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Abstract

The problem of driving ¢ Dubin's car along a given
path is considered. In order 1o model a realistic road—
following problem, the car is supposed to move forward
only and 1o have bounds on the turning radius (Dubin's
car). 1i’e propose a discontinuous control scheme on
ihe angular velocity of the vehicle, based on the theory
of sliding modes. that achieves the goal of tracking an
unknown path relying on measurements of the current
distance from the path and of the heading angle error.

1  Introduction

The literature on planaing and control techniques for
nonholonomic vehicles has grown extensive in the re-
cent few vears. The planning problem for nonholomic
vehicles requires an approach based on a mix of tech-
niques from conventional, holonomic planning and
nonlinear systems theory. Besides the kinematic con-
straints imposed by nonholonomy, most often the ad-
ditional ronstraint that the radius of curvature of the
paths of the vehicle are lower bounded must be con-
sidered. It has been shown that the kinematic model
of a car that can drive both forwards and backwards
with bounded curvature (allowing cusps in the path}.
is locally controliable. A car that can only move for-
wards with curvature bounds (the “Dubin’s car”) 1s
«till controllable. although not locally. For this latter
type of vehicle, Dubin [5] studied the shortest paths
joining two arbitrary configurations (these are com-
pound of line segments and arcs of circles of minimum
radius). Reeds and Shepp (8] extended Dubin's re-
sults to a car that can reverse its motion. The control
problem is particularly challenging for nonholonomic
systems, due to a theorem of Brockett [3] that bars the
possibility of stabilizing a nonholonomic vehicle about
a nonsingular configuration by any continuous time—
invariant static feedback. Non-smooth (see e.g. Sor-
dalen and Egeland. [14], Aicardi €t al., [1]. Astolfi, [2],
Couldner and Utkin, [6]), time—-varying (viz. Samsoi.
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[10], McCloskey and Murray, [7], Sampei et al., [9]).
and dynamic extension algorithms (see e.g. DeLuca
and DiBenedetto, [4]), have been proposed to face the
point-stabilization problem. For nonholonomic sys-
tems, the problem of tracking a trajectory or a path is
simpler in principle than stabilizing to a point. Here,
by “path” we refer to a curve (with some regularity re-
quirements) in the plane were the robot moves; while a
“trajectory” is a path with an associated time law. Fer
an example of trajectory tracking controllers, see e.4.
Walsh ef al., [17]; and Sordalen and Canudas de Wit.
[13], Sarkar et ol {11] for path tracking controllers.
In most part of the nonholonomic vehicle control liter-
ature, however, curvature bounds on the trajectories
resulting from application of the control laws have not
been considered. The work of Souéres and Laumond
[15], who mapped the whole configuration space of a
Reeds and Shepp car in the optimal trajectories to a
given goal configuration. can be used to build a sta-
bilizing feedback law with bounded-curvature paths.
In this paper we consider the design of a conirol law
for path tracking by a Dubin's car. The restriction
that the vehicle only moves forward is motivated by
the fact that, in practical road-following probhlems.
veliicles maintain a positive velocity. We therefore as-
sume that the forward velocity is given, and are only
concerned with lateral stabilization to the path. The
path shape is free (under some mild regularity restric-
tions), and it is not assumed that it is known a priori
to the controller. We assume also that the only in-
formation available to the controller is the vehicle's
lateral distance from the path, its heading angle er-
ror, and the sign of the curvature of the reference
path. As a result, we propose a variable-structure
control law for vehicle orientation, that stahilizes the
velicle on the given path. The controller is designed
according to sliding-mode techniques, and is therefore
discontinuous in time. However, in practice it can he
implemented in a smoothed version. that eliminates
chattering and maintains good performance.
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2 Problem formulation

Let the reference path 7 C IR? be described as the
trace of the parametrized curve

g(s) = [(s), p(s) |7 withs € (0,1),

with the natural orientation induced by increasing s.
The following restrictions are imposed on the path:

A) g(s) has continuous first derivative g'(s) in
(0.1). The second derivative g"(s) has only a finite
number of discontinuity points in (0, 1), and changes
its sign only a finite munber of times in (0, 1).

B) Let » denote the minimum turning radius of the
vehicle, and R(s) the radius of curvature of g(s). Set
R(s) to 4= at the inflexional points of g{s) and at
the discontinuity points of g”. Otherwise, set

1 wy - i a3
R(s) - (37 + g!'z}-?n"ﬂ '

Assume that
|R(s}| > r, s€(0,1). (1)

C) Consider an open neighbourhood of the path of
radius r,

T, = (xeR?:3s € (0.1), [x — gls)ll < v} C R’

where ||-|| denotes the euclidean norm, and assume
that for all x € 75 there exists a unique point on g,
say at 5 € (0,1), such that
lix —gls) > lIx—gBl. Vs #5.

As a consequence of this assumption the path is sim-
ple.

Let z,y,0 denote the position and orientation of a
unicycle with respect to the world frame. The kine-
matic equations of the Dubin's car are written as

& = cos(f)u z(0) zg
y = sin{flu y(0) | =1 % |, ()
f = w g(0) fy

where the linear and angular velocity u,w are sub-
jected to the constraints

1
= cost >0 and lfi] < - (3}
u T

We adhere to the assumption on u to be constant,
although the generalization to the case u(t) > 0is
straightforward. In order to formalize and solve the
control task of steering w so as to converge to the de-
sired path and track it (with given velocity u), it is

i I 1

Figure 1: Reference path and coordinates associated
with the configurations of the vehicle.

expedient to introduce a different set of coordinates
for the state space. The path is embedded in a thres-
dimensional space, and the canonical frame St(s) as-
sociated with g(s) = (£(s),7(5).0)T € R is consid-
ered. Recall that the canonical frame for a curve is
defined by the tangent, the principal normal and the
binormal of the curve at each point. In our case.
the tangent and principal normal of St remain within
the plane where the car moves. while the binormal
points upwards or downwards. depending on the local
curvature, i.e., on sign(R(s)). Let #(s) denote the
orientation of the tangent of the curve with respect to
the z axis of the world frame

f(s) =atan2 (', 1').

Note that by assumption A) on g(s). fis a continuous
function in terms of s. Denote by (Z, §,6)7 the con-
figuration of the vehicle with respect to St (see fig.1).
Notice that the positive sense of 6 is taken according
to the local orientation of the binormal axis. From

elementary geometry we get

Hzys) = (2= #(s))cos(8(s))
Hy — #(s)) sin(8(s)), (4)
Hegs) = sign(Ris)) (v = 9(s)) cos(d(s))
(& - #(s)) sin(d(s))] (5)
Be.s) = sign(R(s))(6 - 0(s))- (6)

Based on assumption C), it is possible to associate
to every point (z,y)T of the neighborhood 74 of the
path, a unique frame St(5) with origin in the point
of the path closest to (z,y)T. In fact, an application
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.7, CIR?
(4) as

— (0.1) € R is implicitly defined through

e, y,5) =0 (7)
By our assumptions on the path, it also follows that
F(r. y) 1s continuous evervwhere, and differentiable al-
most everywhere, on 7,. Consider the change of co-
ordinates

Mo Yy
é

(8)

P

on the domain 75 x IR by means of (7), (3), and (6).
The new coordinates 7 and 6 are the lateral distance
from the path and the heading angle error of the vehi-
cle. i.e.. they represent a natural choice for describing
a road-following task. The change of coordinates is
legitimate as it is injective on its domain. Notice
however that this change of coordinates not only is
not a diffeomorphism (as changes of coordinates are
usually in nonlinear control theory), but it is not even
continuous. In faci, due to the presence of the term
sign{R(s)) in (), (6). a change of curvature along
the path produces a jump of the variables 7.8 to the
symmetric point with respect to the origin in the 7.8
plane (see fig.2). The introduction of discontinuous

gl

Figure 2: Sliding manifold (solid line), level surfaces
of thp I functiou (dotted ]ines) and domain of attrac-

changes of coordinates have been used previously in
the nonholonomic vehicle literature, e.g. by Astolfi [2]
and by Aicardi ef al. [1]. In the latter work, a new
coordinate set (along with an input transformation)
allowed authors to design smooth asymptotic point
stabilizers without viclating Brockett's theorem.

By differentiating (7), (5) and (6), applying the im-
plicit function theorem, the d\namlc equations (2) in
the new state space (whose coordinates will henceforth
be denoted by (s,7,8)T) become:

(. _— cos(E-)
s = s T TR L
cos(#)Z'+sin(8)g' — 53’

§ = sin(f)u+ 25(R(s)) sign(R(s)}7

§ = _I-S(D-f;r) u+ sign(R(s))[w

+26(R(s)) sign(R(s))d]

Whenever the path is not known a priori, the geo-
metric parameters &(s), §'(s). &'(s), appearing in the
first state equation are not available to the controller.
It should also be noted that, even if the path were
known in advance, computations would be extremely
awkward for all but the simplest path shapes. This is
one reason why most path tracking controllers in the
literature assume that reference paths are comprised
of straight lines and circles only.

To overcome this difficulty, we consider a reduced
state space (77,0)7, looking at Ris) as a disturbance.
about which the onlv available information is its sign
and the lower hound given in assumption B). The ori-
gin of the reduced state space corresponds to a motion
of the vehicle along the desired path. with velocity u.

Therefore, our control problem can he formulated
as follows:

Problem. Find a feedback control law
w(y.0, sign(R), u) satisfying the curvature con-
straint (3). such that. for anyv initial configuration
(z0,v0.80)7 of the vehicle in a suitable neighborhood
of the path D, (7,0) converge to zero. irrespective of
the hounded unknown disturbances |R(s)|.

3 Variable Structure Control

As mentioned in the problem formulation. we look
for a controller that makes the path attractive for all
states in a region near the path itself.

Consider an open neighborhood
the reduced state space as

Y .
'D.,::{( g>:|y|<r,
i 1 g 1, ¥
— arccos (5-— 9—?—) < < arccos (E "o ,

. {10)
Notice that A4='( (0, 1) x D) C Ty % (=7/2,%/2).
Ohserve also that D, is symmetric with respect to

D, of the path in
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the origin of the plane (¥, ) (see fig.2). Therelore,
states within 7. remain inside D, after any change

of the sign of R{t). Since, according to assumption
A) in section 2, there are only a finite number of such
jumps. in our discussion we consider the evolution
of states corresponding to open intervals where R(t)
does not change sign, and consider the effects of jumps
separately.

Our proposed controiler is based on the so-called
sliding-mode design technique (see e.g. Utkin [16]).
Let us introduce a sliding manifold in the reduced
staie space as

o(g.6) = 0, (11)

where
o(5.8) = _%_« sign(6)(1 — cos(d)). (12)

Note that the function o(7. 6) is commuousl} differ-
entiable once with respect to 8, with & ‘(y oy = 0.

In the sliding mode control i;teraturen the “equiva-
lent control” is the input signal that causes a motion
in the state space on the sliding surface ¢ = 0. The
equivalent control is found by solving the equation
&(t) = 0 in terms of the unknown control input. By
differentiating (12)

& = —sin(f) (l;r + sign(R(t)) sign(f) w+

. cos(f
— sign(f) 17405??——)_& u> L (13)

the (,tluna.ll.llt COlltIOl Lb.uq 15 deIl\'ed as
)
‘Iz .J,

Note that w., does not satisfy the constraint (
the minimum radius of curvature for g < 0.

The dynamics of motion along the sliding manifold
are derived by replacing (14) in (9), as:

{

Starting from any initial state (70, o) # (0,0) on the
shdmg manifold, |#(t)| monotonically decreases until
zero is reached in finite time ]90| fu. From (12), we
also get § = 0. A sliding regime on o = 0 therefore
implies convergence of the states to the origin of the
reduced state space, hence perfect path tracking.
As already noticed, however, the equivalent control
is not feasible by our Dubin’s car in the region ¢ < 0.

weq = — sign(R(1)) (Sign(é) cos(f ?E
(14
(3)

sin(f) u

— sign(0) bz

It
=

D
|

Therefore, we must design a feasible control w that
guarantees attractivity of the feasible portion of the
sliding surface o = 0, g > 0. To this purpose, consider
the following control law:

w = sign(R{1)) sign(c) :i (16)

The corresponding closed loop equations are written
as

¥y = sm(é) u
g = ( sign{e) —
and, plugging (16) into (13), we get

b o= —sin(é)(1+sign(é)51gn(g) (18)
- ' u
- snlh) ot i ) -

The analvsis may now be carried over, corresponding
ta a four-fold partition of the neighbourhood P-:

Region 1: {(9,5) €D, :6>0, and > O}.
From (12), we get j < 0 and hence

D<W{;<1.

From {17), § > 0 and § > 0. From (12). § < % holds
as long as ¢ > 0, hence in this sector it holds

oo = —0 Sln(é}( —CD*(g]ﬁ—(h); < 0

If a change of sign of R(f) occurs the state jumps
istantaneously to the symmetric point in region 2.

Region 2: {{g,é) €Dy 10 <0, and § <0},

From (17), 8 < 0 and § < 0. Hence § < r and g > -5
holds as long as ¢ < 0. Then we have

o6 = —o sin(f) (2+cc~ I {i)i— )” < 0.

If a change of sign of R{t) occurs the state jumps
istantaneously to the symmetric point in region 1.

Region 3: {(Q,é) €D, :c<0, and § > 0}.
Consider the function

I(3.0) =

and_observe that, within region 3, T(ﬁ.é) >0 =
(7,8) € D,. Along the state trajectories

= 1
s(f) == > 0

[ = sin(f) 2 n(f)c
r sn(} + 2sin(f) co R =3
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Figure 5: Trajectory on the reduced state space y, f.
domain of convergence and sliding manifold ¢ = 0.
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