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Abstract— Variable Stiffness Actuation (VSA) devices are be-
ing used to jointly address the issues of safety and performance
in physical human-robot interaction. With reference to the
VSA-II prototype, we present a feedback linearization approach
that allows the simultaneous decoupling and accurate tracking
of motion and stiffness reference profiles. The operative condi-
tion that avoids control singularities is characterized. Moreover,
a momentum-based collision detection scheme is introduced,
which does not require joint torque sensing nor information on
the time-varying stiffness of the device. Based on the residual
signal, a collision reaction strategy is presented that takes
advantage of the proposed nonlinear control to rapidly let the
arm bounce away after detecting the impact, while limiting
contact forces through a sudden reduction of the stiffness.
Simulations results are reported to illustrate the performance
and robustness of the overall approach. Extensions to the multi-
dof case of robot manipulators equipped with VSA-II devices
are also considered.

I. INTRODUCTION

A successful paradigm in physical Human-Robot Inter-
action (pHRI) is to design robots for safety and to control
them for performance [1], [2]. In the recent years, this co-
design has led to the development of several manipulators
and actuation systems that integrate in different ways the
common concepts of lightweight link structure [3], compliant
transmissions and arm coverage [4], [5], hybrid actuation
with remote displacement of the main motors [6], and vari-
able stiffness/impedance actuators (VSA/VIA). In particular,
VSA devices may either have a passive variation of joint
stiffness [7], or actively modify it, with an antagonistic ar-
rangement of two motors [8]–[10] or with separate actuation
for motion and stiffness [11], [12]. All the above mechani-
cal/actuation choices allow to reduce intrinsically the risk of
user injuries resulting from possible unexpected collisions of
a robot that closely cooperates with humans [13], [14].

From the point of view of performance, control design
should be aimed at compensating for the static deflection and
dynamic vibrations associated to the presence of (constant or
time-varying) compliant transmissions, so as to accurately
execute fast motions as in the rigid case. For instance,
model-based nonlinear feedback control allows to cancel
completely these effects in robots with elastic joints of
constant stiffness [15], [16]. For some instances of 1-dof
arms with variable stiffness actuation, feedback linearization
has been proven effective in controlling both the link motion

and the desired stiffness in an antagonistic case [17] and in
one with separate actuation [11]. More in general, two classes
of multi-dof robots with variable joint stiffness have been
considered in [18], one where the stiffness can be modified
instantaneously by a specific input command and another
where this additional control input modulates the stiffness
through a second-order mechanical system. Depending on
the class type, a dynamic or, respectively, a static feedback
linearization law was shown to be sufficient for the simul-
taneous and decoupled control of the motion and stiffness
outputs. Nonetheless, the feasibility of these general control
approaches depends on the chosen mechanical implemen-
tation of variable stiffness actuation. As a matter of fact,
one should check the invertibility of the so-called decoupling
matrix of the system on a case-by-case basis.

A second fundamental task for the robot controller is
the handling of collisions, which include their fast and
reliable detection and the switching to a safe reaction strategy
once a collision has been detected. Human-robot collisions
may happen in general at any location along the robot
structure. While external vision systems or proximity sensing
and additional force/torque sensors are indeed helpful for
the anticipation or avoidance of collisions, a simpler and
more cost-effective detection approach should rely only on
the available proprioceptive sensors of the robot (encoders)
and on the use of its nominal dynamic model. For rigid
robots, such collision detectors have been designed, e.g.,
in [19], [20]. In particular, the momentum-based approach
proposed in [20] regards the collision as a system fault [21]
and generates a residual vector that can be used both for
detection and for the successive reaction. Moreover, this
detection scheme can be easily extended to the case of robots
with joint elasticity, provided that joint torque sensors are
available [22]. No such results are available for detecting
collisions in the case of variable stiffness actuation.

Upon recognition of a collision, the simplest reaction
strategy is to stop the robot [23], [24], which is safe but
leaves the human user in an unpleasant state of danger, next
to the robot arm. Canceling gravity through control [25]
allows to let the robot float in space, reacting in response to
the impact forces in an unbiased way. More active strategies,
where the residual vector is used to define a direction of
safe reflex motion of the robot, have been proposed and



Fig. 1. VSA-II antagonistic principle (modified from [10])

successfully experimented in [14], [22], both in the case
of rigid and of elastic joints. The definition of effective
strategies of reaction to collisions for manipulators with
variable stiffness actuation is still an open research issue.

In this paper, we present a complete approach to the
accurate and safe control of a 1-dof arm equipped with
the latest VSA-II prototype developed at the University of
Pisa [10]. After recalling the dynamic model of the VSA-
II in Sect. II, the control design for tracking smooth, but
otherwise arbitrary, reference trajectories for arm position
and stiffness is presented in Sect. III. In particular, we
characterize the singularities of the feedback linearization
law for the VSA-II, and show how these can be avoided
by suitably pre-loading the device. Section IV introduces an
efficient scheme for detecting the occurrence of unexpected
collisions without measuring transmission torques at the
joint. An active reaction strategy is proposed, taking advan-
tage of the feedback linearizing controller. Section V reports
illustrative simulation results for free motion and collision,
both in the nominal case and under model perturbations. The
paper is mainly restricted to the 1-dof case, but the obtained
results can be extended in a straightforward way to multi-
dof manipulators using the VSA-II (or other variable stiffness
antagonistic devices). This is sketched in Sect. VI.

II. DYNAMIC MODELING OF THE VSA-II

We recall here the dynamic model of the variable stiffness
actuator VSA-II introduced in [10]. The notation is slightly
modified, and is similar to the one commonly used for elastic
joints of constant stiffness (see, e.g., [26]). This allows also
a simpler generalization of the following results to the multi-
dof case (see Sect. VI). The VSA-II actuator is based on a bi-
directional antagonistic arrangement of two motors driving
a single joint through a flexible transmission system (see
Fig. 1). The basic element of the transmission is a 4-bar
mechanism. a so-called Grashof neutral linkage, with a linear
spring (see Fig. 2), which introduces a nonlinear torque-
displacement characteristic between the input torque applied
by the motor and the angular deflection of the joint shaft.
We note that the nonlinearity is due to the geometry, not to
the spring itself which behaves in the elastic domain. The
design is more robust than the original VSA-I prototype [9].
The current version is shown in Fig. 3.

With reference to the left side of Fig. 2, let φ be the
angle connected to the motor position (input) and β the angle

Fig. 2. Left: A single four-bar linkage of the VSA-II (modified from [10]).
Right: The assembly of two such linkages for one of the two motors (A,
B, and C are corresponding points in the two pictures)

Fig. 3. An open view of the VSA-II prototype (from [10]); there is one
such device for each motor on the two sides of the driven joint

connected to the load (output). It is

β(φ) = arcsin
(
R

L
sin
(
φ

2

))
− φ

2
. (1)

A mechanical stop ensures the avoidance of the linkage
singularity at φ = 0. Thus, from the geometry φ ∈ (0, φmax),
with φmax = 2arcsin(L/R) and L < R. The torsional
spring of (constant) stiffness k is at rest when φ = β = 0.
Its potential energy is thus P (φ) = 1

2 kβ
2(φ) and the torque

at the motor end O due to the deflection β is

T (φ) =
∂P (φ)
∂φ

= k β(φ)
∂β(φ)
∂φ

≥ 0. (2)

Therefore, the (nonlinear) stiffness seen at O is

σ(φ) =
∂T (φ)
∂φ

= k

((
∂β(φ)
∂φ

)2

+ β(φ)
∂2β(φ)
∂φ2

)
> σinf ,

(3)
with σinf = 0.25 k ((R/L)− 1)2 > 0. While the explicit
expressions of T and σ in (2) and (3) can be found in [10],
the above compact forms will be useful for control imple-
mentation. The following developments hold true for any
other specific form of the nonlinear geometry β(φ) in (1).

In the VSA-II, two such pairs of 4-bar mechanisms are
combined for each motor and the two motors are assembled
in antagonistic mode as in Fig. 1. Let θ1 and θ2 be the motor
positions, and q be the position of the driven link (output
load). Replacing φ in eq. (2) by θ1−q and θ2−q, respectively
for the motor 1 and 2 at the two sides of the joint, the torque



exerted on the load due to the transmission deflections is
given by

τJ = 2 (T1(θ1 − q) + T2(θ2 − q)) = 2 (τJ1 + τJ2) . (4)

The associated (total) stiffness is1

σ =
∂τJ
∂q

= −2 (σ1(θ1 − q) + σ2(θ2 − q)) , (5)

where the expression of the functions σi, i = 1, 2, is given
by eq. (3).

Consider a 1-dof arm (single link) driven by the VSA-
II, moving in the vertical plane, and possibly undergoing
collisions. The dynamic model can be written as

B θ̈1 +D θ̇1 + 2 τJ1 = τ1

B θ̈2 +D θ̇2 + 2 τJ2 = τ2

Mq̈ +Dq q̇ +mgd sin q = 2 (τJ1 + τJ2) + τK ,

(6)

where B and M are the inertias of the rotor of the two
(identical) DC motors and, respectively, of the link (at the
joint axis), D and Dq are the (small) coefficients of viscous
friction at the motor sides and at the link side, m and d are
the mass of the link and the distance of its center of mass
from the joint, g is the gravity acceleration, τ1 and τ2 are
the control torques produced by the two motors, and τK is
the torque resulting from a link collision (when present).

Based on the model (6), in the next two sections we will
first present a nonlinear control design for tracking desired
trajectories of the link position q and of the device stiffness
σ, as given by (5), in free motion tasks (i.e., when τK = 0),
and then introduce a detection scheme and a reaction strategy
for handling collisions during motion.

III. FEEDBACK LINEARIZATION CONTROL

In [10], a simple linear law of the PD type has been
used for controlling both the link motion and the device
stiffness. Good results were obtained by suitably combining
the control inputs and by defining as controlled outputs the
average and the difference of the two motor positions, which
are associated respectively to the link position and to the
device stiffness. However, this association holds true only at
steady-state and in the absence of gravity. A more formal
approach is pursued here based on system inversion (or
feedback linearization) and considering directly the output
of interest, i.e.,

y =
(
y1
y2

)
=
(
q
σ

)
, (7)

under the action of the control input τ = (τ1, τ2). The actual
computation of a feedback linearization control law depends
on the mechanical implementation of the variable stiffness
actuation principle. In particular, its applicability relies on
the nonsingularity of the decoupling matrix of the system.
We will see that the model (6) of a 1-dof arm driven by
the VSA-II can be transformed into decoupled chains of

1The minus sign is due to the chain rule of differentiation, being
∂φ/∂q = −1. Note that σ is always positive.

input-output integrators (thus, a linear and easily controllable
system), provided that the device is pre-loaded to a positive
(and typically, moderate) value of stiffness. As a result of
the achieved decoupling, each output component in (7) can
be independently and simultaneously controlled.

The system inversion algorithm formally proceeds on the
model by differentiating each output component a finite
number of times until at least one of the inputs appear. At
this differential level, one can try to invert the system and
find the expression of the required input-output decoupling
control law. If the sum of the orders of output differentiation
is equal to the dimension of the state space, then the same
decoupling control law achieves also full linearization of
the original system, which is what happens here. It should
be stressed that no differentiation of measured quantities is
actually needed in this control law if the full system state is
available. In the following, we assume τK = 0 in (6).

For the first output, we have

y1 = q

ẏ1 = q̇

ÿ1 = q̈ =
1
M

(τJ −Dq q̇ −mgd sin q)

y
[3]
1 =

d3q

dt3
=

1
M

(
2 (σ1θ̇1 + σ2θ̇2) + σ q̇

−Dq q̈ −mgd cos q q̇
)

y
[4]
1 = b1(x) +

2
MB

(σ1 τ1 + σ2 τ2) ,

(8)

where b1 is a function of the state x = (θ1, θ2, q, θ̇1, θ̇2, q̇).
In the same way, for the second output

y2 = σ

ẏ2 = σ̇ = −2
(
∂σ1

∂θ1
θ̇1 +

∂σ2

∂θ2
θ̇2

)
+
∂σ

∂q
q̇

ÿ2 = b2(x)− 2
B

(
∂σ1

∂θ1
τ1 +

∂σ2

∂θ2
τ2

)
,

(9)

with similar functional dependence for b2. We can thus write(
y
[4]
1

ÿ2

)
= b(x) +A(x)

(
τ1
τ2

)
, (10)

where the decoupling matrix

A(x) = Γ

 σ1 σ2

∂σ1

∂θ1

∂σ2

∂θ2

 (11)

is actually only a function of the differences θ1 − q and
θ2− q (Γ is a constant diagonal, and invertible matrix). The
determinant of A, evaluated for the mechanical parameters
of the VSA-II device, is shown in Fig. 4 as a function of its
arguments. One can immediately see that matrix A is always
nonsingular unless θ1 = θ2. Thus, if the VSA-II is kept
always in an operation mode where θ1 6= θ2, the following
control law(

τ1
τ2

)
= A−1(x)

((
v1
v2

)
− b(x)

)
(12)
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Fig. 4. The determinant of the decoupling matrix A as a function of its
arguments θ1 − q and θ2 − q: 3D view (left) and side view (right)

solves the decoupling problem, leading to a chain of four
integrators between the new control input v1 and the output
y1 = q and a chain of two integrators between the new
control input v2 and the output y2 = σ. Since the sum
4+2 = 6 = n, being n the dimension of the system state, the
nonlinear state feedback law (12) fully linearizes the closed-
loop dynamics. As for the computational complexity, we
note that the control expression (12) involves only the first
four analytic derivatives of the nonlinear function β given
in (1). Also, gravity compensation is already embedded in
the feedback linearizing controller.

In order to guarantee that the condition θ1 6= θ2 holds
at all times, and thus the validity of the proposed control
approach, it is sufficient to pre-load the VSA-II at time t = 0
so that θ1(0)−q(0) 6= θ2(0)−q(0), for any initial value q(0)
of the link position. Accordingly, the device will display an
initial stiffness σ(0) > 0. Imposing now, for an arbitrary
motion of q(t), a desired evolution of the stiffness σd(t), with
σd(0) = σ(0), which is sufficiently bounded away from zero
will thus preserve the nonsingularity of matrix A. In fact, this
desired behavior σd(t) can be perfectly reproduced thanks to
the decoupling and output inversion properties of the control
law (12). For this, it will be sufficient to set v2(t) = σ̈d(t),
while v1(t) independently defines the evolution of q(t).

More in general, the control design should be completed
by specifying linear control laws for v1 and v2 that stabilize
the system to the desired task, expressed in term of link
and stiffness behavior. In order to asymptotically reproduce
a desired trajectory qd(t) for the link position and, simulta-
neously, a trajectory σd(t) for the stiffness, we set

v1 = q
[4]
d + kq,3(q

[3]
d − q[3]) + kq,2 (q̈d − q̈)

+ kq,1 (q̇d − q̇) + kq,0 (qd − q)

v2 = σ̈d + kσ,1 (σ̇d − σ̇) + kσ,0 (σd − σ) ,

(13)

where kσ,1 > 0, kσ,0 > 0, and the gains kq,i are chosen
so that s4 + kq,3s

3 + kq,2s
2 + kq,1s + kq,0 is a (Hurwitz)

polynomial having all roots in the left-hand side of the
complex plane. The actual values of the control gains in (13)
can be chosen, e.g., by pole placement techniques, yielding
exponential convergence of the trajectory tracking errors to
zero. The higher-order derivatives of q that appear in (13),
in the same way as σ and its first derivative, can be directly
evaluated as functions of the state of the system by means of

eqs. (8–9). Thus, there is never a need to differentiate w.r.t.
time the (possibly noisy) measured state variables.

A final remark concerns the requirement of smoothness
over time for the desired motion and stiffness trajectories.
It is apparent from (13) that the link trajectory qd(t) should
be differentiable at least four times, whereas the stiffness
trajectory σd(t) at least two times. If this is the case,
the control law (12–13) will guarantee perfect reproduction
for initially matched state conditions, and only exponential
tracking otherwise. If a reference trajectory lacks the required
smoothness at some point in time, there will be a transient
error which is then recovered with the prescribed dynamics
imposed by the stabilizing linear control action.

IV. COLLISION DETECTION AND REACTION

Consider now the possible occurrence of a link collision
with a human or an obstacle. In eq. (6), it will be τK(t) 6≡ 0
for t ≥ tK , where tK is the instant of first impact.

We would like to detect collisions without the need of
additional sensors beyond the encoders available at the joints,
possibly allowing the numerical differentiation of position
measurements in order to obtain velocities. As mentioned
in the introduction, the momentum-based method obtains
such a result in rigid robots [20] and in robots with elastic
joints of constant stiffness [22]. In the latter case, with the
availability of a joint torque sensor one can directly extend
the result from the rigid situation. Since the third equation
of model (6) is formally equivalent to the link dynamics of a
robot with elastic joints, a first solution would be to design
the so-called residual allowing to detect collision based only
on this equation and on the properties of the link momentum
p = Mq̇. However, this would need sensors for measuring
the two nonlinear transmission torques τJ1 and τJ2. A more
viable but equivalent solution is proposed next.

Denote the sum of the components of the momentum
vector of the robot system by

psum = B(θ̇1 + θ̇2) +Mq̇, (14)

and define the following residual:

r = kI

(
psum −

∫ t

0

(r + τ1 + τ2 − τD −mgd sin q) ds
)
,

(15)
where kI > 0 is a free design parameter, the dissipative terms
in the model have been collected in τD = Dq q̇+D(θ̇1 + θ̇2),
and r(0) = 0 for a system initially at rest. Using eq. (6), it
is easy to check that the residual r satisfies

ṙ = kI (τK − r) , (16)

resulting in a fist-order, stable filter of the unknown collision
torque τK . For a large kI , the residual r follows closely
the time behavior of τK , and in particular returns to zero
when the contact is lost. Indeed, to cope with sensor noise
and/or model uncertainties that would otherwise generate
false alarms, a compatible value of kI should be used in
conjunction with some small positive threshold rcoll: colli-
sion will be actually detected only at a time instant tD > tK



when |r| > rcoll. Note finally that the computation of the
residual (15) is completely independent from the (possibly
time-varying) stiffness of the device and from the torques
due to deflection of the transmissions. This is an appealing
result from an implementation point of view. Moreover, the
collision detector works in the same way no matter how the
control torques τ1 and τ2 are generated (which is good, e.g.,
when switching control laws from free motion to collision
reaction).

Next, we propose a reaction strategy to be activated upon
recognition of a collision. In the present 1-dof case, the
situation is trivial because the link can only reverse motion
and go in the opposite direction of the detected contact.
Anyway, we provide here a general solution that can be used
also for the multi-dof case. A first approach could be to
switch the control law and apply maximum torque with the
two motors, so as to move away from the impact area as fast
as possible. However, control on the device stiffness would
be given up in this way and this may have a negative effect
on the interaction forces during the short time between the
detection instant tD and when the link starts executing the
commanded reaction. Therefore, it seems more convenient
to keep the same feedback linearizing controller (12) and to
change only (part of) the linear design of v = (v1, v2) in
eq. (13). In particular, we set

v1 = −kq,3 q[3] − kq,2 q̈ − kq,1 q̇ + kR r, (17)

where kR > 0, and the other coefficients are chosen such
that s3 + kq,3s

2 + kq,2s+ kq,1 is a Hurwitz polynomial. The
rationale of this law is to have the link be pushed away by an
amplified collision torque (kRr ' kRτK), while stabilizing
motion to q̇d = 0. After losing contact, r will rapidly go
to zero and the link will be slowed down until reaching a
rest position away from the collision area. The rest position
will depend on the amplitude of the impact force and on
the gains chosen in (17). Moreover, the same structure (13)
will be kept for v2, but dropping the reference value σd to
the lowest feasible level of stiffness. This will guarantee the
softest compliant behavior of the device in the post-impact
phase. Thanks to the decoupling obtained by the control law,
in nominal conditions there will be no cross-effects due to the
switching of v1 and v2. However, when external contact is
present2 and/or due to uncertainty in the dynamic parameters,
a nonlinear and coupled behavior still results, see, e.g., [27],
which can be evaluated by simulation.

V. SIMULATION RESULTS

The performance of the feedback linearization/decoupling
control of Sect. III and of the detection/reaction method of
Sect. IV is illustrated here by means of numerical simu-
lations. The following data of the 1-dof VSA-II arm have
been experimentally identified on the prototype and are the
same used in [10]: R/L = 14/8 = 1.75 (4-bar linkages),
k = 500 N·mm/rad (spring stiffness); B = 7.3 kg·m·mm

2In fact, the unknown collision torque has been neglected in the control
design: a non-zero τK will affect in q̈ and higher position derivatives as
well as σ̈ in eqs. (8–9).
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Fig. 5. Evolution of position q (matched initial conditions)
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Fig. 6. Evolution of stiffness σ (matched initial conditions)

(motor inertia reflected by the reduction ratio); M = 0.1
kg·m·mm (link inertia at the joint axis, assuming uniform
mass); D = 0 (negligible viscous friction on the motor side);
Dq = 100 N·mm·s/rad.

A. Free motion

In the absence of collisions, the reference trajectories for
the position and stiffness on a finite time interval [0, Ttot]
are chosen as follows:

qd(t) =
1
2π

1
1 + e10−4t

+ qinit

σd(t) =
1
q̇d

+ σinit.
(18)

The link should execute an (approximate) rest-to-rest motion
of 90◦ in Ttot = 5 s (qinit sets the link position start at the
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Fig. 7. Control torques τ1 and τ2 (matched initial conditions)
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Fig. 8. Deflection torques τJ1 and τJ2 (matched initial conditions)
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Fig. 9. Evolution of position q for an initial error of 10◦ ≈ 0.2 rad
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Fig. 10. Evolution of stiffness σ for an initial error of 50 N·mm/rad

downward equilibrium q = 0), while the stiffness profile
complies with the safety rule “stiff when slow, soft when
fast” (σinit sets the desired stiffness at t = 0). These refer-
ence behaviors are reminiscent of the safe brachistochrone
proposed in [2], but with conveniently added smoothness.

Figures 5–8 show the results obtained when the initial
state of the system is matched with the reference trajectories
and their derivatives. Since the state error is initially zero,
this condition is kept throughout the motion/stiffness task,
independently from the chosen control gains. Moreover, the
imposed initial value for stiffness σ implies θ1(0) 6= θ2(0).
Since the control torques remain always bounded, this con-
dition is kept during the whole motion (thus, the decoupling
matrix is never singular).

As a second example, the system is started with an initial
position error of 10◦ and a stiffness error of 50 N·mm/rad
with respect to the desired trajectories (18). The control gains
in the linear stabilizer (13) were chosen so as to yield two
pairs of real poles in −1 and −10 for the position loop,
and a double real pole in −10 for the stiffness loop. After a
short transient, both position and stiffness recover the desired
trajectory (Figs. 9 and 10) without a significant additional
control effort (not shown).

B. Collision and reaction

Next, the presence of a fixed compliant obstacle is con-
sidered, located approximately midway along the motion
trajectory. Collision occurs around tK = 2.6 s. The results
obtained with a detection gain kI = 103, a reaction gain
kR = 2 · 105, and the other gains in eq. (17) chosen so
as to have three real poles placed in {−110,−87,−23}, are
shown in Figs. 11–14. After the impact, the reaction strategy
moves the link back by about 8◦ (this displacement would
be larger for smaller gains), while the desired stiffness is
controlled so as to drop down to 2000 N·mm/rad (Fig. 12).
The residual in Fig. 13, computed from eq. (15), closely
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Fig. 11. Evolution of position q in case of collision and reaction
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Fig. 12. Evolution of stiffness σ in case of collision and reaction

follows the (unmeasured) joint torque resulting from link
collision. The control switching is response to the detected
collision is evident on the applied torques, which are driven
in fact during the reaction phase by the value of r through
eq. (17). Note that the steady-state torques in Fig. 14 are
those needed to hold the link under gravity in the final rest
position: these gravity torques are automatically provided by
the feedback linearizing law.

C. Perturbed conditions

We have considered the effects of several model per-
turbations. The controller performance is quite robust with
respect to uncertainties up to 30% of the nominal link and
motor inertias M and B alone, with very small tracking
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Fig. 13. Evolution of the collision torque τK (left) and of the residual r
(right): the robot reaction reduces to zero both quantities
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Fig. 14. Control torques τ1 and τ2 in case of collision and reaction
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Fig. 15. Perturbed conditions: Position q in case of collision and no reaction
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Fig. 16. Perturbed conditions: Stiffness σ in case of collision and no
reaction

errors. The sensitivity with respect to changes of the spring
stiffness k is instead higher, but stability was always pre-
served for reasonable variations. Figures 15–17 illustrate a
free motion/collision situation with model inertias increased
by 30%, and an opposite perturbation of + and −5% of
the spring stiffness on the two motor sides of the VSA-
II. No collision reaction was activated to better show the
effects. During free motion, model uncertainties induce a
link position error. This could be reduced by modifying in a
robust way the design of the linear controller (13), e.g., by
introducing an integral action on the position error channel.
After collision, the link bounces slightly against the obstacle
and then stops by remaining in contact (compare Fig. 15
with Fig. 11). On the other hand, after an initial transient
due to the parameter mismatch, the desired stiffness profile
is tracked with sufficient accuracy even after the collision
occurrence, as a result of the (now approximate) decoupling
with the motion channel (Fig. 16). The evolution of the
residual, which is now conveniently low-pass filtered, shows
that collision can still be clearly detected, although a higher
detection threshold should be used in this case to avoid false
alarms due to the model uncertainties (Fig. 17). The final
value of r at t = 5 s is equal to the external contact torque
τK at steady state.

VI. EXTENSION TO THE MULTI-DOF CASE

The theoretical developments presented for a 1-dof arm
actuated by the VSA-II can be easily extended to the case
of N-dof manipulators having each rotational joint equipped
with a VSA-II device. In this section, a couple of represen-
tative results are sketched.

Under the same assumption used in [15] for modeling
robots with elastic joints of constant stiffness, i.e., that the
rotational kinetic energy of the rotors of the two motors at
each joint is due only to their own spinning, the dynamic
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Fig. 17. Perturbed conditions: Residual r, low-pass filtered with cut-off at
50 Hz

model (6) can be generalized to the form

B θ̈1 +D θ̇1 + 2 τ J1 = τ 1

B θ̈2 +D θ̇2 + 2 τ J2 = τ 2

M(q)q̈ +C(q, q̇)q̇ + g(q) = 2(τ J1 + τ J1) + τK ,

(19)

where q ∈ RN , M is link inertia matrix, C is the fac-
torization matrix of the Coriolis and centrifugal terms, g is
the gravity vector term, and τK are the joint torques due to
collision. Using the same notation of Sect. II, the quantities
associated to the variable stiffness joints are B = diag{Bj},
D = diag{Dj}, and the four N -dimensional vectors

θi =
(
θi,1 θi,2 . . . θi,N

)T
, i = 1, 2,

τ Ji =
(
τJi,1 τJi,2 . . . τJi,N

)T
, i = 1, 2,

with τJ1,j and τJ2,j for joint j defined as in (4).
The dynamic model (19) can be globally feedback lin-

earized provided that all VSA-II actuators are pre-loaded as
in Sect. III, with linearizing coordinates given by q, q̇, q̈,
and q[3], together with σ =

(
σ1 . . . σN

)T
(with σi

in the form (5)) and σ̇. Moreover, collision detection can
be achieved using the sum of the generalized momentum
vectors pertaining to the motors and to the robot links,

psum = B(θ̇1 + θ̇2) +M(q)q̇, (20)

and defining the residual vector r as

r = KI

(
psum −

∫ t
0

(
r +CT (q, q̇)q̇ − g(q)

+ τ 1 + τ 2 −D(θ̇1 + θ̇2)
)
ds
)
,

(21)

with KI > 0. Using the dynamic properties of the La-
grangian dynamics [22], it can be shown that

ṙ = KI (τK − r) . (22)

As in the scalar case, the residual (21) does not require
any knowledge about the flexibility (stiffness and deflection
torques) of the joints.

VII. CONCLUSIONS

With reference to the variable stiffness actuation device
VSA-II, a complete control strategy has been presented
addressing the relevant issues of safety and performance in
pHRI.

Using a feedback linearization approach, the actuation
capabilities of the device can be fully exploited, under a



mild condition on stiffness pre-loading, which is sufficient to
avoid control singularities. The nonlinear controller is able
to track precisely and in a stable way fast trajectories, while
imposing independently and with similar accuracy a desired
stiffness profile on the fly (performance issue).

A momentum-based observer has been designed so as
to promptly detect unexpected collisions without extra
joint/transmission torque sensors and independently from the
current stiffness value of the device. Based on the residual
signal, and taking advantage of the decoupling control in
operation, a collision reaction law has been proposed that
drives the arm away from the contact area and safely stops
it, while dropping suddenly the stiffness to the lowest feasible
level. This is useful for minimizing the effects of interaction
forces in the early post-impact phase (safety issue).

The combined control strategy proposed in the 1-dof case
can be easily extended to articulated manipulators equipped
with VSA-II, or other similar variable stiffness actuators of
the antagonistic type. In the multi-dof case, the directional
information on collision torques embedded in the residual
vector is even more relevant for a safe reaction strategy.

We have started the experimentation on the VSA-II pro-
totype to verify also the practical robustness of the approach
under real conditions. Future work will address the same
control problem for non-antagonistic types of variable stiff-
ness joints, in particular those developed within the European
research project PHRIENDS, and will consider alternative
collision reaction schemes defined directly at the control
torque level.
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