechanisms
of human upper limb control plays a crucial role in the
medical, neuroscience, and biomechanical research fields
[1]. The sensory-motor analysis of human upper limb has
received a lot of attention recently, and has been tack-
led from different perspective, such as kinematic [4], [5],
biomechanical [6], [7], and neurological [8], [9]. More
specifically, under a neurological point of view, upper limb
movements can reasonably be seen as cognitive tasks and
characterised according to neuro-physiological criteria. To
this extent, several previous studies have investigated the
topography and dynamics of brain activations during motor
imagery, motor visualisation, and actual execution using
different neuro-imaging techniques: e.g., functional magnetic
resonance imaging [10]–[12], near infra-red spectroscopy
[13], magneto-electroencephalography [14], [15] and elec-
troencephalography (EEG) [16]–[19].
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In one of these EEG-based studies, a crucial role of central
cortex region has been highlighted during hand movement
execution [16], especially regarding EEG oscillations in the
α and β bands. Other interesting findings have shown a
significant relationship between frontal lobes and behavioural
and communicative tasks executed through the upper limb
[20]. Furthermore, other imaging studies have proven a cor-
relation between movements and contralateral neural activity,
and an uncorrelated remarkable activation of the ipsilateral
hemisphere related to hand position representation [21]. On
the other hand, the role of parietal and pre-motor cortex in
both motion execution, imagery and observation has been
well demonstrated [22]–[24].

In the task space, it is possible to identify three
main classes of actions associated with different neuro-
psychological correlates [8], [25], [26]: intransitive (i.e.,
meaningful gestures that do not include the use of ob-
jects), transitive (i.e., actions involving an object), and tool-
mediated (i.e., actions in which an object is used to act upon
another) [2]. A functional imaging study [27] has already
demonstrated that these three classes of actions generate
distinct neural patterns in the human brain during motor visu-
alisation, and exhibit a specific topographical organisation of
the brain response. However, to the best of our knowledge
no study has been proposed with the aim of investigating
possible differences in EEG dynamics capable to distinguish
these classes of movement.

In light of the above, here we present a preliminary study
aiming to automatically recognise two different classes of
upper limb movements, i.e., transitive and intransitive, using
only the information coming from frequency analysis of
EEG. In this analysis, we focused on the time slot where
the subjects were assumed to only imagine the movements,
before the actual motor execution.

II. MATERIALS AND METHODS

A. Experimental dataset
Thirty-three young healthy volunteers (26.6 years on av-

erage, 17 females, all right handed) were recruited among
students of the University of Pisa. All experimental proce-
dures were approved by the local ethical committee. Each
subject was asked to imagine and then actually perform 20
specific right upper limb movements three times, therefore
performing a total of 60 motor tasks. These tasks were
divided into two categories depending on the kind of inter-
action with objects: (i) transitive for tool-based tasks (e.g.,
reach and grasp a cup and mimic drinking); (ii) intransitive

978-1-5386-3646-6/18/$31.00 ©2018 IEEE 231



Fig. 1: Exemplary experimental set-up. The subject is
equipped with high resolution EEG sensors and active optical
markers for motion tracking.

Fig. 2: Logic scheme of the experimental protocol timeline
comprising 3 repetitions of 10 transitive, intransitive, and
tool-mediated movements. Each task included a first motor
imagery phase, an actual movement recording, and a final
resting state

for object-free movements (e.g., thumb down). Throughout
the experiment we performed both the optical registration
of the upper limb movements and the EEG data acquisition.
For the former we used ten stereo-cameras tracking the 3D
position of markers attached to upper limb with a Sampling
rate of 480Hz, whereas for the latter we used a 128 channels
Geodesic EEG Systems 300 from the Electrical Geodesics
Inc., with a sampling rate of 500Hz. For each task, the
subject was first instructed on the movement to be performed,
which was mimed by the operator. Afterwards, the subject
was asked to imagine the movement for 3s and then to
actually perform it. A final 3s resting state completed the
task (see Figure 2).

B. EEG analysis

The EEG processing chain comprised filtering, segmenta-
tion, artefacts detection and removal, data re-referencing, and
bad channels interpolation. Frequency filtering was designed
using a band-pass finite impulse response filter between
0.5Hz and 45Hz with a Butterworth approximation. Signals

were then segmented into time windows in correspondence
with the start and end of each trial, and the first 3s of
motor imagery task were retained for further analyses. An
independent component analysis decomposition (FastICA)
was applied, and independent components related to eye-
blinks, heart and muscles electrical activity, head and arm
movements were discarded after visual inspection. Then,
signals were re-referenced to the average of all channels
for each time sample. Finally, corrupted channels, defined
as signals with unexpected events and with high-frequency
noise, were interpolated using spherical interpolation algo-
rithm applied to the closest electrodes. The EEGLAB toolbox
[28] for Matlab was used for most of the aforementioned
processing operations.

C. Spectral Analysis

The power spectral density (PSD) was estimated from
each EEG channel signal using the Welch’s method, which
averaged the power values across moving, overlapping 1 s
time windows. The Fast Fourier Transform (FFT) was used to
estimate the Discrete Fourier transform of each signal and the
variance of the PSD was decremented through overlapping
subsequent time windows of 50% (i.e., 0.5 s). For each task,
we computed the power spectra in the 3 s window before the
movement (i.e., when the subject imagines the upper limb
movement to perform) within the canonical EEG frequency
bandwidths: δ [0.5−4 Hz), θ [4−8 Hz), α [8−12 Hz), β
[12−30 Hz), γ [30−45 Hz].

D. Classification

In this preliminary study, in order to decrease the compu-
tational cost of the classification problem and reduce the risk
of overfitting, we selected only the electrodes corresponding
to the standard 10-20 system, plus a 20-th in the Oz position.
Therefore, the input dataset was comprised of 1828 data
examples (60 movements×33 subjects – corrupted discarded
tasks), and 100 features (20 electrodes × 5 bands).

To further reduce the number of features to be used for
the classification, and to identify the most informative brain
regions and EEG oscillations for the discrimination between
the two classes (transitive vs. intransitive), we employed a
standard nonlinear Support Vector Machine-Recursive Fea-
ture Elimination algorithm (SVM-RFE) [29]. This procedure
implements an embedded feature selection procedure [29]
together with a correlation bias reduction strategy. More
specifically, at each iteration the less informative feature,
according to the ranking criterion, was removed. On the
remaining features an SVM with a radial basis function
kernel was applied [29].

The classification algorithm was validated using a standard
leave-one-movement-out cross-validation procedure (i.e., a
variant of a leave-one-out cross-validation). This allowed the
classifier to be trained while avoiding to be over-tuned due to
multiple data samples of the same movement in the training
set. More specifically, at each iteration of the cross-validation
procedure, the input dataset was divided into a validation set,
comprised of the three repetition of one movement performed
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Fig. 3: Average accuracy over all cross validation. The best
one has been obtained with 23 features and its value is
70.97%

TABLE I: Confusion Matrix obtained with the most accurate
(informative) subset of features

Classified Intransitive Classified Transitive

Intransitive 77.2776% 22.7224%

Transitive 35.419% 64.5810%

by a single subject, and a training set comprised of all the
other samples.

In this study, the classification results are shown in the
form of a confusion matrix calculated on the validation set.
More specifically, a 2x2 table shows the percentage of true
positive and true negative predictions along the diagonal.
Therefore, a high average values on the diagonal means a
more accurate classification.

III. RESULTS

Experimental results are presented as follows: first, we
show the accuracy trend as a function of the number of
features ranked through the SVM-RFE procedure. Then, a
discussion of the brain areas and EEG oscillations associated
with the best classification accuracy is reported.

A. Classification accuracies

Figure 3 shows the balanced average accuracies gathered
at each iteration of the SVM-RFE algorithm, with increasing
number of features. A maximum accuracy of 70.97% is
reached with the 23 most informative features according
to the ranking criterion. The associated confusion matrix is
shown in Table I, with a sensitivity of 77.27% of and a
specificity of 64.58%.

B. Feature-selection results

The 23 most informative features (i.e., all selected
electrode-band pairs that achieved the maximum averaged
accuracy) are shown through topographic maps in Figure
4, separated by bands. The PSD of only fourteen out of
twenty electrodes was in this set, i.e., the PSD computed
in all the frequency bands of six electrodes was not selected

among the first twenty-three positions of the feature ranking.
Consequently, some of them were informative in more than a
band. Among all the EEG bands, the most frequently selected
EEG electrodes were located in the frontal and tempo-
parietal cortices. Remarkably, F4, in the pre-frontal right
cortex, was selected over the θ, α, β and γ oscillations. Also,
δ oscillations, which are usually considered as prominent in
sleeping and non-conscience state, did not give a significant
contribution for our motor imagery classification except for
Pz. Conversely, oscillations in the θ and β bands shared
the selection of the right pre-motor and temporal regions,
whereas α activity showed a discriminative power in the
prominent frontal regions and in the occipital one. Indeed,
transitive movements (where subjects interacted with objects)
involved occipital regions, which are commonly related to
visual tasks, more than the intransitive movements. The most
discriminant oscillations between transitive and intransitive
movements were in the γ band. Results showed a symmet-
rical selection of the left and right prefrontal, frontal, and
temporal regions. In addition, among the most informative
features, there were also the γ-PSD of the O1 and P4
electrodes.

IV. DISCUSSION AND CONCLUSION

In this preliminary study, we presented an automatic ap-
proach for transitive/intransitive movement recognition using
information coming from EEG power spectra exclusively.
Data were gathered from twenty electrodes, according to the
standard 10-20 electrode placement system.

Thirty-three healthy volunteers were recruited in the study.
They took part in an experiment where they have to imagine
and act transitive and intransitive movements (according to
[27]). We demonstrated that, with a rigorous feature selection
stage combined with a SVM classifier, it is possible to recog-
nise the two movement classes with an average accuracy
of 70.97% (with a sensitivity of 77.27% and a specificity
of 64.58%). In addition, it is worthwhile noting that a
satisfactory accuracy close to 70% was already achieved
using a sub-set including only the first sixteen features.

The feature selection procedure revealed that the most rel-
evant oscillations contributing to the maximal classification
accuracy were in the γ band. Note that, in many EEG studies
dealing with movement analysis, the γ band was poorly
investigated because of the associated motion-artefacts. In
our study, we minimised this issue by considering EEG data
during motor imagery exclusively. Interestingly the activa-
tion of the contralateral hemisphere, which is commonly
associated with motor control brain activity, revealed to be
informative only in the γ band. The other bands exhibited
a more ipsilateral activation for the selected discriminant
electrode subset. This result is in agreement with [21], which
showed how oscillations in the α and β bands over the
ipsilateral cortex were involved in the hand representation,
whereas the ones over the contralateral cortex were involved
in the motor control. Note that in our study the motor control
phase was not included, thus explaining the absence of these
regions in our results. The more prominent differences in the
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Fig. 4: Selected regions by the SVM-RFE algorithm for each EEG band.

two movement classes relied on a cognitive point of view,
more than on the motor control itself. This can also explain
the γ band importance, with respect to the other bands, since
γ-band is involved in high-level cognitive [30] and object
representation tasks [31], [32].

The outcomes of the study can offer useful indications
to be further pursued for the development of brain-machine
interface, e.g. in terms of electrode placement and frequency
bands to focus on for the correct imagination and execution
of the movements. Future studies will be directed towards a
comprehensive understanding of the cortical representation
and control of upper limb voluntary movements, including
also a tool mediated class. In addition, cortical oscillations
during real movement will be investigated.
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