Active surfaces, materials and tools for assembly

G. Fantoni
CIRP Research Affiliate

Department of Mechanical, Nuclear and Production Engineering

University of Pisa (Italy)
Table of contents

• Definition of the research scope
• Rationale behind the research work
• The relationship between surfaces, materials and tools
• Case studies
• Conclusions
Definition of the research scope

Active surfaces, materials and tools for assembly

- **Active**: the material is activated by chemical, mechanical, thermal processes. Its properties are radically different from those of unactivated areas.
- **Surfaces**: micro and nano texture, paintings, coatings over the surface can generate strong energy gradient that can be exploited for many purposes.
- **Materials**: SMA, SMP, EAP, PZT, but also super-elastic alloys, palladium, silicon, conductive polymers, etc., rheopetic and tixotropic liquids generate new possibilities for assembly.
- **and tools for assembly**: IR cameras, high speed cameras, ionizers, etc. can increase performances in assembly.
Rationale

• Possibility of manufacturing (and measuring) micro and nano textures on surfaces of different materials.
• Complex patterns and surface textures can be manufactured. It allows to confer different properties (even opposite) to areas bordering each other.
• Such surfaces can be active (chemically, electrostatically, Van der Waals, etc..) or actuated (piezoelectrically, mechanically, etc..) however they can be designed, manufactured and actuated at all scales.

• The characteristics of grasping/feeding surfaces often depend also on the layers beneath the surface itself.
Background for “Surfaces in Assembly”

Keynotes with potential impacts on research about active surfaces for assembly:

2011 - Replication of Micro and Nano Surface Geometries
H.N. Hansen (1), R.J. Hocken (1), G. Tosello

2011 - Biologically Inspired Design
L.H. Shu (2), K. Ueda (1), I. Chiu, H. Cheong

2009 - Cooperation of Human and Machines in Assembly Lines
J. Krüger (2), T.K. Lien (2), A. Verl (2)

2008 - Advances in engineered surfaces for functional performance
A.A.G. Bruzzone (2), H.L. Costa, P.M. Lonardo (1), D.A. Lucca (1)

2000 - Assembly of Micro-System

…
Active surfaces have been organised according to the physical principle they exploit for feeding. Some of them work properly at the micro-meso scale while other also at the macroscale.

ACTIVE SURFACES for part feeding

- Cilia
- Nodal Air Nozzles (programmable)
- Hydrophillic Hydrophobic
- Electrostatic Gravitational
- Friction Bounce and fall
- Brushes Underwater
Some of the described feeders (2)

<table>
<thead>
<tr>
<th>Bowl & linear feeder (barely out of scope)</th>
<th>Brush feeder</th>
<th>Nodal lines - feeder</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feeder based on microcilia</td>
<td>Electrostatic feeder</td>
<td>Hydrophillic-Phobic Feeder</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Feeders (3)

<table>
<thead>
<tr>
<th>Active surfaces</th>
<th>Active & Actuated surfaces</th>
<th>Actuated surfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feeder based on hydrophillic and hydrophobic areas</td>
<td>Electrostatically based feeders</td>
<td>Nodal lines over vibrating plates</td>
</tr>
<tr>
<td>Electrostatic “permanent” traps and magazines</td>
<td>Brush feeder</td>
<td>Feeding by bouncing and falling</td>
</tr>
<tr>
<td>Underwater traps and pockets</td>
<td>Microcilia</td>
<td>Gravity traps</td>
</tr>
<tr>
<td></td>
<td>Air feeder</td>
<td>Automated feeding of micro parts based on piezoelectric vibrations</td>
</tr>
<tr>
<td></td>
<td>Externally-resonated micro vibromotor for microassembly</td>
<td></td>
</tr>
</tbody>
</table>
Gripper to grasp (1)

Active surfaces have been organised according to the physical principle they exploit for grasping. Some of them work properly at the micro-meso scale while other also at the macroscale.

ACTIVE SURFACES AND MATERIALS for grasping

- Van der Waals
- Distributed friction
- Thermal Glue
- IR transp. gripper
- Wet adhesion
- Electrostatic
- Universal Gripper
- Deform. membrane
- Hydrophillic
- EAP
- Hydrophobic
- 2 liquids
- Frog
Gripper to grasp (2)

<table>
<thead>
<tr>
<th>Electrostatic</th>
<th>Electrostatic</th>
<th>Gecko</th>
<th>Self centering SMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Hesselbach]</td>
<td></td>
<td>[Lanzetta]</td>
<td>[Shu]</td>
</tr>
<tr>
<td>Flexible cups</td>
<td>Capillary</td>
<td>Universal Gripper</td>
<td>Spini gripper</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Dini]</td>
<td></td>
<td>[Lambert]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Squirrel [Cutkosky]</td>
</tr>
</tbody>
</table>

[Images and diagrams of electrostatic, electrostatic Gecko, self-centering SMA, flexible cups, capillary, universal gripper, and spini gripper are shown.]
Gripper to grasp (3)

<table>
<thead>
<tr>
<th>Active surfaces</th>
<th>Active & Actuated surfaces</th>
<th>Actuated surfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid</td>
<td>Liquid+structured+actuated*</td>
<td>liquid+deformable membrane</td>
</tr>
<tr>
<td>Liquid-liquid manipulation*</td>
<td>Electrostatic</td>
<td>Centering</td>
</tr>
<tr>
<td>Gecko like</td>
<td>Electrowetted</td>
<td>Thermal glue</td>
</tr>
<tr>
<td>Electrostatic</td>
<td>UniversalGripper</td>
<td>Ultrasound</td>
</tr>
<tr>
<td></td>
<td>Flexible vacuum cups</td>
<td></td>
</tr>
</tbody>
</table>
Gripper to release (1) at microscale

<table>
<thead>
<tr>
<th>Type</th>
<th>Principle</th>
<th>Scheme</th>
<th>Description</th>
<th>Force</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductive material/coatings - Grounded gripper</td>
<td>Conductive materials or coatings (which do not form insulating oxides) reduce static charges. Grounded grippers prevent the charge storage [3, 5]</td>
<td></td>
<td>electrostatic</td>
<td></td>
</tr>
<tr>
<td>Low difference of EV potential</td>
<td>Gripper and object made of materials with a small potential difference reduce “contact interaction” forces [5]</td>
<td></td>
<td>electrostatic</td>
<td></td>
</tr>
<tr>
<td>Hydrophobic coating</td>
<td>Hydrophobic coating reduces surface tension effects: it prevents the adsorption of moisture [6]</td>
<td></td>
<td>surface tension</td>
<td></td>
</tr>
<tr>
<td>Low Hamaker constant Coating</td>
<td>Low Hamaker constant coating reduces van der Waals forces [3]</td>
<td></td>
<td>van der Waals</td>
<td></td>
</tr>
<tr>
<td>Hard materials</td>
<td>Contact pressure causes deformations, increasing the contact area between gripper and object. Grippers made of hard material have to be preferred [5]</td>
<td></td>
<td>van der Waals; electrostatic</td>
<td></td>
</tr>
<tr>
<td>Rough surface - Micro pyramids</td>
<td>The gripper roughness reduces the contact area and sharp edges induce the self discharge effect [5, 6]</td>
<td></td>
<td>van der Waals; electrostatic</td>
<td></td>
</tr>
<tr>
<td>“Spherical” fingers</td>
<td>Spherical fingers reduce the contact area in comparison with planar ones [5]</td>
<td></td>
<td>van der Waals; surface tension</td>
<td></td>
</tr>
<tr>
<td>Active surfaces</td>
<td>Active & Actuated surfaces</td>
<td>Actuated surfaces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------------</td>
<td>------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conductive Coatings</td>
<td>Invert voltage</td>
<td>Micro heater</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrophobic Coatings</td>
<td>Liquid+structured+actuated*</td>
<td>Varying the gripper curvature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superhydrophobic Coatings</td>
<td>EAP based Releasing</td>
<td>Tilting the gripper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hard materials</td>
<td>Varying roughness by vibration</td>
<td>Acceleration or vibration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rough surfaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Findings

• New Devices for grasping and releasing microparts
 – At UNIPI
 – In collaboration with DTU

• New research opportunities
Grasping and releasing microparts exploiting liquids with different surface tensions

A novel grasping and releasing strategy for microparts exploiting liquids with different surface tensions

[Fantoni, Porta, Santochi]
Grasping and releasing microparts exploiting liquids with different surface tensions
Active surfaces for grasping and releasing of microparts

Grasping and releasing of microparts by using active hydrophillic-phobic surfaces
[Fantoni, Hansen, Santochi] *in progress*

Programmable hydrophobic surfaces [Fantoni, Zang, Tosello, Hansen] *in progress*
Active surfaces for grasping and releasing of microparts

- hydrophillic
- hydrophobic
Research opportunities: from micro to macro

<table>
<thead>
<tr>
<th>Friction gripper</th>
<th>Jaw gripper</th>
<th>Magnetic Gripper</th>
<th>Vacuum Gripper</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capillary G.</th>
<th>Electrostatic G.</th>
<th>Van der Waals</th>
<th>Cryogenic G.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acoustic G.</th>
<th>Laser</th>
<th>Bernoulli</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Toward a new adhesive gripper

Toward a new adhesive gripper: skin and pulp

Supehydrophobic surface

Frog Fingerprint (SEM)
Conclusions

• Research activities
 – RobLog (7° EU project)
 – MicroGrippers exploiting structured surfaces
 – Extension of the grasping principles from micro to macro
 – Continue the research on compliant, actuated, hierarchical surfaces

• Search for partners for joint projects and exchange of students

• Keynote paper on “Grasping and handling devices and methods in assembly”
Active surfaces, materials and tools for assembly

G. Fantoni

Department of Mechanical, Nuclear and Production Engineering

University of Pisa (Italy)
Research opportunities (2): NOT only a surface problem

- The problem is in part more complex, actually the underskin structure plays a key role in mating
- Hyerarchical structures are a solution:
 - Compliant Spines (insects) → Independent and adaptable structures
 - Tree structures (gecko) → Beam-plate structures (Lanzetta, Cutkosky)
- Transition from flexible to rigid is another solution

But we can exploit also non newtonian fluids. Ie. Rheopectic/ Thixotropic liquids increase/decrease in viscosity as stress over time increases.
Toward a new adhesive gripper

• Functions of the skin and side channels:
 – Roughness of the skin → to exert lateral friction
 – Roughness of the skin → supehydrophobic?
 – Side channels → collect, feed and remove water in order to avoid waterplaning
 – Side channels → hydrophillic areas quickly retract water to use it during climbing

• Functions of the pillars:
 – Supply the skin with additional dof in order to mate the pulp with the surface roughness (meso) also in case of corners, sharp edges etc..

• Functions of the pulp:
 – Mate the pulp with the surface roughness (micro)
Feeder (4): References

- Mike Brokowski, Michael Peshkin Ken Goldberg, 1993, Curved fences for part alignment, IEEE International Conference on Robotics and Automation
Gripper to grasp (5): References

- Hesselbach, Jürgen; Wrege, Jan; Raatz, Annika, 2007, Micro Handling Devices Supported by Electrostatic Forces, CIRP Annals - Manufacturing Technology, Elsevier Vol. 56/1, 45-48
- G. Reinhart, J. Hoeppner, Non-Contact Handling Using High-Intensity Ultrasonics, CIRP Annals - Manufacturing Technology, Volume 49, Issue 1, 2000, Pages 5-8
Gripper to release (3) at microscale

Please, find further references in