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Abstract— Mobile robots are increasingly utilised in auto-
mated plants to the purpose of moving wares and material
between the different production lines and logistic areas. In
this context, the presence of human operators in the facility is
frequently allowed to carry out or supervise some phases of
the production. The problem arises of how to make the co-
existence possible with controlled risks for the operator and
without affecting the productivity with frequent interruptions.
In this paper we propose a solution to this problem based on a
probabilistic technique. A system of visual sensor (mounted on
the mobile robots) detects the presence of a human operator
and a discrete abstraction (essentially a discrete-time Markov
chain) is used to predict his/her motion and hence find the
probability of an accidental injury. For the computation of the
latter, we combine the probability of having a collision with a
given speed with the probability of receiving an injury out of
the collision (taken from physiological models suggested by the
automotive literature).

I. INTRODUCTION

Robots represent an increasingly effective solution for in-

dustrial production processes due to their relative availability,

autonomy and flexibility. A problem that still hinders their

penetration into the wide industrial market is the need for

coexistence of robotic systems and human workers in the

same environment. The problem is evident when part of the

production process is delegated to robotic cells consisting

of articulated robot arms. In this case fencing off the robotic

cell, as required by the most of the current regulations, makes

the interaction between robots and human workers awk-

ward and unproductive. The increasing use of autonomous

mobile vehicles for the goods handling in warehouses and

production plants makes the fencing solution inconceivable

(it would be equivalent to preventing the movement of human

operators in the factory altogether). Hence, the compelling

need for active systems that monitor the area (e.g., by visual

sensors) raising alarms only when a real situation of danger

is detected. In the particular case of vehicle and human

interaction, the “perception” of a danger should not simply

related to the probability of a collision but, more precisely,

to the probability of having a human injury as a result of

the collision. In fact a collision at a very low speed of the

vehicle on the factory floor (e.g., in the order of a very few

meters per second) can be tolerated.
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Classical approaches to the problem are based on the

existing literature for the detection and avoidance of moving

obstacles [12], [2], [5]. A first possibility is to avoid any

possible collision by a static and conservative approach. The

plant is divided into zones: as soon as the human enters in

a certain zone, identified by some static sensor (e.g., photo–

cells or surveillance cameras), all the robots in the zone are

stopped till the human leaves it. In its practical effects this

solution is hardly different from the installation of physical

fences limiting the possible movement of humans inside the

plant. In the second solution, more flexible than the first one,

the vision system and/or a proximity sensor is placed on the

robot, which detects the presence of a human and then stops

the robot or re-plans the robot trajectory to avoid the obstacle.

Both the solutions presented provide a high level of safety

but they can also results in useless stops, that reflect in a

high loss of energy/time.

This paper provides an effective way for predicting the

probability of an accident/injury and then, incidentally, tak-

ing an appropriate course of actions (e.g., deciding to stop

or to go ahead). We use a combination of two technologies:

a vision system, which allows us to detect human targets in

front of the robot, and a prediction engine, which produces in

real-time the probability of a collision in a given time hori-

zon. In this paper, we focus on the latter component. In order

to produce the prediction, we start from a dynamic model

describing the motion of a human being, inspired from [13],

[14]. The model is used to produce a Discrete Time Markov

Chain (DTMC) that serves as a discrete approximation of

the system. The use of discrete approximations for dynamic

systems has become quite popular in the last few years [11],

[6], as an effective means to carry out control synthesis

and verification of complex properties for both linear and

nonlinear systems using the tools developed for discrete

systems. The particular technique that we advocate lies in the

track opened by [7], where the authors show how to construct

a DTMC to predict the collision between two aircraft flying

at the same altitude. Given the simplicity of our problem,

we can use an algorithm for the probability computation

developed ad-hoc. The use of more general tools such as

probabilistic model checkers [9], [1] would enable one to

use the same framework for predicting the occurrence of

more complex events (e.g., trapping).

A. Problem Description and solution overview

Consider a mobile robot equipped with a fixed camera,

moving on a plane, e.g., on a factory floor. The robot is

assumed to move along a predefined trajectory. For the sake



Fig. 1. Human and mobile robot trajectories in a fixed frame.

of simplicity, we do not consider deviations from the planned

trajectory (e.g., due to possible controller errors). Due to its

rather extensive use in factory automation, we model the

vehicle kinematic assuming a unicycle–like robot. Since we

are interested in a factory environment, we can assume that

the robot is moving with constant forward velocity without

loss of generality. Curved trajectories are obtained imposing

a constant angular velocity, thus resulting in curves with well

defined, constant, curvature radius.

The factory is populated by human operators whose posi-

tion, velocity and acceleration are estimated in the mobile

robot frame 〈R〉 using visual information. The possible

trajectories of the human in the robot frame are predicted

in a given time horizon by using an abstraction technique.

Namely, the state space is partitioned using a grid and a

DTMC is constructed, in which each state is associated with

a position in the grid. The transition probabilities between

the states of the DTMC are computed using a stochastic

model for the motion of the human operator. Since the

coordinates of the human are measured with respect to 〈R〉
frame (figure 1) it is possible to derive a set of positions

and relative velocities in which collisions will most probably

happen. Such positions and velocities on the plane of motion,

i.e., points in R
4, are referred to as bad states. Notice that

the bad states are defined in the moving frame 〈R〉, hence

they are constant in time. It follows that the probability

of collision is the probability that a human reaches this

set of dangerous states. If such probability is above a

predefined safety threshold, a possible collision is detected

and, therefore, the robot is stopped.

The safety threshold is estimated using recent results in

the automotive literature [3] that relate the probability for

a pedestrian of getting injured in a collision with a car at

a given relative speed. Figure 2-A shows cumulative speed

distribution for any kind of injury, while figure 2-B shows

the data only for non–minor injuries, as reported in [3].

The rest of the paper is organized as follows: in Section II

the model for the human motion is presented, in Section III

the discrete time stochastic abstractions for human and

robot motions are presented, while description of the safety

algorithm is presented in Section IV. Finally Section V

reports data from several simulations, that demonstrate the

effectiveness of the proposed solution in comparison with

more conservative solutions.

II. HUMAN MOTION MODEL

Human workers in factories usually move according to

specific patterns determined by the working activity to be

executed. In this paper, we make the conservative assumption

that the possible movements are solely determined by the

physical limitations inherent to the human body. As a result,

the probability of having a collision is overestimated (being

all possible trajectories a superset of the ones observable in

a working environment).

Since the severity of the accident is related to the relative

motion of the robot and of the human target, we need to

reconstruct and predict the trajectory of the latter in a frame

attached to the robot. In this section, we show how this task

can be carried out. In particular, we consider two different

sampling instants (k and k + 1) and evaluate the possible

movements of the target in these time interval. This is done

in three steps. In the first one, we translate the measurements

of the target position and velocity from the robot frame 〈R〉
to a fixed frame 〈F〉. In the second one, we use a kinematic

model for the human motion to predict the target position in

〈F〉. In the third one, we compute the new position in 〈R〉,
taking into account the motion of the robot in the interval.

A. Converting the target position/velocity from 〈R〉 to 〈F〉
The target presence is detected by on–board sensors, i.e.,

a camera in our case, that measure the position RPh(k), the

velocity RVh(k) and the acceleration Rah(k) of the target

in the robot frame 〈R〉. Notice that RVh(k) and Rah(k)
measurements are affected by the forward ν(k) and angular

ω(k) velocities of the robot, known and given by the vehicle

motion controller. Since the target motion model is defined

in a fixed frame 〈F〉, we need to recover the velocity
FVh(k) and the acceleration F ah(k) of the target in 〈F〉. The

aforementioned quantities are related by

{

RVh(k) =R Vh,ν(k)+R Vh,ω(k)+F Vh(k)
Rah(k) =R ah,ω(k)+F ah(k)

, (1)

where RVh,ν(k) is the target velocity in 〈R〉 due to the forward

robot velocity ν(k), RVh,ω(k) is the target velocity in 〈R〉 due

to the angular robot velocity ω(k) and Rah,ω(k) represents

the fictitious accelerations (Coriolis and centrifugal) in 〈R〉
due to the angular robot velocity ω(k), equals to Rah,ω(k) =
−ω(k)2RPh(k), where RPh(k) = [x, y]T is the position of the

target in 〈R〉 at time step k.

Since ν(k) is supposed to be constant (as it is customary

in a factory floor) and it is always directed along the X

axis of 〈R〉, it follows that RVh,ν(k) = [ν(k), 0]T . Since ω(k)
is positive for counter–clockwise rotation on the plane of

motion, defined indifferently by the X and Y axis of 〈R〉 or

〈F〉, its vectorial representation is given by [0, 0, ω(k)]T in

all the frames. Recalling that the 3D target position is given
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Fig. 2. Cumulative speed distribution for any kind of injury (A) and only for non–minor injuries (B). The dotted lines refers to statistical figures from
real accidents collected in 1979 (OTP), while the continuous line (A&M) refer to statistics collected in 2007.

Fig. 3. Motion model adopted for human trajectory predictions.

by [x, y, 0]T , we get





0 −ω(k) 0

ω(k) 0 0

0 0 0









x

y

0



 ⇒R Vh,ω(k) =

[

−ω(k)y
ω(k)x

]

.

Using (1) is then possible to retrieve the velocity FVh(k)
and the acceleration F ah(k) of the target w.r.t. 〈F〉 frame, in

which the target motion model can be applied.

B. Human motion in 〈F〉
Let (x, y) represent the positions on the plane of the

target and (vx, vy) the velocities w.r.t. to the X and Y

axis respectively in 〈F〉. As customary in human motion

model literature, the accelerations are instead referred to

a reference frame, 〈H〉, attached to the human body, in

which a= represent the tangential acceleration and a⊥ is the

perpendicular acceleration. Figure 3 depicts the described

quantities in terms of the fixed and moving reference frames.

A widely adopted discrete-time model [13], [10] for the

accelerations of a target that moves freely in the environment

(without any specific restriction dictated by the execution of

a particular task) is given by
[

a=(k)
a⊥(k)

]

=

[

a=(k−1)e−α∆t +
√

1− e−2α∆tσ=u=

a⊥(k−1)e−α∆t +
√

1− e−2α∆tσ⊥u⊥

]

, (2)

where a=(k) and a⊥(k) are random variables. Indeed, u=

and u⊥ are two zero–mean white noise sequences with unit

standard deviation, modelling the randomness of the target

maneuvering motions. σ= and σ⊥ are the standard devia-

tions of a modified uniformly distributed random variable

modelling human physical limits related to accelerations

([14]). The presence of a dynamics in the evolution of the

acceleration dictates an extension of the state space, which

has to encompass the two acceleration terms and becomes

6–dimensional. ∆t is the discretization time step (more on

this in the next sections) and α is the reciprocal of the

maneuver (acceleration) time constant (in our model has been

estimated by visual data to be 1.5). In order to determine all

the quantities of interest in the same reference frame, 〈F〉,
we transform tangential and perpendicular accelerations into

accelerations along the X and Y axis, by applying

[

ax(k)
ay(k)

]

=







(vx(k)a=(k)−vy(k)a⊥(k))√
v2

x(k)+v2
y(k)

(vy(k)a=(k)+vx(k)a⊥(k))√
v2

x(k)+v2
y(k)






. (3)

The velocity of a person is then modelled by the mean of

the accelerations in the period ∆t. More precisely

[

vx(k + 1)
vy(k + 1)

]

=





Satx

(

vx(k)+
ax(k+1)+ax(k)

2
∆t

)

Saty

(

vy(k)+
ay(k+1)+ay(k)

2
∆t

)



 , (4)

where Sat(·) is a saturation function that takes into account

the physical limits of the human motion, modelled as a

maximum allowable velocity vmax. We have validated this

model and identified realistic parameters by a long sequence

of real data captured from a camera.

C. Prediction of the target position in 〈R〉
The trajectory of the robot is described by a set of possible

positions, given by the time discretization of its continuous

path with sample time ∆t (more on this later). Therefore,

consider the robot be in a certain position at time k∆t in



which it detects a human. From (1), the velocity FVh(k) and

acceleration Fah(k) are derived. Since (2), (3) and (4) do

not rely on the human position in the fixed frame and since

velocities and accelerations are free vectors, it is possible

to select the fixed frame coincident with the robot frame at

time k∆t, i.e., 〈F〉 ≡ 〈R〉k. This way, RkVh(k) and acceleration
Rk ah(k) are used in (2), (3) and (4) to derive RkVh(k + 1)
and acceleration Rk ah(k + 1). It is worthwhile to note that

by inverting (3), it is possible to recover the tangential and

perpendicular accelerations to be used in (2).

Using the measured human position RkPh(k) at step k is

then possible to retrieve the predicted human position

Rk Ph(k + 1) =Rk Ph(k)+
RkVh(k + 1)+Rk Vh(k)

2
∆t. (5)

In order to recursively apply the same algorithm to predict

position, velocity and acceleration for k + 2, we need to

transform the computed quantities from 〈R〉k to 〈R〉k+1,

which is known by integration of ν(k) and ω(k) over ∆t. The

position Rk+1Ph(k + 1) is obtained using the transformation

matrix between 〈R〉k and 〈R〉k+1. Velocity Rk+1Vh(k +1) and

acceleration Rk+1ah(k+1) are instead obtained using only the

rotation matrix between 〈R〉k and 〈R〉k+1. At this point, since

the new fixed frame coincides with 〈R〉k+1 (〈F〉 ≡ 〈R〉k+1), it

is possible to iterate the algorithm here presented, until the

desired prediction horizon is reached (k+2, k+3, ..., k+N).

The relative velocities between the robot and the human w.r.t.

〈R〉k+1, that are needed to compute the probability of injuries

(see the next Section), are obtained using (1).

III. DISCRETE STOCHASTIC APPROXIMATION

As shown in the previous section, under the reasonable

assumption that the robot control task and the safety task

are hosted on the same computing unit (or on communicating

computing units), we can use a stochastic model to predict

the trajectory of a human target in the robot frame. In this

section, we show how this model can be used to compute

the probability of an accidental collision. Our strategy is

based on the construction of a discrete approximation of

the system. In the terminology used in hybrid systems

literature, a discrete approximation of a system is a discrete–

state system generating behavior close enough to those of

the original systems. Roughly speaking, by increasing the

number of discrete states, the behaviors of the two systems

should asymptotically coincide. Due to the stochasticity of

our system, a suitable way for approximating its behaviors is

by a DTMC. Likewise, a good notion for convergence of the

approximation to the original system is in our case given

by convergence in probability: increasing the number of

states we should be able to decrease arbitrarily the difference

between the probability of an event for the two systems (e.g.,

going in a bad state). This issue will be discussed at the

end of the section. As shown in the rest of the paper, the

introduction of a discrete approximation greatly simplifies

the computation of the probability of relevant events (in our

case, collision and trapping).

Fig. 4. Modelled human motion in discrete space.

The stochastic abstraction is constructed by gridding the

six–dimensional state space of the human motion. The ratio-

nale behind this approach is to detect possible (discretized)

future positions and velocities reached by the human worker

using the model of accelerations given in (2). For example,

Figure 4 depicts position predictions for two possible con-

figuration of a human. More precisely, the person on the

left has non zero velocities and accelerations in the initial

configuration. Black dots represent positions reachable from

the current states, function of the velocities and accelerations.

It turns out that if a person is standing still (as the person on

the right in Figure 4), the black dots configuration will be

not biased by the velocities or accelerations (that are null)

and all the possible reachable positions are symmetric w.r.t.

the current position of the person.

Denoting with ∆x and ∆y the position distances and with

∆vx and ∆vy the velocity distances between grid intersections

in X and Y directions respectively (∆vx = ∆x/∆t), the discrete

state vector S(k) = [X(k), Y (k), Vx(k), Vy(k), A=(k), A⊥(k)]T

is described by the position coordinates X(k) and Y (k) for

all the actual human positions x ∈ (X(k)±∆x/2) and y ∈
(Y (k)±∆y/2). Similarly, Vx(k), Vy(k) represent the velocities

on the grid if human velocities vx ∈ (Vx(k)±∆vx/2) and vy ∈
(Vy(k)±∆vy/2).

Knowing the accelerations in the discrete state space

A=(k), A⊥(k), it is possible to derive future positions of

the human using the models given in (2), (4) and (5). For

example, it is possible to derive the probability density

function fp of the positions given the randomness introduced

in the accelerations. Hence, by integration, we compute the

probability of transition from state Sp(k) = [X(k), Y (k)] to

the state Sp(k + 1) = [X(k + 1), Y (k + 1)] using

P[Sp(k + 1)|Sp(k)] =

∫ ∆x
2

− ∆x
2

∫
∆y
2

− ∆y
2

fp(S̃p(k + 1)|Sp(k))dxdy,

where S̃p(k + 1) = [X(k + 1)+ x,Y (k + 1)+ y].

Alternatively, the probability density function fa= and fa⊥
of the accelerations may be used. Indeed, the new positions

are a function of the parallel and orthogonal accelerations.

Defining the function Posx = Pos(a=(k+1),a⊥(k+1),S(k))x



(Posy = Pos(a=(k +1),a⊥(k +1),S(k))y) that determines the

possible reachable positions along the X (Y ) axis given the

accelerations and the current position and velocities, the

transition probability P[S(k + 1)|S(k)] is derived computing

∫ X(k+1)+ ∆x
2 ≥Posx

X(k+1)− ∆x
2 ≤Posx

∫ Y (k+1)+ ∆y
2 ≥Posy

Y (k+1)− ∆y
2 ≤Posy

fa=(a=) fa⊥(a⊥)da=da⊥.

A. Grid Choice

The reliability of the proposed model very much depends

on the convergence, in probability, of the discretized model

to the continuous one. The typical way this problem is

approached is by imposing “local consistency” as defined

in [8], [4]. A good example of how to choose the grid

parameters enforcing local consistency can be found in [7].

We validated our choice by comparing the probabilities

obtained with our technique with the ones that we could

find with a Montecarlo simulation. However, it is useful in

this section, to explain the heuristic criteria that guided our

choice by a simple example.

Consider an unidimensional motion of a particle and

observe it for a period of time ∆t. Suppose that the particle

starts from an initial position x0 = 0, with an initial velocity

v0 = 0 and robot is not moving, with an acceleration a

supposed constant over the interval ∆t. Taking inspiration

from the model in Equation (2), we can assume that a is

a stochastic variable uniformly distributed between [−c, c]
with c =

√
1− e−α∆tσ=. Hence, the variable x(∆t) will be

uniformly distributed. The variance of this variable can

be easily computed as varx = c2

12
∆t4. Now, suppose you

approximate the evolution of the variable by a grid: η∆x,

where η ∈ Z. It is easy to compute the distribution of the

random variable η

P(η(∆t) = η |η(0) = 0) = P(η∆x−∆x/2≤ x ≤ η∆x+∆x/2)

and then find its variance, which is given by:

var(η) =
( c∆t2

∆x
+ 1)( c∆t2

∆x
+ 3)

12
.

Consequently we can compute the approximation error in

the variances as

ε =
var(x)−∆x2var(η)

var(x)
=

3∆x2 + 4c∆t2∆x

c2∆t4
.

As one would expect, the error decreases with the grid

size.

IV. ALGORITHM

The DTMC abstracts the human motion model using finite

set of states. Each state is six–dimensional, since it describes

the position, the velocity and the acceleration of a human

moving on a plane. The DTMC is used in this paper to

determine the probability of human injuries in a given timing

horizon. A possible way to do this is by using a model

checker for stochastic system (such as PRISM), identifying

by a logic formula the states to be marked as bad. This

possibility makes our tool extremely flexible allowing us to

specify a wide range of error conditions (e.g., related to a

concatenation of possible actions). However, we restrict our

attention to a quite simple verification task, for which an

ad-hoc solver has been developed.

Before going into the solution details, we have to define

what is our concept of collision, upon which the logic

expression pinpointing the bad states can be determined.

• Impact: if the human position or its predicted trajectory

are, at some point in time, in a space occupied by the

robot, then a collision is straightforwardly detected.

• Trapping: as it was mentioned earlier, the flexibility of

the safety system here proposed allows to detect also

trapping conditions, i.e., when a person is between the

robot and some object, like a wall. The error expression

in this case will evaluate to true when a human operator

is in between the robot and an external object, and the

distance between the robot and the external object is

lower than the size of the human body (we assume that

the human body is approximated as a cylinder by the

vision system).

A. Identifying the bad states

In order to estimate the probability of collision, the dis-

crete states in which such an events occurs must be identified.

Recall that target position, velocity and acceleration are

expressed in the moving frame 〈R〉, which implies that

the collision states are constant in time. However, since

we are using relative velocities, that can generate a large

displacement if integrated for ∆t, there can be the possibility

to jump over the collision states in one time step. There

are two possibility to avoid this undesirable side effect. The

first solution reduces the time step ∆t, paying the price of a

reduced prediction horizon (due to the limited computation

power) and/or a dramatic increase of the number of the

reachable states (see Section III-A). The second solution,

selected in this paper, modifies the set of bad states as a

function of the relative velocity between the human and the

robot. More precisely, the set of bad states is enlarged with

all the possible states for which the human position can be

reached from the current position by a jump–through the

robot. In Figure 5 we show how to compute this set of bade

states for three different relative velocities.

To detect trapping we can use either information about

external objects from the vision system or a map of the

factory provided in advance. In both cases, knowing the

current position of the mobile robot w.r.t. to the object, the

set of bad states is further enlarged with trapping–related

bad states. Trivially, since the position of the robot w.r.t. the

object is time dependent, it follows that the set of bad states

will be time dependent too.

B. Computing the probability of collision

Since our goal is to compute the probability of having an

accident, we augment the states of the DTMC describing

the motion of the human with an additional state, called

bad state, to which the DTMC is forced to switch whenever

a collision is detected. In order to keep track of such

a collision, the bad state is absorbing (i.e., it has a self
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Fig. 5. Bad states for different relative velocities.

transition marked with probability 1). Therefore, the bad

state collects the probability of collision accumulate in the

considered time horizon. To increase the performance of the

proposed safety system, we also define a similar absorbing

state, a safe state, that collects the states with zero probability

of collision during the prediction horizon. This way, the

prediction of these states is no more propagated.

At each time instant, we associate a vector π(k) =
[P(S1(k)), . . . ,P(Si(k)), . . . ,Pbad(k),Psa f e(k)]

T to the states of

the resulting DTMC, whose dimension is given by the all the

possible positions, velocities and accelerations in the grid

reachable in the time horizon of interest. More in depth,

P(Si(k)) is the probability to be in the state Si(k) at time

instant k, i = 0, . . . , N where N is the number of possible

target reachable states. Notice that the position of the robot

is propagated within the time interval used for prediction,

i.e., an integer multiple of the sampling time ∆t, say g.

If the robot motion does not intersect the region spanned

by all the possible reachable state from Si(k) within the

time horizon, region that is estimated once and for all off-

line, then P(Si(k)) = 0, ∀i, Pbad(k) = 0 and Psa f e(k) = 1,

for all time instants between k and k + g. Conversely, if

Si(k) is already on the position occupied by the robot at

time k∆t (when the verification starts), then P(Si(k)) = 0, ∀i,

Pbad(k) = 1 and Psa f e(k) = 0, for all time instants between

k∆t and (k + g)∆t.

In all the other cases, Pbad(k) = Psa f e(k) = 0, P(Si(k)) =
1, where Si(k) is the current position of the human, and

the probability π(k) have to be propagated for g steps1.

The step by step prediction is given using the transition

probability matrix Π of the derived DTMC, whose entries

are computed as shown in Section III. Notice that Π has the

dimension determined by the grid granularity in position,

1We could easily capture the case in which the position of the target is
not exactly known by associating non zero probability to more than one
state

velocity and acceleration. For the human motion prediction,

only the portion of interest, determined by the dimension of

π(k), is used. Moreover, the transition probability matrix is

“hemmed” with two additional columns and rows of zeros,

plus two additional 1 on the diagonal, obtaining

Π̄(k) =

[

Π 0

0 I2

]

,

where I2 is a two dimensional identity matrix. This additional

states correspond to the absorbing bad and safe states. Π̄(k)
is not time invariant, since it depends on the trajectory of the

robot motion (moving straight, turning left, turning right).

Therefore, π(k +1) is iteratively computed by the follow-

ing steps:

1) π(k + 1)T = π(k)T Π̄(k + 1);
2) For each Si(k + 1), with P(Si(k + 1)) 6= 0, if Si( j + 1)

is a bad one then Pbad(k +1) = Pbad(k)+P(Si(k +1)),
while P(Si(k+1)) is reset to 0. If the predicate is false,

no operations are performed.

3) For each Si(k+1), with P(Si(k+1)) 6= 0, the reachable

future states are computed (by means of the off-line

estimate of the reachable region). If all the future states

are outside the region spanned by the robot in the

prediction horizon of the robot, then no collision is

possible. In this case, Psa f e(k+1)= Psa f e(k)+P(Si(k+
1)), while P(Si(k + 1)) is forced to 0. Otherwise, no

operation is performed.

The algorithm above is applicable to the general case in

which the bad states can change in time (e.g., to consider

trapping with fixed obstacles). If the set of bad state is

always the same (mere collision) we can make remarkable

optimizations to the algorithm.

V. SIMULATION RESULTS

Due to the simplicity of the error condition, the algorithm

presented in Section IV is particularly easy to implement.

Therefore, we implemented an ad-hoc software tool using the

standard C++ language, with additional libraries for sparse

matrices handling. Moreover, the software development has

been optimized exploiting the information on the known

finite time horizon of the prediction. This way, it is possible

to save memory and computational power with respect to

standard tools such as PRISM. To validate the tool, we run

several simulations on a toy system example on both our tool

and PRISM, obtaining the same results.

Two simulation examples are here reported, stemming

from a realistic scenario of a paper factory. For all the

simulations, we chose a sampling time ∆t = 0.3 s. The mobile

robot is assumed to behave like a unicycle used for goods

handling in a warehouse. The vehicle length is 5 m and

the width is 2 m. In the simulations, the robot moves with

constant linear velocity ν = 2 m/s. Curved trajectories are

obtained with constant angular velocity ω (constant radius

curves), different for each example proposed. The stop time

of the robot, due to its inertia, is assumed to realistically be

of 1 s.
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Fig. 6. A) Mobile robot trajectories in the factory floor. “Inputs” and
“outputs” represent all the possible points in which the robot enters or leave
the area. B) Mobile robot trajectory for the circular path.

The proposed algorithm is compared with a conservative

approach, based on proximity sensors. In this case, whenever

the target is close to the robot less than a certain threshold,

the robot stops. The threshold is determined for the worst

case, i.e., assuming the human moving towards the robot

with maximum velocity.

A. Realistic Factory Example

In the first simulation, we show a typical industrial case

inspired to a paper production factory. In this case, all the

possible trajectories are depicted in figure 6-A, and consist of

straight line paths and curved trajectories of 1 m radius (i.e.,

with angular velocity ω = 2 m/s). The target randomly moves

inside the area of 30×20 meters, while the robot enters in

the area from the “input” points and leaves the area from

the “output” points (see figure 6-A). In the simulations, the

robot is always inside the area, i.e., as soon as it leaves from

an output, it enters again from an input, chosen randomly.

For a clear visualization of how our algorithm performs

with respect to the conservative algorithm, we depict in

figure 7 three different trajectories of the target (dashed,

followed in counter clockwise direction) and three trajecto-

ries of the robot (solid, straight line, curve, straight line),

followed from left to right. Superimposed to the dashed

trajectory, the black bold trajectory shows the segment of

trajectories of the human target in which the robot is stopped

using the conservative approach with proximity sensors. The

black circle on the trajectory shows the point in which, in

this case, the robot stops. In this case the robot is restarted

when the target is outside of the proximity sensors. The gray

bold trajectory shows the target positions in which the robot

stops using the proposed prediction algorithm (see figure 7).

The robot is restarted when the probability of injuring the

target decreases below the chosen threshold. Notice that the

duration of the halting period is in the second cases much

smaller. Figure 7-C clearly emphasizes this behavior.

To easily quantify the difference between the proposed

solution and the conservative approach on proximity sensors,

the probability of human injury is plotted in figure 8, solid

line. As in the example above, the graph is derived assuming

that if the safety system detects a collision with probability

larger than a safety threshold the robot is stopped and

waits when the probability of collision decreases. For each

given safety threshold (probability of non–minor injury, see
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Fig. 7. Human and mobile robot trajectories in the environment for three
different runs.

figure 2-B), the percentage of time in which the robot stops

against the conservative approach is reported, summing up

the time when the robot was stopped for each collision

threshold. Even though the human is assuming to move

randomly in the area and allowing a probability of injury

of 10−7, the robot remains still 34% less than a conservative

approach. Notice that the data has been collected simulating

a 24 hours day work, in which the human worker and the

robot are constantly inside the area.

B. Circular Trajectory

In the second set of simulations, we considered an “8”

trajectory, comprised of two tangent circles (see figure 6-B).

Of course, this can hardly be a realistic trajectory followed in
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Fig. 9. Pre–computation of collision probability. Each line (in the space
of motion) is associated with an equal probability of collision.

a factory floor, but it is useful to show how the safety system

deals with the curved trajectory of the robot. In this case,

the probability of injury against percentage of robot stopped

time with respect to the conservative approach is reported in

figure 8, dashed. Again, we can see the radical improvement

in the stopping time, and hence in the productivity, even with

very low probability thresholds.

C. Computing the Collision Probabilities off-line

If we assume that the robot moves in a single mode (e.g.,

straight line), it is possible to make a radical simplification

in the way the collision probability is computed. Indeed, in

this case, not only are the set of the safe and bad states

invariant, but the same applies to the transition probability of

the DTMC. Building on this consideration, we can compute

off-line the probability of a collision and store them in a

look up table in which each initial position, velocity and

acceleration of the target can be associated with a value of

the probability. As an example, we report in figure 9 the

curves in space that are associated with a fixed probability

of collision (assuming a fixed value for the initial velocity

and acceleration). A similar computation can be carried out

for the different values of the velocity and acceleration

building surfaces associated with equal probability in the

six-dimensional space. This approach bears considerable

advantages in terms of computation time and the way it can

be applied when the robot is allowed to change its mode (e.g.,

switching from straight to curved trajectories) represents an

interesting future line of research.

VI. CONCLUSIONS

In this paper, we have proposed a methodology for active

recognition of dangerous situations in working environment

where robotic vehicles and human workers coexist. The

procedure is based on the computation of a stochastic ap-

proximation of human motion (a DTMC), which is used in

an algorithm to predict the probability of a collision or of a

trapping. The probability thresholds have been selected con-

sidering recent studies produced by the automotive industry

that relate the probability of getting an injury with the relative

velocity in the collision.

As a future work, we plan to study the Markov approxi-

mation of the stochastic differential equation describing the

human motion, to study numerically efficient solutions for

the computation of the probability of an accident and to test

our technique in a real-life deployment.
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