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Introduction: What is localization ?

Challenge for autonomous navigation: ”Where am I?”

+ real-time localization problem:

Real time estimation of the robot’s pose
(or posture = position + orientation)

using noisy measurements
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Introduction: Absolute positioning with Landmarks

+ landmarks = features with known coordinates (relative measure).

+ “human made” can be passive or active (ex. radio signal).

active landmarks as in [14] (wifi infrastructure) and [15] (bluetooth
protocol): lack of accuracy.

[16] uses magnetic patterns (active landmarks): needs environment
modifications to work (drawback).

+ Avoid to modify the environment ⇒ natural landmarks: laser scanners,
ultrasound sensors (distance) or cameras (distance, angle).
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Introduction and related works

+ Trends for AGV: move to optically guided systems since the above
mentioned solutions (GPS, active landmarks and wire-guided solutions)
have important drawbacks.

+ Our goal: design and analyze landmark based solution for a unicycle
mobile robot equipped with a monocular camera (with one or two
landmarks).

+ Monocular camera (extract natural landmarks): corner points ([17, 18])
+ other algorithms SIFT [19] or SURF [20].

+ Single landmark based solution can be used also in the multi-landmarks
case by fusing the data in order to improve the localization algorithm.
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Introduction and related works

+ Step 1: Vision sensors ⇒ information,

+ Localization problem ∼ observation problem [26]:

Step 2: localizability is related to the observability problem (see
[27, 28, 29]).

Step 3 observer/estimator design.

+ Here in our algebraic approach Step 2 and 3 and merged.
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Introduction and related works

Step 2:Localizability/observability:

Linearized approximations: NO ([27]),

NL observability Hermann and Krener [30, 31]: YES ([28]).

Step 3: Observer design [26]:

[28]: nonlinear Luenberger-like observer combined with the projection
of stationary landmarks,

[27]: extended Kalman filter (EKF) in leader-follower context and
observability can be tested through the Extended Output Jacobian
matrix.

[28, 29] (extension to the SLAM problem): CNS (observable) = two
landmarks, estimation error is minimized using some optimal control
methods/
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Introduction and related works

+ EKF cons.: needs the inputs knowledge + noise,

+ Our solution based on differential algebraic setting + efficient numerical
derivation of noisy signals = good real-time localization (estimation of
pose and velocities) using bearing only measurements.
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Setup and assumptions for localization of unicycle

Localization = pose estimation w.r.t fixed frame.
Setup:

mobile robot with its kinematic model,

sensors with its measurement model

The robot - An image of the camera
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NOM DU JOURNAL 4

Fig. 1. Robot and landmark notation for the localization

Fig. 2. The robot - An image of the camera

III. SETUP AND ASSUMPTIONS FOR LOCALIZATION OF UNICYCLE

Let us consider a mobile robot evolving in an unknown environment and which aims at localizing itself using some sensors
and as few as possible environment knowledge (if possible none). More precisely, the localization problem consists in estimating
the pose2 of a mobile robot: the relative position and orientation of the mobile robot with respect to a fixed frame. In this
paper, such estimations will be obtained assuming that:

• the mobile robot evolves in aplanar environment,
• features are points (either in the plan or in the space),
• sensors detect some information about features of known positions (called landmarks),

and for a given setup (see Fig. 2) which comprises:

• mobile robot with its kinematic model (see subsection III-A),
• sensors with its measurement model (see subsection III-B);

2Sometimes also called the posture: see [8].

Robot and landmark notation for the localization
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Setup and assumptions for localization of unicycle

+ POI + image processing = angles:

α` = arctan

(
yr,`
xr,`

)
− θ, (1)

β` = arctan

(
zA`√

(xr,`)2 + (yr,`)2

)
. (2)

Measured output:
ym = y +$, (3)
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Setup and assumptions for localization of unicycle

Any other practical sensor setup could be consider as soon as we arrive at
one of the following fives cases given in table:

Measurement
assumptions

Number of
Landmarks

Measures Output (3)

MA1 1
azimuth angle
elevation angle

y =

(
α1

β1

)
MA2

1
+

Compass

azimuth angle
elevation angle

orientation
y =

 α1

β1
θ


MA3 2

2 elevation
angles

y =

(
β1
β2

)
MA4 2

2 azimuth
angles

y =

(
α1

α2

)
MA5 2

azimuth angle of A1

elevation angle of A2
y =

(
α1

β2

)
Measurement assumptions: α` and β` are given by (1), (2) together Notations.
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Localizability: definition and remarks

+ Unicycle robot: localizability = observability.

+ Car (see [8, 38]), the state vector is (x, y, θ, ϕ)T and its kinematic
model is: 

ẋ
ẏ

θ̇
ϕ̇

 =


L cos(θ) sin(ϕ) 0
−L sin(θ) sin(ϕ) 0

cos(ϕ) 0
0 1

(vω
)
. (4)

pose is a sub-vector of the state vector.

+ observability ⇒ localizability (reverse is false).
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Localizability: definition and remarks

+ Similarity between localizability/observability was already mentioned in
[27, 28, 29].

+ linearized approximations can be non observable [27], thus localization
is not possible using such approximations.

+ differential nonlinear systems theory proves the feasibility to reconstruct
the state, thus the localization problem is solvable (see [28] and [29]).

+ Usually, real-time localization solutions relies on non linear observer
design.
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Observability review: differential geometric framework

Hermann and Krener in [30] obtained sufficient conditions local
observability rank condition from which we can deduce:

Theorem

A unicycle type mobile robot is localizable at a point x0 if the
co-distribution of observability is of the form
dOx0(h) = O(x0)(dx, dy, dθ)T with rank(O(x0)) = 3.

Measures: y = h(x)
State: x. Here for (??), we have x = p.
Pose: p = (x, y, θ).
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Observability review: differential geometric framework

Example (Trivial case: the position is measured)

+ Measured output: y = h(x) = (x, y)T .

+ dOx0(h) = span{dx, dy, d(u cos(θ)), d(u sin(θ))} = span{dx, dy, dθ}.

+ dimdOx0(h) = 3⇒ localizable.
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Observability review: differential geometric framework

Example (Case 1: the bearing angles are measured for one landmark
(MA1))

+ One landmark A1 + measurement h(p) = (α1, β1)T ,

+ There is no closed form for dL`−1
f h(x).

+ Lengthly computation of dOx0(h) prove that the rank is 2: the unicycle
mobile robot is not localizable with only one landmark.
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Observability review: differential algebraic framework

+ local observability rank condition is concerned with the successive
output time derivatives.

+ For an introduction to Diff. Alegbra (for more details see
[39, 40, 41, 34, 42, 43]).
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Observability review: differential algebraic framework

Some hints about the algebraic concepts and tools:

Ring (or Field) → differential Ring (Field) (as soon as derivation is
defined Leibniz rule),

differential ideal,

differential extension (L/F : one is bigger than the other F ⊂ L),

notion of basis (generator and freeness), dimension of the basis is the
differential transcendence degree,

etc ...

I will not give details but will give a down to earth vision.
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Observability review: differential algebraic framework

Set of fractional

polynomial ODE

Algebraic operations

+,−,×, /
d
dt

+ suitable for all real processes: exp, log trigonometric functions and so
on satisfy ODE.

x1ẍ1 + x21ẋ1 + x21 + exp(x1) = 0
⇔

x2 = exp(x1)
x1ẍ1 + x21ẋ1 + x21 + x2 = 0,

ẋ2 − x2ẋ1 = 0.
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Observability review: differential algebraic framework
Practical guide to differential Algebraic framework

ṗ = f(p,u) =

 v cos (θ)
v sin (θ)

ω

 , (5)

Fit this framework (trigonometric functions) using:{
z = x+ iy
Θ = exp(iθ)

, (6)

(5) can be rewritten as:

ż = Θv, (7)

Θ̇ = iΘω. (8)
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Observability review: differential algebraic framework

Set of all differential

algebraic relations

W1, . . . ,Wn

using variables

System ODE (Pℓ)
r
ℓ=1

I{P1, . . . , Pr}

ideal (prime ?)

fractional field

k{W1, . . . ,Wn}/I{P1, . . . , Pr}

Non Linear Sys.

F/k

F :=

If YES ⇒ no zero divisor

Properties: invertibility, flatness, . . .

Simple characterization of the intrinsic properties of a system: invertibility,

flatness (closed to controllability) [45, 46, 47, 48, 38], . . .
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Observability review: differential algebraic framework

Observability: (see [39] and [40])

Definition

ζ ∈ F is observable w.r.t. z := {z` : ` ∈ I} ⊂ F if it is algebraic over k〈z〉.

+ ζ = algebraic function of the components of z and a finite number of
their derivatives.

Theorem

A non linear system is observable if, and only if, any state variable is a
function of the input and the output variables and their derivatives up to
some finite order.

ẋ1 = x2 + f1(x1),

ẋ2 = f2(x1, x2),

y = x1
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Algebraic localizability

Theorem

A mobile robot is localizable with respect to u,y if, and only if, there is a
non-zero irreducible differential polynomial linking the pose to the
measured output y, the input u and a finite number of their time
derivatives.

Example (Position is measured)

ż = Θv, (9)

Θ̇ = iΘω. (10)

Output y = z = x+ iy (two sensors).

Observable: pa =

(
y,Θ =

ẏ

v

)T
.
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Algebraic localizability

Example (MA1: bearing angles for one landmark )

ẏ = −v − iωy. (11)

Θ cannot be obtained as an algebraic relation in terms of y, v, ω and a
finite number of their derivatives: robot is not localizable.

+ localizability defect is defined using an algebraic setting and
corresponds to the number of variables within the list z,Θ to be added to
u,y in order to retrieve the robot localizability.
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Algebraic localizability

* All cases MA2 to MA4 are solved (similar technics).

* Is there anything in between MA1 and MA2 ?

MA1-BIS: azimuth and elevation angles are measured for one landmark
and one target: 4 outputs y1, . . . , y4

v =
2zA1

ẏ2y1

(1 + y21)y22
(12)

zA2 =
zA1

ẏ2y1

(1 + y21)y22
×

(1 + y23)y24
ẏ4y3

(13)

ω = −i
zA1y

2
4(t) (y1(t)ẏ2(t) − ẏ1(t)y2(t)) + zA2y

2
2(t) (ẏ3(t)y4(t) − y3(t)ẏ4(t))

zA1y1(t)y2(t)y24(t) − zA2y
2
2(t)y3(t)y4(t)

(14)

Θ = Θ(t0)
zA1

y1(t0)
y2(t0)

− zA2

y3(t0)
y4(t0)

zA1

y1(t)
y2(t)

− zA2

y3(t)
y4(t)

(15)

z(t) = cA1
− zA1

Θ
y1(t)

y2(t)
(16)
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Algebraic localizability

y1

y2

y3

y4

camera

image

processing

Numerical

order 0

Differentiation

(filtering!)

order 1

zA2

v

ω

Θ

z

Algebraic

Relations

ŷ1, ˆ̇y1

ŷ2, ˆ̇y2

ŷ3, ˆ̇y3

ŷ4, ˆ̇y4

Need good numerical differentiation in noisy environment
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Algebraic localizability

Algorithms: Non-A Algorithm EKF
Input (known): NO YES

Noise characteristics (known) NO YES
θ measured NO NO
Initialization NO YES

Only one landmarks YES NO
Confidence interval NO (TBD) YES

Table: Algorithms Comparison
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Localization as a numerical differentiation problem
All we want to know is in the output signal...

Dynamical System

u

2.0 4.0 6.0 8.0 10.012.014.0

1.0

2.0

-1.0

-2.0

y(t)

1.0

-1.0

0.05

-0.05

polynomial

y(t) = a0 + a1t+ a2t
2 + . . .+ aN tN

y(N+1) = 0

signal (original)

signal (original)

without noise

noise

Real-time estimations of derivatives for noisy signals
Takes xN = 0 (Laplace) + alg. annihilator ⇒ time domain
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Localization as a numerical differentiation problem
Numerical derivation

+ Estimate x(2)(0) through the truncated series of order 2:

R : X =
x(0)

s
+
x(1)(0)

s2
+
x(2)(0)

s3

Idea: kill undesired terms (blue) except the one to estimate (red)

Step 1 ×s2: s2X = sx(0) + x(1)(0) +
x(2)(0)

s

Step 2
d2

ds2
: 2X + 4s

dX

ds
+ s2d

2X

ds2
= 2

s3
x(2)(0)

Step 3 × 1

s3
:

2

s3
X +

4

s2

dX

ds
+

1

s

d2X

ds2
=

2

s6
x(2)(0)

Step 4 Go back to the time domain:
2T5

5!
x(2)(0) = T3 ∫ 1

0

(
2w2,0(τ) − 4w1,1(τ) + w0,2(τ)

)
y(Tτ)dτ
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Localization as a numerical differentiation problem
Numerical differentiation: causal Jacobi estimators

The Ball and Beam system:

0 1 2 3 4 5 6
−0.5

0

0.5

1

t

Estimations for the first derivative of beam angle

 

 

θ(1)

Sliding modes differentiator
High−gain observer
causal Jacobi estimator

1 2 3 4 5
0

0.002

0.004

0.006

0.008

0.01

0.012

t

Absolute estimation errors for the estimations

 

 
Sliding modes differentiator
High−gain observer
causal Jacobi estimator

SNR = 24.5dB and Ts = 10−4
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Simulations: EKF knows the noise characteristic

Algorithm Results
distance error mean distance error variance v error mean ω error mean

NON-A-MA1BIS 0.2196 0.0040 0.0334 0.0015
NON-A-MA2 0.1422 0.0034 0.0286 3.2435e-006
NON-A-MA3 0.1869 0.0033 0.5000 0.0100

EKF-MA3 0.2219 0.0122 X X
NON-A-MA4 1.6806 1.8969 X X
NON-A-MA5 1.3127 1.4534 X X
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Simulations: EKF does not know the noise characteristic

Algorithm Results
distance error mean distance error variance v error mean ω error mean

NON-A-MA1BIS 0.2081 0.0039 0.0334 0.0015
NON-A-MA2 0.1436 0.0035 0.0287 3.2435e-006
NON-A-MA3 0.1839 0.0034 0.5000 0.0100

EKF-MA3 1.0382 0.0403 X X
NON-A-MA4 1.7047 1.9789 X X
NON-A-MA5 1.3421 1.5717 X X
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Simulations: Analysis

NON-A algorithms require less hypothesis than EKF (easier to
implement),

All results MA1-BIS, MA2 and MA3 are are better than EKF,

MA4 and MA5 are not so usefull even if better than EKF (with the
same outputs).
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Experimental Results: settings

Robot is equipped with an Imaging Source camera and an inertial
sensor for MA2,

Reference localization is obtained using luminous pattern hanging
from the ceiling,

The Imaging Source camera is used to get the relative angle between
the robot and two points (landmark and/or target),

This measures are process using Matlab to estimate the posture.
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Experimental Results: MA1-BIS

error mean (cm) error standard deviation (cm)

NON-A- MA1-BIS 11 5

Table: Experimental results of NON-A algorithm
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Experimental Results: MA1-BIS
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Conclusion

Localization framework: bearing only measurement cases using optic
flow information and natural landmarks.

Localizability is defined in a differential algebraic framework (notion
of localizability defect)

Localization ⇔ numerical differentiation problem in noisy
environment.

Our solution provides pose and velocities reconstruction.
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——, “Critique du rapport signal à bruit en communications numériques,”
ARIMA, vol. 9, pp. 419–429, 2008, paris.

WP (Inria) Algebraic localizability 22-06-12 62 / 63



Bibliography
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