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Strain Sensing Fabric for Hand Posture
and Gesture Monitoring

Federico Lorussi, Enzo Pasquale Scilingo, Mario Tesconi, Alessandro Tognetti, and Danilo De Rossi

Abstract—In this paper, we report on a new technology used to
implement strain sensors to be integrated in usual garments. A par-
ticular conductive mixture based on commercial products is real-
ized and directly spread over a piece of fabric, which shows, after
the treatment, piezoresistive properties, i.e., a change in resistance
when it is strained. This property is exploited to realize sensorized
garments such as gloves, leotards, and seat covers capable of re-
constructing and monitoring body shape, posture, and gesture. In
general, this technology is a good candidate for adherent wearable
systems with excellent mechanical coupling with body surface.

Here, we mainly focused on a sensorized glove able to detect pos-
ture and movements of the fingers. It could be used in several fields
of application. We report on experimental results of a sensorized
glove used as movements recorder for rehabilitation therapies and
medicine. Furthermore, we describe a dedicated methodology used
to read the output sensors which allowed to avoid using metallic
wires for the connections. The price to be paid for all these advan-
tages is a nonlinear electric response of the fabric sensor and a too
long settling time, that in principle, make these sensors not suitable
for real-time applications. Here we propose a hardware and com-
putational solution to overcome this limitation.

Index Terms—Biomechanics, fabric sensor, sensorized glove.

1. INTRODUCTION

N BIOLOGICAL systems, the intrinsic noisy, sloppy, and

poorly selective characteristics of individual mechanorecep-
tors are mainly compensated by redundant allocation, powerful
peripheral processing, and effective and continuous calibration
through supervised and unsupervised learning and training
[1]-[3], [16]. A truly biomimetic sensing system should have
these features to some extent, not just as a mimicking exercise,
but as a result of solid engineering reasoning [4]. Here, we
report on an attempt of realizing a biomimetic sensing glove. In
the literature, several studies are focused on realizing electric
devices integrated into textile structure, guaranteeing hence a
high wearability [5]-[7]. Here, we will describe an innovative
sensorized textile technology. The lightness and the adherence
of the fabric make the sensorized garments unobtrusive and
uncumbersome, and hence comfortable for the subject wearing
them. Moreover, the use of conventional sensors to evaluate
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the posture of the hand requires the application of complicated
and uncomfortable mechanical plugs in order to interface the
garment with the sensors. We have chosen to realize a glove
made of Lycra which satisfies the requirements of lightness,
elasticity, and adherence. The new technology used to imple-
ment sensors to be integrated in usual garments is based on a
conductive mixture directly spread over the fabric. This mixture
does not change the mechanical properties of the fabric and
maintains the wearability of the garment. It is made of commer-
cial products, available on the market, and confers to the fabric
piezoresistive properties, i.e., when the fabric is stretched, the
fabric sensor shows a change in resistance. In the literature, the
piezoresistivity exhibited by electrically conductive elastomer
composites is statically described by using percolation theory
[8]. This property is exploited to realize sensorized garments
such as gloves, leotards, seat covers, and related artifacts ca-
pable of reconstructing and monitoring body shape, posture,
and gesture [9]. This technology is a good candidate for ad-
herent wearable systems with excellent mechanical matching
with body surface. Here, we will describe a sensorized glove
able to detect the movements of the fingers exploiting this new
technology. Moreover, we will report on a dedicated topolog-
ical configuration adopted to avoid using metallic wires for
the connections. In spite of all these advantages, the electrical
response of the fabric sensor is nonlinear and exhibits a too
long settling time, that, in principle, makes these sensors not
suitable for real-time applications. Here we propose a hardware
solution to shorten the transient time of the sensor.

II. MATERIALS AND METHODS

The mixture used to realize the sensors is produced by
WACKER Ltd (ELASTOSIL LR 3162 A/B) and is available
on the market. WACKER Ltd guarantees that the material
is not toxic: “Postcured parts can be used for applications
in the pharmaceutical and food industries and comply with
the recommendations “XV. Silicone” of the BgVV and FDA
177.2600.” Treated fabrics have been preliminarily character-
ized in terms of their electromechanical transduction properties
(in Fig. 3 the gauge factor Gf = (R — R0)LO/(L — LO)R0
is reported), thermal transduction properties and aging [4]. To
obtain a sensorized fabric, the ELASTOSIL mixture is spread
over fabric previously covered by an adhesive mask cut by a
laser milling machine. The mask is designed according to the
shape and the dimension desired for sensors and wires. Indeed,
the empty spaces of the mask, after smearing the solution, leave
suitable tracks after removing the mask. Afterwards, the fabric
is put in an oven at temperature of about 130 °C for 10 min.

1089-7771/$20.00 © 2005 IEEE
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Fig. 1. Sensorized glove.

Fig. 2. Galley proof used to print the conductive mixture on the fabric glove.
The black bold track represents the set of sensors connected in series, while the
thin tracks represent the connection between the sensor (S) and the electronic
acquisition system.

A. Sensorized Glove

Sensing fabrics above described can be employed to realize
wearable clothes able to record human posture and gesture,
which could be worn for a long time with no discomfort. A
suitable mask was used to print over a Lycra glove (see Fig. 1)
a set of sensors and wires. In order to use the same conductive
mixture of carbon-filled silicone rubber for both sensors and
electric wires, a dedicated topology was used. In this way, no
conventional and cumbersome cables are necessary to con-
nect the sensors from the glove to external electronics. This
configuration is the evolution of an earlier prototype where
the connections between sensors and acquisition device were
realized by means of metallic wires, which, inevitably, bounded
certain movements. As shown in Fig. 2, the bold black track
represents the set of sensors connected in series and covers the
most important joints of the fingers. The thin tracks represent
the connection between sensors and the electronic acquisition
system. Since, as already said, thin tracks are performed by the
same mixture of the main sensors, they undergo a nonnegligible
change in resistance when the fingers move, but the electronic
unit is designed to skip this variation. Indeed, the bold black
track is supplied by a constant current. In this way, thin tracks
play just the role of acquiring the voltage drop of an element
of the series of sensors. On the other hand, thin tracks are
connected to an instrumentation differential amplifier with high
input impedance, implying that a negligible electric current
flows through them. The only recorded voltage drop, therefore,
refers to the sensor placed on the bold black track. Thin tracks
perfectly substitute for the traditional metallic wires and behave
accurately as a probe. Practically, a sensor consists in segments
of the bold track between two consecutive thin tracks (the line
marked as S in Fig. 2. The price to pay for all the advantages de-
riving from this novel technology with respect to conventional
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Fig. 3. Behavior of the relative variation of resistance of sensor against the
relative strain.

sensing gloves is the slow nonlinear response of the sensor. In
this paper, we propose a solution to this limitation, in terms
of hardware and computational approach, which allowed to
realize an effective and universal glove which works regardless
of the size of the hand of the subject wearing it.

III. SENSOR CHARACTERIZATION

In order to know how the fabric sensor responds to external
mechanical stimuli, a suitable electromechanical characteriza-
tion has been performed. A dedicated system consisting in a dc
motor endowed with sensors has been designed and realized.
This experimental session has been done on samples of sensors
extracted from the same sensorized piece of fabric used for man-
ufacturing the glove. A quasi-static characterization has been
easily obtained by stretching several samples of fabric up to a
predetermined set of lengths. In Fig. 3, the behavior of relative
change in resistance against the strain is reported. The slope of
the linear interpolation of the data is a rough approximation of
the gauge factor. Results state that G f depends on the shape of
the printed sensors and changes with the percentage of the com-
ponents of the conductive mixture and trichloroethylene.

Hereafter we will refer to sensors obtained by mixing three
equal parts of the two Wackers’ components and the third one of
trichloroethylene. By using this mixture we have printed galley
proofs 5 mm wide. The resistance obtained when the sample is
unstretched, i.e., rest condition, is about 1 k{2 per cm and the
gauge factor is about 2.8 (before saturation that occurs for dis-
placement greater than 40%). The temperature coefficient of re-
sistance (TCR), i.e., TCR = ((Rr — Rr,)/Rr,)(1/(T — Tp)),
where Rt and Ry, are, respectively, the resistance at tempera-
ture 7" and the resistance at reference temperature 7y, is about
0.08 K. The electric impedance of smeared sensors has been
measured over a frequency range 0—10 MHz and it showed nei-
ther capacitive nor inductive features, but only purely resistive
behavior. In order to investigate on the dynamical characteriza-
tion in terms of sensor electrical resistance versus strain, several
stimuli having different waveforms were applied to the fabric
sensors. When a square wave is applied as mechanical input (see
Fig. 4), fabric sensor resistance increases up to a certain value
(against the rise edge), then it decreases to a steady-state value.
Unfortunately, this relaxing time is too long to make fabric sen-
sors suitable for monitoring real-time human body movements.
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Fig. 4. Response of the fabric sensor excited by a square-wise input.
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Fig. 5. Trapezoidal inputs with increasing slopes, marked with increasing
numbers as well.

It is worthwhile noting in Fig. 4 that, when a decreasing step-
wise input is applied, the resistance shows a little positive peak
before decreasing to the settling value. This phenomenon is ev-
ident when the slope of the input signal which represents the
length versus time (i.e., the strength velocity) is greater than a
certain threshold. In Fig. 5 several different trapezoidal inputs
(Iength versus time) with different slopes are reported, and in
Fig. 6 the corresponding responses of the sensor are plotted.
The final value of the trapezoidal signal is intentionally different
from the initial one, without lacking in validity.

A. Model Formulation

In order to formulate a model for the sensor behavior, we
have split the calculation into two different parts. The first one
aims at characterizing the two peaks during the intervals with
dl/dt # 0, while the second one at describing the transient time
when dl/dt = 0 (where [ is the length of the sample). According
to Fig. 6 we have supposed that the response of sensor depends
on the velocity dl/dt. In addition, since peaks presented by the
signal are always positive, even when the step-wise input is de-
creasing induced us to formulate a nonlinear pre-elaboration of
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Fig. 6. Responses of the sensor to trapezoidal inputs with increasing slopes
marked with corresponding increasing numbers.
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Fig. 7. Output simulation g(t) (on the right side) from the model proposed in

the relationship 1 when the input signal I(?) is the trapezoidal signal depicted
on the left side.
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Fig. 8. Trapezoidal signals with increasing amplitude and same slope.

the inputs. This nonlinear behavior suggested us to choose an
approximation containing a square component. Let us consider

di(t) di(t)?
g(t) = all(t) + GQW + agT
where a1,a2, and a3 are three nonzero real numbers. This simple
transformation of the inputs has given good results in modeling
the sensor behavior. Fixed a1, as, and a3, for a trapezoidal input
l(t), g(t) shows two typical peaks (as reported in Fig. 7).

After this first qualitative analysis, we performed a careful
study of the experimental outputs produced by trapezoidal
inputs [(t), having increasing amplitude and same slope (see
Fig. 8). Experimental data were averaged on results obtained
from three tests repeated five times for each slope, obtaining a
grand total of 15 trials.

The slope of the trapezoidal signals was large enough to con-
siderably generate the two peaks. The obtained responses are
plotted in Fig. 9.

By comparing Fig. 8 and Fig. 9 we can claim that when the
input is kept constant after stretching, the response starts re-

ey
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Fig. 9. Responses to trapezoidal signals with same slope.
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Fig. 10. Two-pole regression on decreasing step of 10% of strain.

laxing (at the points c1, c2, and c3). According to our hypothesis
(relationship 1) trends of the three signals in intervals [c1, d1],
[ca, d2], and [cs, d3] represent the transient time after the peak.
These behaviors have been interpolated through an exponential
regression. First, we tried to model the relaxation responses of
the sensors with a one-pole differential system, but results from
the regression obtained in this way were not very satisfactory.
In order to improve the model performance and achieve better
results, we have extended the regression to a two-pole system,
by considering

@

Figs. 10-12 depict to the two-poles interpolation for 10%,
20%, and 30% of strain, respectively. The estimated poles by
means of this interpolation are the same for all the tests carried
out and their values belong to the ranges

’y(f) =co+ cle“’lt + c2e”2t.

wy € [0.06 Hz,0.08 Hz] ws € [0.61 Hz,0.74 Hz].  (3)

After having calculated the pole values, we have merged the
information in the classical formula of second-order linear sys-
tems. Let us consider

[g — oAli—t0) [igzﬂ + /t oA lt=7) |:g(0'r):|d7— @
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Fig. 11. Two-pole regression on decreasing step of 20% of strain.
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Fig. 12.  Two-pole regression on decreasing step of 30% of strain.
where A is the matrix whose elements are the coefficients of the
characteristic equation of the system

0 1
—wiwy  —(wy 4+ ws)

By simplifying (4) and considering only the second row, we
obtain the expression of R(t) with respect to the three parame-
ters a1, as, and agz. These three parameters have been identified
through the values of peaks excursions in the responses of the
sensor reported in Fig. 9.

In order to assess the expression 4 with the estimated param-
eters, we have simulated the behavior of the system when the
input of Fig. 4 is applied. What we obtain is very encouraging
and is reported in Fig. 13. It is worthwhile noting that the simu-
lation is very similar to the experimental response of the sensor
(lower side of Fig. 4). Since our goal was to determine I(t) by
acquiring the response of a sensor, let us derive (4) with respect
to ¢. We obtain

A= 5)

0

<t>} ©

t
i = AeAt—to)xy + A /eA(t_T)[ 0 ]dT + [
; g(7) 9
0
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Fig. 13. Simulated output of the system when the input is a square wave, such
as reported in the upper side of Fig. 4.

where = [R R]” and z9 = [R(to) R(to)]”. Then, by re-
placing (4) in (6) we get

0
T = Az + [ ] . 7
g(t)
By extracting the second row from 7, we obtain

[ — Az]s = g(¢). (8)

The left-hand side of (8) is known by reading the signals coming
from the sensor and by using the estimated poles from the pre-
liminary interpolation of the sensor responses. Hence, we are
able to know the function g(¢). By using relationship 1, we can
write the following differential equation to be computed:

2
arl(t) + ag ™0 4 gy THD — g(4)

100) = I 9)

dl(0)
dt

= lp.

This equation can be dynamically solved by using as
boundary conditions, at every turn, the last values of /(¢) and
I (t) calculated at the previous step. Since (9) does not admit an
analytical solution, it has to be integrated by using a numerical
method. In Fig. 14, the solution of the differential equation
(9) is given for R(t) as in Fig. 4 by using the Runge—Kutta
algorithm.

Equation (9) has been processed off-line. The next develop-
ments aim at implementing it in real time. In this paper, we fo-
cused only on stationary states, i.e., when g(t) = a1l(¢). When
the fabric sensor is submitted to an external mechanical solicita-
tion and then it is kept still, its electrical resistance changes over
time and it relaxes at the settling value. But, as shown in Fig. 4,
the relaxing time of the sensor response, when submitted to a
mechanical stretching, is too long to be used in real-time appli-
cations. Therefore, we focused our efforts to estimate the final
value of the sensor as fast as possible. Let us consider (2) and
apply the first and second derivative. Our goal is to predict the
final value ¢, cancelling somehow the exponential terms. The
mathematical approach to do this was to equal a linear combina-
tion of the signal, first and second derivative to a constant. Thus,
we obtain

a (CO + clewlt + cze‘”?t) + b (—clwle_‘”lt — czwge_‘”?t)

+c (crwie ' + cawze “2t) =co. (10)
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Fig. 14. Estimated input for sensor response represented in Fig. 4.

From (10), we get the following system:

acp = Cp
a—bwl—l—cw%:O
a — bwy + cw? = 0.

Y

We have three equations and three unknowns. This system is
univocally determined and the solution is

a=1

l—i-cuu2
b= (12)
c = wg—wl

wiw; —wiws

By substituting these constants in (10), we directly obtain the
final value of the sensor. By summarizing, by knowing the poles
of the sensor and preliminarily calculating the coefficients of the
above linear combination, we are able to detect in advance the
final value of the sensor skipping the too long relaxation time.
Prior to using the sensor, it is necessary to perform a calibration
phase in order to evaluate the poles and estimate the coefficients
of the equation array (12). The detection of the regime value has
been obtained via hardware by designing a suitable electronic
card. In Fig. 15, the block diagram of the principle scheme is
reported.

The signal from the fabric sensor is acquired and split into
three lines. The first one is multiplied by the amplification gain
a, the second one is differentiated and amplified by b, and the
third line is differentiated twice and multiplied by c. After am-
plifying, the three lines go to an adder, whose output is the
regime value of the relaxing response of the sensor.

In Fig. 16 is reported the output of the scheme described
above compared with the response of the sensor. The sensor was
submitted to a sequence of three square waves having different
amplitude. It is clear from Fig. 16 that the processed response is
able to shortly predict the regime value of the sensor.

IV. APPLICATIONS
A. The Sensing Glove as Posture and Movements Recorder

The model here proposed and above discussed has been ap-
plied to a sensorized glove. When the glove is worn by a hand
which holds a certain position, the series of sensors assumes a
set of values strictly related to the position. If the number of
sensors is large enough, the values presented are unique for the
position considered. The glove showed good capabilities of re-
peatability, even if it is removed from the hand and worn again
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Fig. 16. Comparison between the response of the sensor (continuous curve)
and the output of the conditioning system (dashed curve) able to skip the
transient time.

(by the same subject). In this way, it is possible to distinguish be-
tween to different postures which can be univocally coded. We
have tested this capability on a set of functionally relevant pos-
tures, the basic hand grip. A dedicated software able to recog-
nize different postures has been implemented. Identifying only
the static posture of the hand could be very simple, but it is also
very promising for several applications in rehabilitation thera-
pies and medicine. In particular, a candidate field of application
is the support of a post-course of surgical operation implying an
implant of a neural electrostimulator whose electrodes are posi-
tioned on nerves, directly. The operation is aimed at recovering
some pre-defined basic functional grasps in a tetraplegic pa-
tient and the glove is used in different phases. In the pre-implant
phase, the glove can monitor the range of grip generated by the
stimulator. These grips are, hence, recorded and stored. During
the surgical operation, it is necessary to verify the range of the
stimulus obtained during the preparation of the implant. After
positioning the electrodes adequately, by activating the neuro-
prosthesis, a control is performed through a suitable memory
connected to the glove to verify that the gesture obtained is the
same as that set up in the pre-implant phase. In the post-implant
period, it is also possible to use the glove extemporaneously to

F

Fig. 17. Sensing glove and the electrogoniometers for the calibration phase.
recalibrate the hardware (stimulator). The smallest deviation in
posture accurately detectable by the sensing glove is 4°, which
is an acceptable resolution in monitoring recovery of hand func-
tionality of subjects underwent a surgical operation implying an
implant of a neural electrostimulator. As an example, let us sup-
pose of bending the metacarpo-phalangeal joint by 90°. We ex-
perimentally measured that fabric sensor located at this joint is
stretched by 2.4 cm. Assuming a reasonable rough linear rela-
tionship between the sensor length and the joint angle, we can
state that a deviation of 4° in the angle produces a variation of
Imm in length, i.e., 0.05 strain, being the initial length of the
sensor about 2 cm. Multiplying this value of strain by the gauge
factor (2.8), we obtain 0.14, which if multiplied by the initial re-
sistance (about 1 k{2) we get a variation in electrical resistance
of 140 2, easily and accurately detectable by our hardware.

Some of the basic positions acquired during the posture
recorder mode can be used to construct a continuous function
which maps positions into sensor values. This map, obtained
as an interpolation of the discrete function which recognizes
recorded posture, can be used to detect any position of the
hand, even if it has never been held. Indeed, the identification
algorithm is able to construct a model of the hand expressed
in terms of sensor values. If the basic recorded positions are
associate to a set of angle deviations for the joints of the hand,
by means of a set of electrogoniometers (see Fig. 17), the
inversion algorithm is able to reconstruct positions (in terms of
angles) which never have been assumed by the subject.

First, let us make some considerations on what determina-
tion of human posture means by using these wearable sensors
and how sensor networks can be employed. To define formally
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a posture, it is necessary to develop a physical model for the par-
ticular subject holding it. We attribute a certain number of carte-
sian frames, one for each considered degree of freedom. In this
sense, a posture is simply the set of the mutual positions with
respect to the fixed frames. Obviously, the entire set of the mu-
tual positions is not necessary to reconstruct a posture exactly,
and a minimal set can be chosen in many different ways. The
Denavit-Hartemberg formalism [10], for example, fixes exactly
the number of relationships between frames and gives a standard
method to write these positions in terms of rotation and transla-
tion affinities, for rotational and translational joints. In the case
that the topological structure of the kinematic chain under study
cannot be linearly approximated, it is still possible to define a
model by using more sophisticated nonlinear approaches, [11],
to describe the kinematics more accurately. In particular, for the
kinesiology of the hand, we refer to [12] and [13], while the
model for the finger kinematic chains is substantially reported in
[14]. The problem can be formalized as follows. Let us assume
a fixed state space (described by a set of frames assigned and
by their mutual coordinate transformations) which we will des-
ignate as the posture space © and which admits a well-defined
topological model. To survey posture it is necessary to construct
a metric on this space and then to relate the elements of © to the
electrical sensor configurations that span the space S of sensor
readings. It is assumed that they are able to detect a variation in
subject’s posture and that there exists an invertible function F
that maps the space of the postures into S. As a consequence,
the image of © through F is a subset of .S which has the same
dimension of © itself. Therefore, the inverse of F' can be used
to infer the posture from the electrical readings. The construc-
tion of F, or “system identification,” is the crucial point of the
method, and it is important from several points of view. It is
worth pointing out that this phase is not a single sensor cali-
bration, but a real identification of the entire system. In fact,
for several reasons (the most important being the variability of
body structure of the subject), the sensor location is not pre-
cisely known. However, adopting the described approach, this is
no longer essential, neither is the map relating the size of a par-
ticular sensor to its electrical resistance. To better explain this
point, one should consider that adherence of a sensorized fabric
to the subject gives rise to intrinsic cross talk phenomena, due
to the nature of the textile on which sensor are positioned. This
fact, instead of being an inconvenience, is instrumental to the
method we have developed, and ensures the possibility of re-
constructing posture without the knowledge of the location of
every single sensor. The identification concerns not only the set
of sensors, but also the body structure of the subject. The same
garment can be then used, in principle, to detect the posture of
many different subjects with the prescribed accuracy, shifting
all the variability on a different function F. Metric introduc-
tion in the space of postures is realized simultaneously with the
construction of F. The basic idea is to relate information orig-
inating from a conventional measurement system (set of elec-
trogoniometers, in this case) to the electrical state of a set of
sensors. The former is obtained for a set of postures suitably
chosen according to the topological structure of ©. This care is
necessary because the space 0, related to anatomical variables

such as bones and joint positions, is not directly accessible to
the observer.
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Then a third space M (called “space of the markers”) is in-
troduced with its own coordinate frame, endowed with the same
topology of © and of the property of effectiveness, meaning that
it is always possible to determine whether two points in M co-
incide or not. Let us call G the continuous bijective function
mapping © into M. Due to the effectiveness property, M has the
advantage, with respect to O, of being directly accessible. Let us
now fix a system of coordinates and a metric in M, if G is dif-
ferentiable, a metric is automatically induced also on ©. If now
a lattice L, that is a finite discrete set of points, is chosen in M,
then another lattice L’ in © is uniquely identified via the map
G, and a metric is induced accordingly. Determining the law
of correspondence between the lattice L and the corresponding
subset of the space S means knowing the restriction of F on
L’. The next step is to expand the knowledge of F' from this re-
striction to all ©, obtaining F'. This is a problem of multivariate
interpolation that will be discussed in the next section.

1) Interpolation Technique AD Inversion: In order to
reconstruct position and movements not included in L', a
multivariate interpolation of F, component by component has
been employed. To approach this problem a piecewise linear
(PL) interpolation can be performed, either directly on F or on
one among its pseudo-inverses. We chose the direct approach
because of complexity issues that will be clarified in the fol-
lowing. In the direct case, we want to determine a class of
linear applications from ® — R, each one holding on a certain
subset of ©. The union of these subsets must contain © and the
functions corresponding to adjacent subsets must coincide on
their intersection. Due to the analyticity of linear applications,
it is clear that two of these subsets can intersect only at their
borders. The most time-consuming part of the algorithm is the
partitioning of an n-hypercube whose vertices belong to L’.
In order to solve the linear problem of interpolating a function
defined on a given lattice (assumed to be, i.e., homeomorphic
to Z™, where n is the dimension of the space of the postures), a
partitioning in O(n!) hyper-tetrahedra is necessary. Using this
partitioning, the interpolation is given by finding O(n!) hyper-
planes passing each one through n 4 1 points, representing the
vertices of each hyper-tetrahedron.

Let us now prove that this partitioning exists and it is minimal
by induction on the dimension of ®. We may suppose, without
loss of generality, that the hypercube we have to subdivide is the
set

I, =[0,1]" (13)
and let suppose that any other hypercube isometric to
I, 1= [0 1]11—1 (14)
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admits a hyper-tetrahedral decomposition. To prove that if I,,_

admits a decomposition, then each isometric hyper-tetrahedral

of order n — 1 is decomposable is trivial. Let us suppose that
Tn—l = {tlv"'vt(n—l)!} (15)

is a decomposition for I,,_1. Since the 2" faces of T,, are hyper-
cubes isometric to I,,_1, we can suppose that all the faces of T;,

Tr%—l = {t%v e ~7t%n—1)!}

(16)

are divided in hyper-tetrahedra. Let us now consider a point
P, € (0,1)". Since P, does not lie on any ¢} fori € {1...2n}
and j € {1...(n—1)!}, the convex hull of the set { P, t} } for
i€{l...2n} and j € {1...(n — 1)!} is an n-hyper-tetrahe-
dron. Let consider now the set of all hyper-tetrahedra obtained
in this way

T*={CH ({P,,t:})} ie{l...2n}, je{l...(n—- 1)1}
A7)

where C'H is the function which computes the convex hull. The
cardinality of T is exactly 2n(n — 1)! = 2n!. Moreover, two
hyper-tetrahedra C'H ({ P, 3} }) and CH ({ P, 2 }) can inter-
sect only on their borders, otherwise t;ll and t;i would intersect
on their internal parts (precisely on the projection from P, to
t; and 1‘;22) Let us now note that if we move P, on a face of
I,,, the number of the nontrivial hyper-tetrahedra in 7% = T,
reduces to 2n(n — 1)! — (n — 1), if P, lies on the intersec-
tion of two faces on I,,, the cardinality of 7" = T, reduces to
2n(n —1)! — 2(n — 1)! an so on. In particular, if P, lies on the
intersection of n faces of I,,, then T = 1™, = T,, and its cardi-
nality is equal to 2n(n—1)!—n(n—1)! = n(n—1)! = n!. For the
first step, consider a square which represents a 2-hypercube and
which is trivially divided into two triangles. Ad absurdum, let us
suppose that I,, admits a decomposition of cardinality smaller
than n!. By repeating all the procedures executed to construct
the partition, we will obtain that a square is divisible into a single
triangle. From the existence of the partition, a recursive proce-
dure to construct it can be implemented for each hypercube of
the lattice. When a partition is computed for all the hypercubes,
interpolating each sensor is equivalent to solving n;(n!) (alge-
braic) linear systems in order to determine the equations of the
hyperplanes (where n; is the number of hypercube which con-
stitute the lattice). The algorithm has an exponential complexity
in the dimension of ©, but all this computation is done off-line.
After having interpolated the functions which represent the set
of sensors, and calculated the pseudo-inverse F1 of the function
F [15], we are ready to employ them to detect the posture 6 of
a subject wearing the sensing glove. This procedure is executed
only once. Then a new calculated map is applied to every mea-
surement. This method is time consuming when it calculates the
O(n!) pseudo-inverse. The pseudo-inverse F can be employed

to define an iterative numerical method able to reconstruct the
posture of the hand. After having calculated it, an iterative algo-
rithm starts considering an estimation 6 of the posture to detect
and refine it by using the formula

Ois1 = 0; + kF T (si41 — s1) (18)

(Newton—Rhapson).

B. Methods

The algorithm described in the previous section is, how-
ever,devoted to recognizing static configurations of the hand,
disregarding the dynamic transition from one posture to an-
other. Twenty subjects (11 females, 9 males) volunteered to
participate in the experiments. Their ages ranged from 25 to
35 years, with an average of 28.1, with a university degree and
normal health conditions. All participants were naive of the
purposes of the experiment. The experimental session was split
into two stages. The first stage was based on the recognition
of a set of standard postures of the hand against a preliminary
calibration and storing of all allowed configurations, while
in the second phase, the capability of the sensing glove to
identify a position of the hand not included in the pre-stored
set of postures was tested. In particular, in the first phase, a
group of subjects were required to perform 32 well-known
reproducible configurations belonging to the basic grip and the
hand-shapes of American Sign Language. In the preliminary
phase, volunteers were asked to perform all 32 postures and the
signals from sensors were acquired and recorded. In this phase,
we did not use the hardware able to jump the relaxation time,
but we waited long enough to acquire the steady-state values.
Afterwards, subjects were required to repeat the postures, in
random order, and our system, comprised of hardware and
software implementing the algorithm able to shrink the settling
time, should recognize the posture.

C. Results

The glove recognized 100% of the postures previously
recorded if it was not removed from the hand, and 98% when
it was worn again. The recognition percentage increased again
to 100% if the subject slightly re-adjusted the glove when the
first error occurs. Indeed, it was experimentally proved that the
error was due to a mismatch between the glove and the hand.
The second stage of the experimental session implied a pre-
liminary identification phase with a set of different positions.
Afterwards, subjects were asked to freely hold a generic posture
of the hand. The electric values of the sensors were acquired
by the hardware, enabling it to estimate very quickly the final
values, and our algorithm discussed in the previous section
was applied. Estimated postures were compared with the real
ones. By way of illustration, some of these data are collected in
Table I. On average, the error percentage in detecting the actual
angle is about 4%. Table I reports error percentage greater than
4%, but on average we obtained this value. It is worthwhile
pointing out that as the largest part of the ASL signs are realized
by assuming static postures of the hand, the glove is enabled to
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TABLE 1
REAL ANGLE VALUES AND ESTIMATED ANGLE VALUES FOR THE
METACARPO-PHALANGEAL JOINT (IN FLEXION-EXTENSION), THE PROXIMAL
INTERPHALANGEAL JOINTS, AND THE DISTAL INTERPHALANGEAL JOINT OF
THE FOREFINGER AT DIFFERENT TEST POINTS. THE REAL AND ESTIMATED
ANGLES ARE EXPRESSED IN DEGREES. THE LAST COLUMN SHOWS THE
NUMBER OF STEPS NECESSARY TO RECONSTRUCT THE VALUES

Met-Fal Int-proxs Int-Dist | N° steps

Real 45 45 0 34
Estimated 45 45 0

Real 45 22.5 22.5 25
Estimated 45 25.31 15.47

Real 45 45 45

Estimated 45 42.19 45 3
Real 75 75 25 26
Estimated 80.16 67.5 32.34

Real 60 0 0 3
Estimated 60.47 0 8.44

Real 22.5 22.5 22.5 17
Estimated 22.5 22.5 22.5

recognize them without delay, exploiting the transient reduction
algorithm. Theoretically, the algorithm is capable of detecting
slow movements as well as fast movements; actually, derivative
blocks amplify quick variations of signals, introducing noise
into calculations. We are currently investigating a mathemat-
ical method which ensures the determination of g(¢) without
explicitly differentiating signals.

V. CONCLUSION

In this paper, we reported on a sensorized glove realized by
using a new technology based on fabric sensors. In the first part
of the paper, the dynamical behavior of the sensor was analyzed.
The single fabric sensor has been modeled as a second-order
system. Since the response of the sensor is nonlinear, a lineariza-
tion preprocessing has been applied. By means of an exponen-
tial regression, the relaxing part of the sensor response has been
interpolated and the poles of the system have been identified.
By knowing the poles of the system and the value of the output
of the sensor, it is possible to extrapolate the input applied. This
inversion algorithm has been proposed and solved through a nu-
merical simulation. The next developments aim at solving this
algorithm in real time. In the meantime, we focused on the sta-
tionary states of the sensor response, i.e., we identified the initial
and final value of the sensor during a variation, skipping the tran-
sient time. We proposed a dedicated topological configuration
in order to implement this methodology via hardware. Results
have been very satisfactory. In order to validate and assess this
methodology, it has been applied on the sensorized glove during
experiments of posture detection. In particular, 32 postures in-
cluding the basic grip and signs of American Sign Language
were used in the evaluation phase. The results of the evaluation
are quite encouraging and promising for continuing this work
successfully. Indeed, when the glove was used without being
removed from the hand, the American Sign Language postures

were measured with 100% accuracy. When the glove was re-
moved and worn again, the accuracy fell only to 98%.
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