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Abstract

In this paper, we consider optimal resolution of air traffic
conflicts. Aircraft are assumed to cruise within a given al-
titude layer, and are modeled as a kinematic system with
velocity constraints and curvature bounds. Aircraft can
not get closer to each other than a predefined safety dis-
tance. For such system of multiple aircraft, we consider
the problem of planning optimal paths among given way-
points. Necessary conditions for optimality of solutions are
derived, and used to devise a parameterization of possible
trajectories that turns into efficient numerical solutions to
the problem. Simulation results for a realistic aircraft con-
flict scenario are provided.

1 Introduction

Aircraft coordination in increasingly crowded airspace is
becoming a major concern for air traffic management au-
thorities in the U.S., Japan, and Europe [1, 2]. Con-
ventional management schemes are being replaced by
extensively computer–integrated Air Traffic Management
Systems (ATMS) to maintain safety levels and increase
throughput of congested airways. On the other hand, to-
day’s aircraft instrumentation and communications allow
increasingly complex decisions to be taken on-board, thus
enabling a progressive move towards decentralized control
scenarios often referred to as free–flight ATMS [3, 4].
Our work is aimed at providing efficient algorithms for
conflict resolution and strategies which are inherently safe
and minimize fuel consumption, to address pollution as
well as economic concerns. In this paper, we apply op-
timal control and game theory (in particular team theory),
to a kinematic model of airtraffic. In particular, we refer
to general decentralized ATM architectures such as that of
[5]. Each aircraft in the system has an initial flight plan
which has been designed by this central authority, and is
encoded as a sequence of way points from origin to desti-
nation. The planning and control hierarchy on board each
aircraft uses this sequence of way points as input, and gen-
erates a full state trajectory for the aircraft. However, un-
modeled “disturbances” in the air traffic system (such as
bad weather, wind, mechanical problems with a single air-
craft) can force the aircraft to deviate from their original
flight paths. In such situations, aircraft should be able to
resolve “local” deviations, such as within a sector away
from a TRACON.

Specifically, we will address the problem of planning mo-
tions of a system of multiple aircraft whose dynamics are
described by the point–mass model [6, 7]. Aircraft con-
flicts are modelled as collisions between the “conflict en-
velopes” that surround each aircraft. We make the central
assumption that conflicts are to be solved while aircraft
cruise within a fixed altitude layer. Aircraft can thus be
modeled in a purely kinematic fashion, as points in a plane
with an associated fore axis and conflict envelope radius.
The task of each vehicle is to reach a given goal configu-
ration from a given start configuration. Optimal solutions
in the sense of minimizing total path length and total time
will be considered.
Another important assumption we make is that all interact-
ing aircraft cooperate towards optimization of a common
goal, as agents in the same team. Such cooperative game
approach is to be contrasted with the antagonistic approach
developed by [8], which results in single–aircraft strategies
that are safe against worst–case maneuvers of all other po-
tentially conflicting vehicles.
In this paper, we will discuss necessary conditions for op-
timality of conflict resolution schemes, and will derive
from these conditions algorithms that numerically deter-
mine such solutions.

2 Modeling

The point–mass aircraft model is a widely accepted de-
scription of dynamical effects encountered in civil aviation
[9]. It consists of six equations, which, disregarding earth
rotation and curvature, are

_x = V cos 
 cos�; (1)
_y = V cos 
 sin�; (2)
_h = V sin 
; (3)

_
 =
g

V
(n cos'� cos 
); (4)

_� =
g

V

n sin'

cos 

; (5)

_V =
T �D

m
� g sin 
: (6)

Herex; y; h denote the components of the position of the
center of gravity (c.g.) of the aircraft in a ground–based
reference frame, and are usually referred to as down–range
(or longitude), cross-range (or latitude), and altitude, re-
spectively. Angles are also defined with respect to the same



Figure 1: Aircraft coordinate system

frame:' is the bank angle,� is the heading angle, and

is the flight-path angle (see fig.1). The ground speed ve-
locity, V , is assumed to be equal to airspeed. whereT
is the engine thrust,D is the aerodynamic drag,m the air-
craft mass,g the gravity acceleration. Notice that the thrust
depends on the altitudeh, Mach numberM ; also, it is as-
sumed that the drag is a known function ofh, M , and of
the aerodynamic liftL. The bank angle', the engine thrust
T , and the load factorn are the control variables for the
aircraft. The bank angle is commanded combining rudder
and ailerons trims; the thrust is commanded by the engine
throttle, and the load factor by elevators (n = L

gm
). Using

suitable nonlinear feedback of states (described in detail
e.g. in [10] or [9]), the point–mass model can be linearized
to Brunovsky’s canonical form, i.e.

�x = Ux; �y = Uy; �h = Uh; (7)

and the ensuing linear system can be easily controlled
along planned trajectoriesxdes(t); ydes(t); hdes(t) by
adopting robust linear control techniques.
In air traffic conflict resolution, a crucial consideration is
the separation constraint, imposing that the so–called con-
flict envelopes of all aircraft do not overlap during flight.
The current definition of conflict ([11]) of two aircraft in-
volves that their altitude differs by less than2000 ft. or
that they get closer, in an horizontal plane, than5 n. miles.
The constraint can be visualized by considering for each
aircraft a disk2000ft. high and with a2:5n. miles radius,
centered in the aircraft representative point (e.g., the c.g.):
in this case, the separation constraint imposes that the disks
do not overlap during flight.
First, we consider air traffic problems that possess an
altitude–layered structure, in which the airspace is subdi-
vided in horizontal layers of depth and no conflict can hap-
pen between aircraft of different layers ([12]). Conflicts
need only to be resolved among aircraft flying within the
same layer, and only the distance between projections of
the aircraft c.g.’s on a horizontal plane need to be consid-
ered. As a consequence, to all practical purposes in the
problem at hand, we may assume that longitudinal dynam-
ics are regulated independently from the conflict resolution
problem, and disregard altitude variations in the model.
A simplified planar aircraft model can then be adopted as

_x = u cos�; (8)

_y = u sin�; (9)
_� = !; (10)

whereu
def
= V cos 
 is the horizontal velocity, and!

def
=

L sin'
m

1

u
. Furthermore, we assume that forward dynam-

ics (6) can be effectively controlled by the autopilot so
as to track a given referencêV (t) cos 
̂(t) = û(t), with
negligible errors, provided that the reference airspeed be-
longs to a given interval and is sufficiently smooth. We
will henceforth regardu and ! as control inputs to the
kinematic model (8) through (10). Bounds on the air-
speedVmin � V � Vmax, and on the flight–path angle,
j
j � 
max, reflect in bounds on the new inputs as

Vmin cos 
max
def
= Umin � u � Umax

def
= Vmax (11)

The other input to the kinematic planar aircraft model is
!, whose physical dimensions are those of an angular ve-
locity, and will be termedyaw rate. Constraints on the yaw
rate result from constraints on the bank anglej'j � 'max

and on the aerodynamic lift, which is proportional to the
square of airspeed:

jLj � �LV
2 (12)

Accordingly, a bound on the yaw rate is obtained as

j!j �
u

R
; (13)

whereR
def
= m cos

2 
max

�L sin j'maxj
. The constantR has the dimen-

sions of a length, and actually, in the kinematic model (8)
— (10), (13) defines the minimum curvature radius that
planar trajectories of the aircraft may achieve (the bound is
actually achieved in planar cruise,
 = 0).

2.1 Optimization Problem Statement

According to previous discussion, considerN vehicles in
the plane, whose individual configuration is described by
�i = (xi; yi; �i) 2 R � R � S1. Each vehicle is as-
signed two waypoint configurations,�i;s and�i;g , respec-
tively. The initial waypoint time is assigned and denoted
by T s

i . Assume vehicles are ordered such thatT s
1 � T s

2 �
� � � � T s

N . We denote byT g
i the time at which thei–th ve-

hicle reaches its goal, and letTi
def
= T g

i � T s
i . Motions of

thei–th vehicle beforeT s
i and afterT g

i are not of interest.
Thei–th vehicle motion is described by the control system
_�i = fi(�i; ui; !i), with

fi(�i; ui; !i) =

� ui cos�i
ui sin�i
!i

�
: (14)

All vehicles are subject to the following constraints:

i) the linear velocity is bounded:Ui;min � ui � Ui;max;



ii) the path curvature is bounded:j!ij � 
i, where

i = juij

Ri
andRi > 0 denotes the minimum cur-

vature radius of trajectories for thei–th vehicle;

iii) the distance between two vehicles must remain larger
than, or equal to, a given separation limit:Dij(t) =
(xj(t) � xi(t))

2 + (yj(t) � yi(t))
2 � d2ij � 0, at all

timest (dii = 0; i = 1; : : : ; N ).

The length of the planar path joining the waypoints for the
i–th vehicle is

Li =

Z T
g

i

T s
i

q
_x2i + _y2i dt =

Z T
g

i

T s
i

uidt (15)

Consider the optimal conflict resolution problem for mul-
tiple vehicles defined as:

8>>>>><
>>>>>:

min
PN

i=1 Ji
_�i = fi(�i; ui; !i) i = 1; : : : ; N
Ui;min � ui � Ui;max i = 1; : : : ; N

j!ij �
juij
Ri

i = 1; : : : ; N
Dij(t) � 0; 8t; i; j = 1; : : : ; N
�i(T

s
i ) = �i;s; �i(T

g
i ) = �i;g :

(16)

whereJi = Li for shortest total path problems, andJi =
Ti for minimum total time problems.
In this paper, we restrict to the case that the aircraft velocity
ui are constant. In this hypothesis, the two problems are
equivalent, and we will henceforth use the minimum total
time formulation.
If separation constraints are disregarded, the minimum to-
tal length problem is clearly equivalent toN independent
minimum length problems under the above constraints, i.e.
to N classical Dubins’ problems, for which solutions are
well known in the literature ([13, 14, 15]). It should be
noted that computation of the Dubins solution for any two
given configurations is computationally very efficient.
The shortest total path problem has a straightforward so-
lution in terms of theN independent Dubins’ solutions,
even when taking separation constraints into account, pro-
vided that there exists an associated velocity profile satisfy-
ing (11) which guarantees separation. We will henceforth
consider the minimum total time problem.

2.2 Formulation as an Optimal Control
Problem

Notice that the cost for the total time problem,J =PN

i=1 Ti =
PN

i=1

R T g
i

T s
i

dt, is not in the standard Bolza
form. In order to use powerful results from optimal con-
trol theory, we rewrite the problem as follows. Leth(t)
denote the Heavyside function, i.e.h(t) = 0 for t <
0 andh(t) = 1 for t � 0 and define the window function
wi(t) = h(t� T s

i ) � h(t � T g
i ). Then the minimum total

time cost is written asJ =
R1
0

PN

i=1 wi(t)dt.

Using the notationcolNi=1 (vi) =
�
vT1 ; : : : ; v

T
N

�T
, de-

fine the aggregated state� = colNi=1 (�i), controlsu =

colNi=1 (ui) and! = colNi=1 (!i), and define the admissible
control setsU and
 accordingly. Also define the sep-
aration vectorD = [D12; � � � ; D1N ; D23; � � � ; DN�1;N ],
and define the vector fieldf(�; u; !) = colNi=1 (fiwi). Fi-
nally introduce matrices�i = colNj=1 (�ij [1 1 1]

T
), with

�ij = 1 if i = j, else�ij = 0, and functions
i(�(t); ��) =
�i
�
�(t)� ��

�
. Our optimal control problem is then formu-

lated as
Problem 1. MinimizeJ subject to _� = f(�; u; !), ! 2 
,
D � 0, and to the two sets of N interior–point constraints


i(�(t); �
s
i ) = 0; t = T s

i

i(�(t); �

g
i ) = 0; t = T g

i (unspeci�ed)

3 Necessary conditions

Necessary conditions for problem 1 can be studied by ad-
joining the cost function with the constraints multiplied by
unspecified Lagrange covectors. Omitting to write explic-
itly the extents of iterative operations when extending from
1 to N, let

Ĵ =
P

i �
s
i 
i(�(T

s
i )� �si ) +

P
i �

g
i 
i(�(T

g
i )� �gi )

+
R1
0

P
i wi + �T ( _� � f) + �TDdt;

(17)
with � and � costates of suitable dimension, and with
�i = 0 if Di > 0, �i � 0 if Di = 0. Let the Hamiltonian
be defined asH =

P
i wi+�

T f+�TD. Substituting pre-
vious equation in (17), integrating by parts, and computing
the variation of the cost, one gets:

�Ĵ =
P

i

h
�T (T s�

i )� �T (T s+
i ) + �si

@
i
@�(Ts

i
)

i
d�(T s

i )

+
P

i

h
�T (T g�

i )� �T (T g+
i ) + �

g
i

@
i
@�(T

g

i
)

i
d�(T g

i )

+
P

i

h
H(T g�

i )�H(T g+
i ) + �gi

@
i
@T

g

i

i
dT g

i

+
R
1

0

��
_�T + @H

@�

�
�� + @H

@!
�!
�
dt

(18)
(recall thatdT s

i � 0). Therefore, we have the following
necessary conditions for an extremal solution:

�i(T
s�
i ) = �i(T

s+
i ) + �Ti �

s
i (19)

�i(T
g�
i ) = �i(T

g+
i ) + �Ti �

g
i (20)

H(T g�
i ) = H(T g+

i ) (21)

_�T = �
@H

@�
(22)

@H

@!
�! = 0 8�!admiss: (23)

Extremal trajectories for thei–th aircraft will be com-
prised in general of unconstrained arcs (withDij > 0,
8j 6= i) and of constrained arcs, where the constraint is
marginally satisfied (9j : Dij = 0). We will accordingly
distinguish the discussion of necessary conditions.



3.1 Unconstrained arcs

Suppose that, for thei–th vehicle, the separation con-
straints are not active in the interior of an interval[tai ; t

b
i ],

T s
i � tai < tbi � T g

i , i.e. Dij(t) > 0; j = 1; : : : ; N; t 2
(tai ; t

b
i ). The characterization of optimal solutions in the

unconstrained case proceeds along the lines of the classi-
cal Dubins solution (see [13, 14, 15]). Expanding (22), one
getsh

_�i1; _�i2; _�i3

i
= [0; 0; �i;1ui sin�i � �i2ui cos�i] :

(24)
By integrating (24) we obtain that conditions (19) and (20)
imply that the costate components�i1 and�i2 are piece-
wise constant, with jumps possibly at the start and arrival
time of thei–th vehicle. The addend in the Hamiltonian
relative to thei–th vehicle can be written as

Hi = 1 + ui�i sin(�i �  i) + �i3!i;

where�i
def
=

q
��2i1 +

��2i2 and i
def
= atan2 (��i2; ��i1).

As the model is not explicitly time–dependent, we have
Hi(t) = const: � 0 along time–minimal unconstrained
arcs. Assuming that the goal configuration always satisfies
the separation constraint, it follows from (21) thatHi(t) is
also continuous att = T g

i .
Extremals ofHi within the open segmentf!i : j!j <
ui=Rg can only obtain if

@Hi

@!i
= �i3 = ��i1yi(t)� ��i2xi(t) + ��i3 = 0: (25)

If the condition holds on a time interval of non-zero
measure, then_�i;3 = 0 on the interval: this implies
�iui sin(� �  ) = 0, hence� =  mod � and!i = 0. In
such an interval, the aircraft is flying on the straight route
(the supporting line) in the horizontalx; y plane described
in (25). Trajectories corresponding to!i = �ui=R cor-
respond to circles of minimum radiusR followed counter-
clockwise or clockwise, respectively.
For each aircraft, extremal unconstrained arcs are concate-
nations of only two types of elementary arcs: line seg-
ments of the supporting line (denoted as “S”), and circu-
lar arcs of minimum radius (denoted by “C”). The lat-
ter type can be further distinguished between “R” clock-
wise arcs (!i = ui=R), and “L” counterclockwise arcs
(!i = �ui=R). According to the widespread usage, sub-
scripts will be used to denote the length of rectilinear seg-
ments, and the angular span of circular arcs.
Switchings of!i among0, ui=R, and�ui=R can only oc-
cur when the aircraft center is on the supporting line. As a
consequence, all extremal unconstrained paths of each ve-
hicle are written asCu1Sd1Cu2Sd2 � � �SdnCun , with ui =
2k�, k integer,i = 2; : : : ; n� 1.
In the case of a single vehicle, the discussion of optimal
unconstrained arcs can be further refined by several geo-
metric arguments, for which the reader is referred directly
to the literature [13, 14, 15]. Optimal paths necessarily be-
long to either of two path types in the Dubins’ sufficient
family:

fCaCbCe ; CuSdCvg (26)

with the restriction that

b 2 (�R; 2�R); a; e 2 [0; b]; u; v 2 [0; 2�R); d � 0 (27)

A complete synthesis of optimal paths for a single Dubins
vehicle is reported in [16]. The length of Dubins paths be-
tween two configurations, denoted byLD(�si ; �

g
i ), is then

unique and defines a metric on IR2 � S1. One simply has
LD(�; �) = R(jaj + jbj + jcj) for a CaCbCe path, and
LD(�; �) = R(juj+ jvj) + d for aCuSdCv path.
In our multivehicle problem, however, other extremal paths
may turn out to be optimal, and therefore have to be con-
sidered. This may happen for instance for a path of type
CaSbC2k�SeCf if (and only if) the corresponding Dubins’
path CaSb+eCf , which is shorter, is not collision free.
Arcs of typeC2k� can be interpreted as waiting–in–circles
maneuver for another aircraft to pass by and avoid colli-
sion (compare e.g. with current practice in conflict res-
olution for air traffic control). Notice explicitly that the
length of two subpaths of type� � �CuiS�C2k�S�Cui+1 � � �
and � � �CuiS
C2k�S�Cui+1 � � � are equivalent as far as
�+ � = 
 + �.
By “extremal trajectory” (Dubins’ trajectory, respectively)
we indicate henceforth a map IR+ 7! IR2 defined by�
xDi (t); yDi (t)

�
, denoting the position of thei–th aircraft

at timet along an extremal (Dubins’) path connectingqsi
to qgi .
Remark 1. If a set of non–colliding Dubins’ trajectories
exists, then this is obviously a solution of the minimum
total time problem. More interestingly, if with all combi-
nations of possible independent Dubins trajectories a colli-
sion results, then the optimal solution will contain at least
a constrained arc or at least one wait circle.
Remark 2. Balls in the Dubins metric would be natu-
ral candidates for defining conflict envelopes. Unfortu-
nately, they have a nontrivial geometric description, and
would imply more computational load on a conflict resolu-
tion system. Probably because of this fact, along with its
rather recent development, the Dubins metric has not yet
been considered in practical ATM systems.

3.2 Constrained arcs

Some further manipulation of the cost function is instru-
mental to deal with constrained arcs, i.e. arcs in which
at least two vehicles are exactly at the critical separation
(Dij = 0, i 6= j). To fix some ideas, let us consider a
constrained arc involving only vehicles 1 and 2. Along a
constrained arc, the derivatives of the constraint must van-

ish:N =

�
D12

_D12

�
= 0, i.e.:

�
(x2 � x1)

2 + (y2 � y1)
2 � d2

2(x2 � x1)( _x2 � _x1) + 2(y2 � y1)( _y2 � _y1)

�
= 0

(28)
with d = d12.
Let � be the direction of the segment joining the two vehi-
cles, so that

x2 � x1 = d cos�;
y2 � y1 = d sin�; (29)



Figure 2: Possible constrained arcs for two vehicles with
the same airspeed

From the second equation in (28) and using (29) one gets:

u1 cos(�� �1)� u2 cos(�� �2) = 0: (30)

When the constraint is active, the two aircraft envelopes
are in contact, and the relative orientation of the two ve-
hicles must satisfy (30), which defines (for givenu1, u2)
two manifolds of solutions in the spacef(�1; �2; �) 2
S1 � S1 � S1g described as

a) �a2 = �+ arccos

�
u1
u2

cos(�� �1)

�
; (31)

b) �b2 = �� arccos

�
u1
u2

cos(�� �1)

�
: (32)

The two solutions correspond to two different types (“a”
and “b”) of relative configurations in contact. For instance,
for u1 = u2, one has:

a) �a2 = �1; (33)

b) �b2 = 2�� �1: (34)

In case a) the two vehicles have the same direction, while
in case b) directions are symmetric with respect to the seg-
ment joining the vehicles (see fig.2). It is easy to demon-
strate, [12], that the two solutions (31), (32) coincide only
if u1 = u2 and

� = �1 = �2:

In order to study constrained arcs of extremal solutions, it
is useful to rewrite the cost function (17) as

�J = �TN +
P

i �
s
i 
i(�(T

s
i )� �si ) +

P
i �

g
i 
i

(�(T g
i )� �gi ) +

R1
0

P
i wi + �T ( _� � f) + � �D12dt;

(35)
with � � 0 along a constrained arc. The jump conditions
at the entry point of a constrained arc, occurring at time� ,
are now

�i(�
�) = �i(�

+) + �
@N

@�

����
�

(36)

H(��) = H(�+) (37)

whereH =
P

i wi + �T f + �T �D12, and

�
@N

@�

�T

= 2

2
66664

(x1 � x2) u1 cos�1 � u2 cos�2
(y1 � y2) u1 sin�1 � u2 sin�2

0 du1 sin(�� �1)
(x2 � x1) u2 cos�2 � u1 cos�1
(y2 � y1) u2 sin�2 � u1 sin�1

0 �du2 sin(�� �2)

3
77775 :

A further distinction among constrained arcs of zero and
nonzero length should be done at this point.
Consider first a constrained arc of zero length occurring at
a generic contact configuration, which is completely de-
scribed by the configuration of one aircraft (e.g.,�c = �1),
by the angle�c = �, and by the contact type. Assume for
the moment that there is only one constrained arc of zero
length in the optimal path between start and goal of the two
aircraft. Equation (36), taking into account that costates
of each aircraft are determined (once the start, goal, and
contact configurations are fixed) up to constants�i(�

�),
�i(�

+), provides a system of 6 equations in 6 unknowns of
the form

A(�c; �c)

2
66664

�1(�
�)

�1(�
+)

�2(�
�)

�2(�
+)

�1
�2

3
77775 = 0;

where the explicit expression of matrixA(�c; �c), for each
contact type, can be easily evaluated in terms of�s1, �g1 , �s2,
�g2 , and is omitted here for space limitations. Non–triviality
of costates implies that(�c; �c) must satisfydet(A) = 0.
A further constraint on contact configurations is implied
by the equality of flight times from start to contact for the
airplanes, which is expressed in terms of Dubins distances
asLD(�s1 ; �c)=u1 = LD(�s2 ; �

0
c)=u2, where�0c denotes the

configuration of aircraft 2 at contact, which is uniquely de-
termined for each contact type. Ifm constrained arcs of
zero length are present in an optimal solution, similar con-
ditions apply (with start and goal configurations suitably
replaced by previous or successive contact configurations),
yielding2m equations in4m unknowns.
Constrained arcs of nonzero length can be studied by re-
casting the problem in a reduced configuration space (see
e.g. [17]). Solutions consist in optimal trajectories for air-
craft that remain constantly at the minimum tolerated dis-
tance. As such, these solutions are of interest in coordi-
nating flight of aircraft formations (employed e.g. for re-
ducing fuel consumption by reducing aerodynamic drag).
However, this type of solutions seems to be acceptable with
some difficulty in commercial air traffic conflict resolution.
Henceforth, we disregard the possibility that, in an opti-
mal resolution of a conflict, there are constrained arcs of
nonzero length.

4 Numerical computation of solu-
tions

The necessary conditions studied in the previous sections
provide useful hints in the search for an optimal solution to



the problem of planning trajectories ofN aircraft in a com-
mon airspace. Although a complete synthesis has not been
obtained so far, we will describe in this section an algo-
rithm that finds efficient solutions to the optimal planning
problem in a reasonably short time.
Based on the discussion above, the optimal conflict resolu-
tion paths for multiple aircraft may include multiple wait-
ing circles and constrained arcs of both zero and nonzero
length. Namely, we assume henceforth that

h1 all aircraft have equal geometric characteristics and
equal (constant) speed;

h2 constrained arcs of nonzero length are not considered;

h3 multiple zero–length constrained arcs among the same
aircraft are ruled out;

h4 the initial configurations of the aircraft are sufficiently
separated.

With assumptionh4 we mean that for each aircraft, the ini-
tial configuration are collision free and guarantee that wait
circles at the initial configuration are collision free (this
holds for instance if the distance between the initial posi-
tion of aircrafti andj is larger than2�R �uj

�ui
+ 2R+

dij
2

).

Consider first the case of two aircraft. If the Dubins’ trajec-
tories joining the way-points configurations do not collide
(i.e.,D(t) � 0;8t), this is the optimal solution. Otherwise
we compute the shortest contact–free solution with wait
circles at the initial configurations, and let its length beLf .
Hence we look for a solution with a concatenation of two
Dubins’ paths and a single constrained zero–length arc of
either type a) or b) for both aircraft. Such solution can be
searched over a 2–dimensional submanifold of the contact
configuration space (IR2�S1�S1). The optimal solution
can be obtained by using any of several available numerical
constrained optimization routines: computation is sped up
considerably by using very efficient algorithms made avail-
able for evaluating Dubins’ paths ([16]). The lenghtLc of
such solution is compared withLf , and the shorter solu-
tion is retained as the two–aircraft optimal conflict man-
agement path with at most a single constrained zero-length
arc (OCMP21, for short). Some examples of OCMP21 so-
lutions are reported in Figure 3.
These solutions refer to a scenario with two equal aircraft,
with massm = 185klbm, airspeedVmax = 340ft/sec, load
factorn = 0:9g, max. bank angle'max = 20deg., lift
constant�L = 4800lb/ft, hence (for
 = 0), the minimum
curvature radius resultsR = 2:4n. miles.
If N aircraft fly in a shared airspace, their possible
conflicts can be managed with the following multilevel
policy:

Level 0 Consider the unconstrained Dubins paths of all
aircraft, which may be regarded asN single–aircraft,
optimal conflict management paths, or OCMP10. If
no collision occurs, the global optimum is achieved,
and the algorithm stops. Otherwise compute the
shortest contact–free paths (with wait circles) and go
to next level;

Figure 3: Numerically computed solutions to optimal co-
operative conflict resolution for two aircraft. Minimum
curvature circles are reported at the start and goal config-
urations, along with safety discs of radiusd=2 (dashed).
Optimal solutions consist of two unconstrained Dubins’
trajectories for each aircraft, pieced together with a zero–
length constrained arc.

Figure 4: Two cases of three–aircraft conflict resolution.
Left: a level 2 solution whereby the aircraft starting in the
middle contacts first the one arriving on its right, and after
the one arriving from left. Right: a level 2 resolution that
generates a roundabout–like maneuver.

Level 1 Consider theM = 2
�
N
2

�
possible solutions

with a single contact (of either type a or b), between
two aircraft, and possibly wait circles for other
aircraft, and compute the shortest path in this class. If
this is longer than the shortest path obtained at level
0, exit. Otherwise, continue;

Levelm � 2. Consider theM
Qm�1

`=1 (M � 2`) possible
solutions involvingm zero–length constrained arcs
between different pairs of aircraft and (possibly) wait
circles for other aircraft, and compute the shortest
path in this class. If this is longer than the shortest
path obtained at levelm � 1, exit. Otherwise,
continue;

A few three–aircraft conflict resolution trajectories at dif-
ferent levels are reported in Figure 4. When the number of
aircraft increases, the number of optimization problems to
be solved grows combinatorially. However, in practice, it
is hardly to be expected that conflicts between more than



a few vehicles at a time have to be managed, that require
solutions of level higher than 2.

5 Conclusion

In this paper, we have studied the problem of planning tra-
jectories of multiple Dubins’ vehicles in a plane. Neces-
sary conditions have been derived, and an algorithm for
numerically finding solutions has been described.
Future work on this topic will address the problem of find-
ing a complete optimal synthesis at least for the simplest
cases (N = 2), and extending to the case of variable lon-
gitudinal velocity. Further refinement of the algorithm will
be sought, that could exploit more of the rich structure op-
timal solutions must satisfy.
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