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Abstract— In this paper we present a robust adaptive con-
troller based on a neural network (NN) for a variable stiffness
actuator (VSA). The controller is able to independently set the
mechanical stiffness and position at the joint shaft to guarantee
robustness with respect to slowly time-varying and unmodeled
friction coefficients affecting the dynamics of the actuator.
The lumped uncertainties of the VSA including unmodeled
dynamics are considered and approximated by a simple NN
so that the controlled system is asymptotically stable, and
remains effective while process conditions vary. To cope with the
reconstruction error of the NN, a sliding mode like additional
robust control term is introduced. The proofs for the uniformly
ultimately bounded (UUB) and uniform asymptotic (UAS)
stabilities for the closed-loop system are provided in detail
via Lyapunov theory. Simulation and experimental results are
reported in support of both validity and performance of the
proposed approach.

Index Terms— Variable Stiffness Actuator, Robust Adaptive
Control, Neural Networks, Independent Control of Position and
Stiffness.

I. INTRODUCTION

ROBOTS operating in close vicinity to humans present

the primary requirement of safety with respect to

unwanted collisions with the humans, while the second

requirement is their accuracy and rapidity in performing

tasks. The classical approach to limit the inherent danger

to humans of conventional robot arms is to increase the

amount of sensors [15], [16] and to adopt suitable active

control strategies (e.g., force/impedance control). However,

in practical cases, making rigid arms which behave fast and

safely is almost impossible.

Another approach to guarantee limited injury levels for

robot arms interacting with humans is to intentionally intro-

duce mechanical compliance in the design [1], [3], [4], [12].

With this measure, researchers tend to dynamically decouple

the actuator’s rotor inertia from the links whenever an impact

occurs. Naturally, compliant transmissions negatively affect

performance in terms of increased oscillations and settling

time. Accuracy in positioning and stiffness tuning should

then be recovered by suitable control policies. Among these,

in [1], [3] is investigated the optimal design of mechanisms

and controllers for joint actuators of safe and performant

robotic manipulators. The Variable Impedance Approach

(VIA) is then presented as an innovative solution based

on mechanical actuator-transmission systems, that can vary

their impedance parameters continuously and in real-time

during motion. In particular, it is introduced the idea of

using a transmission system with varying stiffness, whose

amount is optimally controlled to increase the performance

of the mechanism while satisfying safety constraints. It

should be pointed out that, while several mechanisms have

been proposed in the robotics literature that can change

transmission stiffness to adapt to different tasks (see e.g. [18],

[19]), the originality of this approach relies in dynamically

controlling transmission stiffness within a single task. In

particular, high stiffness is set during low velocity tasks so as

to preserve accuracy in positioning, while low stiffness is set

for high-velocity tasks, guaranteeing low physical injury in

case of impact with a human. A prototype for a 1 d.o.f.

variable stiffness mechanism (Variable Stiffness Actuator,

VSA) is presented in [2], [3]. The VSA is constituted by

two electric motors which are connected to the joint shaft

via a mechanical transmission whose stiffness can vary in

real-time, and independently, to the position of the joint

shaft. The amount of stiffness depends on the relative angular

displacement of the two motors. It must be noticed that the

dynamic behaviour of the VSA is affected by slowly time-

varying friction coefficients at the shafts. These parameters

are hard to be modeled, so the need for a control law

that adapts itself under such conditions to give reliable

performance.

Recently, NNs are widely used as universal approximators

in the area of nonlinear mapping and control problems [5],

[6], [8], [9], [13], [14], [10], [11], and among them, Radial-

Basis Function Networks (RBFNs) can be noticed due to

their increased performance despite of the simple structure,

constituted of input, output and hidden layers of normalized

Gaussian activation functions [5], [9]. Because RBFNs are

universal approximators like fuzzy and neural systems [4],

RBFNs have been introduced as a viable solution to the mul-

tivariate interpolation problem. However, there will be non

negligible reconstruction errors if the structure of the RBFN

(the number of activation functions in the hidden layer) is

not ”infinitely rich”. These errors inevitably deteriorate the

dynamic behaviour and stability of the closed loop system.

To minimize the energy of the reconstruction error, sliding-

mode-like compensating input terms are widely used, that

depend mainly on the bounds of the system uncertainties.

In general, these bounds are hard to be correctly estimated,

so the control scheme usually adopts overestimated bounds

obtained via off-line learning phases.

This paper proposes a robust control approach, aiming

at improving performance in controlling position and stiff-

ness at the joint shaft of the VSA. Uncertainties including
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unmodeled dynamics which affect the dynamic behaviour

of the VSA are estimated using a RBFN, and additional

robust control terms are introduced to compensate for the

reconstruction error of the network. Both control input and

adaptive laws for the weights of the RBFN are established

so that the closed-loop system is stable. Detailed proofs

for the uniformly ultimately bounded (UUB) and uniform

asymptotic (UAS) stabilities for the closed loop system are

reported. Finally, simulation and experimental results will

highlight the effective performance of the proposed adaptive

control approaches compared to a classic PID control.

II. THE VARIABLE STIFFNESS ACTUATOR

In this section we present the design of a compact Vari-

able Stiffness Actuator (VSA), that has been conceived to

actuate the joints of robot arms which operate in anthropic

environments.

The appearance of the VSA is reported in fig. 1. The

actuator consists of two independently controlled brushless

DC motors, which are connected to the joint shaft by a timing

belt. The belt is tensioned by means of three idle pulleys,

connected to the casing by passive elastic elements.

Fig. 1. Appearance of the Variable Stiffness Actuator.

A. Overview of the variable stiffness transmission

The core of the VSA is its torque transmission system (see

fig. 2). A timing belt connects the actuators’ pulleys to the

joint shaft.

Taking into account the mechanism of spring action re-

ported in fig. 3, the contribute at the overall torque acting

on the joint qb generated by the linear spring Ks can be

obtained as it follows

φb,a = Fb,a cosαR = 2KsR
h̄b,a − hb,a

hb,a

Lb,a,

where Lb,a = L̂b,a + R(qb − qa) is the actual length of

the belt between the two pulleys (L̂b,a ≥ D is the length

of the belt in an equilibrium configuration, and R is the

radius of the pulleys), while hb,a =

√
L2

b,a
−D2

2
is the active

length of the spring (h̄b,a ≥ hb,a represents the spring length

at rest). Values for these parameters of the VSA are D =
0.06 m, L̂b,a = 0.08 m, Ks = 1500 N/m, R = 0.015 m,

h̄b,a = 0.03 m, and the subscript b, a represents values of

the possible pairs (1, 2), (2,m), and (m, 1).

Fig. 2. Design scheme of the variable stiffness transmission. Angular
displacements δq1 = δq2 for the motor shafts generate only displacements
δqm to the join shaft. Instead, opposite displacements δq1 = −δq2 generate
only a variation δσ for transmission stiffness. Spring of elastic constant Km

is only responsible of the correct tensioning of the belt.

Fig. 3. Particular of the proposed torque transmission system. In this case,
stiffness σb,a of the belt that connects the two pulleys b, a varies during
motions with the active length hb,a of the spring Ks, in a manner that
high/low compressions of the spring generate high/low stiffness.

For simplicity, in these calculations we supposed it holds

r ≈ 0 for the radius of the idle pulley, and that h̄b,a ≈
ls, with ls is the free length of the spring. This stated, the

resultant torque τ acting on the joint shaft of the VSA is

τ = φm,1 − φ2,m =

2KR
(

h̄m,1−hm,1

hm,1
Lm,1 − h̄2,m−h2,m

h2,m
L2,m

)

,
(1)

and for the joint shaft stiffness we obtain

σ = − ∂τ
∂qm

= 2KR
(

h̄m,1−hm,1

hm,1
+

h̄2,m−h2,m

h2,m

)

−
2KR

(

h̄m,1Lm,1

4h3

m,1

+
h̄2,mL2,m

4h3

2,m

)

.
(2)

It is useful to notice that σ is a monotonically increasing

function of the relative displacement of the angular positions

of the motors. In particular, it can be shown theoretically that

σ → +∞ for angular values q1 = −q2 → π
2

, guaranteeing

the VSA could perform rigid tasks.

As it will be shown in the following sections, one of the

important characteristics of the VSA is that joint stiffness

and position can be varied simultaneously and independently

adopting suitable nonlinear control policies (see e.g., [3]).

B. Dynamic behaviour of the VSA

The 1 d.o.f. experimental setup we realized is constituted

of a rigid link actuated by the VSA. The dynamic behaviour

of the system can be formulated, in terms of the mean and
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differential displacements qs = q1+q2

2
, and qd = q1−q2

2
of

the DC motor angular positions q1 and q2, as






IRq̈s + β1q̇s = Φs + τs
IRq̈d + β2q̇d = Φd + τd
Jq̈m + βmq̇m +mgL sin qm = φm,1 − φ2,m − τm

(3)

where IR = 0.0424 Kgm2 and J = 0.0625 Kgm2 are the

DC motors and link rotary inertias, respectively, β1, β2,

and βm are (mostly unknowns) friction coefficients, mg =
9.8 Kgm/s2 and L = 0.25 m are the weight and the length of

the link, qm is the link angular position; Φs =
φ2,m−φm,1

2
,

and Φd = (φ1,2− φ2,m+φm,1

2
), where φ1,2, φ2,m, φm,1 are the

torques generated on the pulleys by the three springs (see

section II-A); τs = τ1+τ2

2
, and τd = τ1−τ2

2
, where τ1, τ2

are control torques acting on the two motors; τm collects

external disturbances acting on the link.

III. NN–BASED ROBUST CONTROL APPROACH FOR THE

VSA

The aim of this section is to discuss the robust approach

we conceived to control the VSA in case of model uncer-

tainties. The control task will be pursued is to control the

transmission stiffness σ and the joint shaft position qm by

independently controlling displacements qs and qd in (3).

The effectiveness of this procedure is highlighted by the

fact that, in a steady-state configuration, and in presence of

negligible gravitational loads, for the link displacement qm
and transmission stiffness hold respectively qm ≈ qs, and

σ ≈ σ(qd).
The dynamic behaviour of these variables is affected by

friction parameters which are slowly time-varying during

operations, and modelled as βi = β̄i + β′
i(t), where β̄i is

the mean–value for the friction coefficient obtained through

experiments, and β′
i(t) is the behaviour unknown. Moreover,

for the purpose of emphasizing compactness of the mecha-

nism, the joint position qm of the VSA is not equipped with

sensors. That implies unknown highly-nonlinear torques Φs

and Φd will affect the dynamic behaviour of positions qs and

qd during control transients.

Taking into account (3), the dynamic behaviour of qs
and qd can be expressed in the following state–space form

including unmodeled dynamics














Ẋ =







ẋ1

ẋ2

ẋ3

ẋ4






=









x2

−I−1

R β̄1x2 + I−1

R τs + ∆s

x4

−I−1

R β̄2x4 + I−1

R τd + ∆d









(4)

where ∆s = I−1

R (−β′
1x2+Φs) and ∆d = I−1

R (−β′
2x4+Φd)

are unmodeled dynamics, and X = (x1, x2, x3, x4)
T

=
(qs, q̇s, qd, q̇d)

T
.

If terms ∆d and ∆s in (4) are perfectly known, the

computed torque controls

τs = IR(ẋd
2 + I−1

R β̄1x2 − ∆s + kT
s ǫs)

τd = IR(ẋd
4 + I−1

R β̄2x4 − ∆d + kT
d ǫd)

(5)

in which ẋd
2 and ẋd

4 are reference accelerations for the two

motors, guarantee asymptotic convergence to zero for the

traking errors ǫs = [qd
s −qs, q̇d

s − q̇s]T and ǫd = [qd
d−qd, q̇d

d−
q̇d]

T , if controller gains ks > 0 and kd > 0 are chosen.

Our approach relies in using a computed torque control

scheme also in presence of uncertainties, by replacing pa-

rameters ∆s and ∆d in (5) with suitable estimates ∆̂s and

∆̂d. That gives

τs = IR(ẋd
2 + I−1

R β̄1x2 − ∆̂s + kT
s ǫs),

τd = IR(ẋd
4 + I−1

R β̄2x4 − ∆̂d + kT
d ǫd).

(6)

The estimates are computed on-line through a Radial

Basis Function Network (RBFN, see Appendix I) whose

weights are updated via adaptive laws, and whose inputs

are motors’ positions and velocities. In the ideal case in

which the behaviour for the weights is such that the RBFN

perfectly identifies the uncertainties, which means ∆̂s = ∆s

and ∆̂d = ∆d, the controlled system is stable. However,

since there will be non–negligible reconstruction errors ζ(t)
between real and approximated values, an additional control

component is required to guarantee effective compensation.

Before deriving the feedback control law which includes

on–line updates for the weights, and terms for compensation

of the reconstruction error, the following definition is useful.

Definition 1 Values for weights Ws and Wd that minimize

reconstruction errors are defined as

W∗
s = argmin

Ws∈ΩWs

[

sup
ǫs∈Uc

‖∆̂s(ǫs,Ws) − ∆s‖
]

,

ΩWs
=

{

Ws : ‖Ws‖ ≤MWs
,MWs

∈ IR+
}

,

W∗
d = argmin

Wd∈ΩWd

[

sup
ǫd∈Uc

‖∆̂d(ǫd,Wd) − ∆d‖
]

,

ΩWd
=

{

Wd : ‖Ws‖ ≤MWd
,MWd

∈ IR+
}

,

(7)

where UC ∈ IR2 is the controllability region, ΩWs
and

ΩWd
are bounding sets for the weight vectors Ws and Wd

respectively.

If we apply control inputs (6) to (4), and using (7), we

obtain the following dynamic behaviour for ǫs and ǫd














ǫ̇s =

[

0 1
−ksp −ksd

]

ǫs +

[

0
1

]

ψs = Asǫs + Bψs,

ǫ̇d =

[

0 1
−kdp −kdd

]

ǫd +

[

0
1

]

ψd = Adǫd + Bψd,

(8)

where ψs = (Ws − W∗
s)

T
Zs + ζs − I−1

R τs, and ψd =

(Wd − W∗
d)

T
Zd + ζd − I−1

R τd, with ζs = ∆∗
s − ∆s, and

ζd = ∆∗
d −∆d. Vectors Zs and Zd collect the outputs of the

nodes of the NNs’ hidden layers (see Appendix I).

In the following we assume that the reconstruction errors

ζs and ζd are bounded, i.e. hold

|ζs| ≤ ζ̄s,
|ζd| ≤ ζ̄d,

(9)

where ζ̄s > 0 and ζ̄d > 0 are constants. Moreover, because

As and Ad in (8) are Hurwitz matrices, there exist positive

definite symmetric matrices Ps and Pd that satisfy the

following Lyapunov equations

AT
s Ps + PsAs = −Qs,

AT
d Pd + PdAd = −Qd,
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Fig. 4. Conceptual scheme of the proposed control system.

where Qs and Qd are positive definite matrices.
Theorem 1 The Uniformly Asymptotic Stability (UAS) is

guaranteed for all signals in the closed loop system reported

in fig. 4, constituted of the VSA’s dynamic behaviour (4)

controlled by the adaptive computed torque τsN and com-

pensating controls τsR as follows






























































τs = τsN + τsR,
τd = τdN + τdR,

τsN = IR(ẋd
2 + I−1

R β̄1x2 − ∆̂s + kT
s ǫs),

τdN = IR(ẋd
4 + I−1

R β̄2x4 − ∆̂d + kT
d ǫd),

τsR = IRξssgn
(

ǫTs PsB
)

,
τdR = IRξdsgn

(

ǫTd PdB
)

,

Ẇs = −γwsǫ
T
s PsBZs,

Ẇd = −γwdǫ
T
d PdBZd,

ξ̇s = γξs

∣

∣ǫTs PsB
∣

∣ ,

ξ̇d = γξd

∣

∣ǫTd PdB
∣

∣ ,

(10)

where γξd > 0, γξs > 0, γws > 0, and γwd > 0 are

suitable constants.

Proof Here we will prove the UAS for the error ǫs, while

the UAS of the error ǫd can be shown adopting the same

procedure.
We define the Lyapunov function

Vs(t) =
1

2
ǫTs Psǫs +

1

2γws

W̃T
s W̃s +

1

2γξs

ξ̃s
2
, (11)

where W̃s = Ws−W∗
s , and ξ̃s = ξs−ξ∗s , and, in particular,

ξ∗s = ζ̄s. By using the following equality

1

2

(

ǫ̇Ts Psǫs + ǫTs Psǫ̇s
)

= −1

2
ǫTs Qsǫs + ǫTs PsBψs, (12)

and adopting (9), the derivative of (11) can be computed

as follows

V̇s(t) = − 1

2
ǫTs Qsǫs + ǫTs PsB

(

W̃sZs + ζs − I−1

R τsR

)

+ 1

γws
W̃T

s Ẇs + 1

γξs
ξ̃sξ̇s

= − 1

2
ǫTs Qsǫs + 1

γws
W̃T

s

(

Ẇs + γwsǫ
T
s PsBZs

)

+ǫTs PsB
(

ζs − I−1

R τsR

)

+ 1

γξs
ξ̃sξ̇s

≤ − 1

2
ǫTs Qsǫs +

∣

∣ǫTs PsB
∣

∣ ζ̄s − ǫTs PsBI
−1

R τsR

+ 1

γξs
ξ̃sξ̇s

= − 1

2
ǫTs Qsǫs +

∣

∣ǫTs PsB
∣

∣

(

ζ̄s − ξs
)

+ 1

γξs
ξ̃sξ̇s

= − 1

2
ǫTs Qsǫs + 1

γξs
ξ̃s

(

ξ̇s − γξs

∣

∣ǫTs PsB
∣

∣

)

= − 1

2
ǫTs Qsǫs ≤ 0,

(13)

that proves the function Vs(t) decreases with time to a con-

stant value Vs(∞) = V̄s 6= 0. The asymptotic convergence to

zero of ǫs(t) will be proved adopting the Barbalat’s lemma

in [7].

After integration of (13) we obtain
∫ ∞

0

ǫTs Qsǫsdt ≤ 2
(

Vs(0) − V̄s

)

6= 0,

which implies

lim
t→∞

ǫs(t) = 0.

The latter proves the UAS of the signal ǫs(t). �

The above theorem guarantees the UAS for the VSA

controlled with (10). In practical cases however, the error

ǫs(t) reaches high values in the adaptive transient of the

task. That could imply high-frequency chattering of controls

τsR(t), due to the behaviour of variables ξs(t) in (10),

that commercial actuators cannot physically support. For

that reason, in the following theorem the “σ modification

method” [5] will be used to prevent high–frequencies con-

trol inputs, while guaranteeing only Uniformly Ultimately

Bounded (UUB) stability instead of UAS for the controlled

system.

Definition 2 Consider the nonlinear system
{

ẋ(t) = f (x(t), u(t)) ,
y(t) = h (x(t)) .

(14)

We say that x(t) is uniformly ultimately bounded (UUB) if

there exists a compact set S ⊂ IRn such that for all x(t0) =
x0 ∈ S, there exists χ > 0 and a positive number Ξ(ǫ, x0)
such that x(t) < ǫ, ∀t ≥ t0 + Ξ.

Theorem 2 The UUB stability is guaranteed for all signals

in the closed loop system reported in fig. 4, constituted of

the VSA’s dynamic behaviour (4) controlled by the adaptive

computed torque τsN and compensating controls τsR as

follows































































τs = τsN + τsR,
τd = τdN + τdR,

τsN = IR(ẋd
2 + I−1

R β̄1x2 − ∆̂s + kT
s ǫs),

τdN = IR(ẋd
4 + I−1

R β̄2x4 − ∆̂d + kT
d ǫd),

τsR = IRξssgn
(

ǫTs PsB
)

,
τdR = IRξdsgn

(

ǫTd PdB
)

,

Ẇs = −γws

(

ǫTs PsBZs + σwsWs

)

,

Ẇd = −γwd

(

ǫTd PdBZd + σwdWd

)

,

ξ̇s = γξs

(∣

∣ǫTs PsB
∣

∣ − σξsξs
)

,

ξ̇d = γξd

(∣

∣ǫTd PdB
∣

∣ − σξdξd
)

,

(15)

where γξd > 0, γξs > 0, γws > 0, γwd > 0, σws > 0,

σwd > 0, σξs > 0, and σξd > 0 are suitable constants.

Proof Here we will prove the UUB of the error ǫs, while

the UUB of the error ǫd can be proved following the same

procedure.

We define the Lyapunov function

Vs(t) =
1

2
ǫsPsǫs +

1

2γws

W̃T
s W̃s +

1

2γξs

ξ̃s
2
, (16)
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where W̃s = Ws−W∗
s , and ξ̃s = ξs−ξ∗s , and, in particular,

ξ∗s = ζ̄s. By using (12), and the inequalities

σwsW̃
T
s Ws = σws

2

∣

∣

∣W̃s

∣

∣

∣

2

+ σws

2
|Ws|2 − σws

2
|W∗

s |2 ≥
σws

2

∣

∣

∣W̃s

∣

∣

∣

2

− σws

2
|W∗

s |2 ,

σξsξ̃sξs =
σξs

2

∣

∣

∣ξ̃s

∣

∣

∣

2

+
σξs

2
|ξs|2 − σξs

2
|ξ∗s |2

≥ σξs

2

∣

∣

∣ξ̃s

∣

∣

∣

2

− σξs

2
|ξ∗s |2 ,

(17)

the derivative of the Lyapunov function can be computed as

follows

V̇s(t) = − 1

2
ǫTs Qsǫs + ǫTs PsB

(

W̃sZs + ζs − I−1

R τsR

)

+ 1

γws
W̃T

s Ẇs + 1

γξs
ξ̃sξ̇s

= − 1

2
ǫTs Qsǫs + ǫTs PsB

(

W̃T
s Zs + ζs − I−1

R τsR

)

+ 1

γws
W̃T

s

(

−γwsǫ
T
s PsBZs − γwsσwsWs

)

+ 1

γξs
ξ̃s

(

γξs

∣

∣ǫTs PsB
∣

∣ − γξsσξsξs
)

≤ − 1

2
ǫTs Qsǫs +

∣

∣ǫTs PsB
∣

∣ ζ̄s − ǫTs PsBI
−1

R τsR

+
∣

∣ǫTs PsB
∣

∣ ξs −
∣

∣ǫTs PsB
∣

∣ ξ∗s
−σwsW̃

T
s Ws − σξsξ̃sξs

= − 1

2
ǫTs Qsǫs − σwsW̃

T
s Ws − σξsξ̃sξs

≤ − 1

2
ǫTs Qsǫs − σws

2

(

∣

∣

∣W̃s

∣

∣

∣

2

− |W∗
s |

2

)

−σξs

2

(

∣

∣

∣
ξ̃s

∣

∣

∣

2

− |ξ∗s |2
)

= − 1

2
ǫTs Qsǫs − σws

2

∣

∣

∣W̃s

∣

∣

∣

2

− σξs

2

∣

∣

∣ξ̃s

∣

∣

∣

2

+ λs,

(18)

where λs = 1

2

(

σws |W∗
s |2 + σξs |ξ∗s |2

)

.

From (18), it can be shown that signals present the

following bounds

|ǫs| ≤
√

λs

|Qs|
,

∣

∣

∣W̃s

∣

∣

∣ ≤
√

2λs

σws
,

∣

∣

∣ξ̃s

∣

∣

∣ ≤
√

2λs

σξs
,

(19)

for the induced norm |Qs| = max
x∈IR2

‖Qsx‖
‖x‖ . That

proves the UUB stability for all signals in the control system.

�

IV. SIMULATION RESULTS

This section reports some simulation results that show

the effectiveness of the controls proposed in Theorem 1

and Theorem 2 to guarantee enhanced trajectory-tracking

performance for the joint displacement qs ≈ qm of the VSA

compared to a classic PID control performance. Sinusoidal

references are chosen for joint positions as

qd
s (t) = π sin (ωt),

whose frequency ω changes from π rad/s to 2π rad/s at

a particular instant during task execution. That is done to

test the controls robustness versus sudden discontinuities of

reference’s velocity.

Joint stiffness σ(qd) is held constant throughout the entire

execution of the task, and equal to the value obtained at

Fig. 5. (Left): reference trajectory qd
s , resulting qs trajectory with PID

control, and related displacement error ǫs. (Right): PID control τs.

Fig. 6. (Left): reference trajectory qd
s , resulting qs trajectory with UUB

control, and related displacement error ǫs. (Right): UUB control τs, and
related RBFN effort τsN during task execution.

the equilibrium configuration corresponding to qd = 0, and

τd = 0. We will discuss results concerning the independent

control for time–varying position and stiffness of the VSA

in Section V regarding experimental tests.

Simulations are performed applying controls to the VSA’s

model (3) in which dynamic parameters have been finely

tuned through an extensive experimental campaign (see val-

ues reported in section II).

In addition, friction parameters are chosen here to behave

as

• β̄i = 0.5, β′
i(t) = 0.5 (|(sin (t) + sin (0.5t))| − 1), for

i = 1, 2.

Results reported in Fig. 5 and Fig. 6 show the VSA’s

trajectory tracking results obtained with PID control and

UUB control respectively. Parameters of the PID control have

been tuned experimentally via “trial and error” procedure,

and result for both controls τs and τd as P = 15, I = 1,

and D = 10. The UUB control is constituted in particular

of a three-layered RBFN with a hidden layer of 5 neurons.

Neurons present mean values µi = −π,−π/2, 0, π/2, π
respectively, while both parameters ks and kd in (15) are

set to 30.

It can be easily noticed that, although the good trajectory

tracking performance of the PID, signal ǫs increases in that

case with reference’s frequency, while remains well bounded

with UUB control. That is the effect of the RBFN observer

that reacts to compensate both reference variations and model

uncertainties. Clearly, UUB and PID control performance

could still increase through accurate tuning.

Finally, in Fig. 7 it is highlighted that UAS, whose control

parameters are set equal to those adopted for UUB control,

is obtained through higher frequency controls with respect to
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Fig. 7. (Left): reference trajectory qd
s , resulting qs trajectory with UAS

control, and related displacement error ǫs. (Right): UAS control τs, and
related RBFN effort τsN during task execution.

Fig. 8. (Left): reference trajectory qd
s , resulting qs trajectory with PID

control, and related displacement error ǫs. (Right): reference trajectory qd
s ,

resulting qs trajectory with UUB control, and related displacement error ǫs.

those for UUB (see comments on Section III). That implies

the UUB control is more viable for implementation in our

experimental testbed.

V. EXPERIMENTAL RESULTS

This section reports results obtained through trajectory-

tracking experiments for the VSA controlled with both the

PID and the UUB control.

The first results, which show the trajectory-tracking at con-

stant stiffness and sinusoidal position reference, are reported

in Fig. 8-(Left) and Fig. 8-(Right) for PID and UUB control

respectively. It can be noticed that results comply to those

reported in Section IV, denoting worst performance of the

PID with respect to UUB control.

An important characteristic of the VSA is that velocity

and stiffness at the joint shaft can be controlled indepen-

dently during task execution. In particular, in [1], [3] it

is highlighed that optimal performance under safety con-

straints for a variable stiffness mechanism can be guaranteed

allowing the mechanical stiffness to vary accordingly to

the “fast-and-soft&slow-and-stiff” paradigm, i.e. stiffness

reaches higher values for low velocities, while decreases

for faster movements. To this purpose, results concerning

the independent tracking of velocity (i.e., q̇s) and stiffness

(i.e., qd) at the joint shaft of the VSA are reported in

Fig. 9 and Fig. 10 for PID and UUB control respectively.

Even though both controls show good tracking behaviour

for joint shaft velocity, stiffness control with UUB presents

a distinguishable performance against that of PID. In fact,

PID is not able to effectively react to nonlinear disturbances

acting on the dynamics of the DC motors. These disturbances

are extremely time–varying, depending in particular to the

Fig. 9. (Left): reference trajectory q̇d
s , resulting q̇s trajectory with PID

control, and related velocity error ǫ̇s. (Right): reference trajectory qd
d

,
resulting qd trajectory with PID control, and related displacement error ǫd.

Fig. 10. (Left): reference trajectory q̇d
s , resulting q̇s trajectory with UUB

control, and related velocity error ǫ̇s. (Right): reference trajectory qd
d

,
resulting qd trajectory with UUB control, and related displacement error
ǫd.

stiffness characteristic of the transmission that is varied

during the task.
The UUB control can instead adaptively tune the parame-

ters while guaranteeing good performance in such situations.

In Fig. 11 are reported controls τsN , τdN of the NNs, and

the compensating control efforts τsR, τdR varied during the

task.

VI. CONCLUSION

The independent control of velocity and stiffness for a

variable stiffness actuator has been obtained through design

of a RBFN-based robust control. The closed–loop system

has been shown analytically to be stable in presence of

nonlinear and time-varying uncertainties affecting the dy-

namic behaviour of the actuator. In particular, it has been

pointed out that a control that guarantee bounded stability

is preferrable for implementation in an experimental testbed,

even though asymptotically stable control theoretically shows

perfect tracking performance. Finally, simulation and exper-

imental results highlight the effective performance of the

proposed control compared to that of a classic PID control.

APPENDIX I

RADIAL BASIS FUNCTION NETWORKS

The radial-basis function network (RBFN) presents inputs,

outputs, and hidden layers (nodes) of normalized Gaussian

activation functions. A schematic diagram of the RBFN is

shown in Fig. 12.

The output zi of the i-th node is computed as follows

zi(Xrb) =
exp

[

−‖Xrb − mi‖2/2µi

]

∑l
k=1

exp [−‖Xrb − mk‖2/2µk]
,
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Fig. 11. (Left): controls τsN and τsR resulting from the trajectory-tracking
experiment reported in Fig. 10-Left. (Right): controls τdN and τdR resulting
from the trajectory-tracking experiment reported in Fig. 10-Right.

Fig. 12. Schematic diagram of a three–layered Radial Basis Function
Network (RBFN).

where l is the number of hidden nodes, Xrb =
(xrb,1, xrb,2, .., xrb,n) ∈ IRn is the input vector, mi and µi

are respectively the center and width of the i-th activation

function. The j−th output oj of the RBFN is defined as a

weighted sum of the hidden layer outputs, i.e.

oj =

l
∑

k=1

wjkzk = Wj
T · Z

where Wj ∈ IRl collects weights wjk , and Z∈ IRl collects

the outputs of the nodes. The output of the RBFN is o=
(o1, o2, ..., om)T ∈ IRm.

Parameters of the RBFN such as weights, center vectors,

and widths of the activation functions, can be updated on–

line adopting suitable adaptive laws, aiming at guaranteeing

asymptotic convergence to zero of the reconstruction error

ζ(t) = y(t) − o(t), where y(t) collects output references

[6].
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