
Delay compensation in packet-switching networked controlled systems

Antoine Chaillet and Antonio Bicchi

Abstract— In this paper, we consider the problem of stabi-
lizing sufficiently smooth nonlinear time-invariant plants over
a network whereby feedback is closed through a limited-
bandwidth digital channel. Reliable packet switching networks
are explicitly considered, for which both the time between
consecutive accesses to each node (MATI) and the delay by
which each data packet is received, processed, and fed back
to the plant are unknown but bounded. For what concerns
networked feedback control, the main difference between a
packet-switching and a circuit-switching network with the
same bandwidth is that packets can convey larger amounts of
feedback data (measurements and control inputs) with much
higher latency and jitter than a conventional communication
channel. To compensate the unpredictably varying delays in
packet switching networked control systems, we propose a
model-based strategy that exploits the relatively high payload
which can be associated to each packet. A bound on the
tolerable delays and access frequency is explicitly provided.

I. INTRODUCTION

For network controlled systems (NCS), the communication be-
tween the plant and its controller is transmitted over a digital net-
work [18]. A digital communication, whether based on a wired or
a wireless device, yields important alterations of the sent informa-
tion: sampling and quantization, simultaneous access to only part
of the nodes, delays, packet losses, etc. This influence cannot be
neglected in applications that involve a great number of sensors and
actuators, or when the nodes are physically distant (distributed), or
in case of a particularly limited bandwidth, The effects induced
by these phenomena may drastically hamper the performances of
the closed-loop plant, and even result in an unstable behavior. New
strategies are required to guarantee an acceptable behavior of the
closed-loop system under these particular constraints.

Several recent results have aimed at analyzing or compensating
these effects: see for instance [16], [3], [2], [18], [13], [11], [8],
[15], [17], [6]. Let us underline that the recent accession of hybrid
systems, i.e. systems whose dynamics is both discrete and contin-
uous, offer an ideal framework to address the questions relative
to control over network in a both general, realistic and powerful
formalism. Indeed, most of the considered plants are continuous
by nature, whereas networks are intrinsically discrete. In their
recent work [8], Nešić and Teel propose a general formulation
for network controlled systems that takes into account sampling,
quantization, packet losses and scheduling. However, rare are the
analysis tools or the control approaches that allow to take into
account all these phenomena, including delays. Communication
delays in network-controlled problems constitute a crucial issue
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A. Chaillet is with EECI - Univ. Paris Sud - SUPELEC. 3, rue Joliot-

Curie. 91192 - Gif sur Yvette, France. chaillet@ieee.org
A. Bicchi is with Centro Interdipartimentale di Ricerca “E. Piaggio”,
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that cannot be left apart. The present article aims at using the
hybrid formalism recently proposed by Nešić and Teel in order to
study a control strategy that compensates the effect of sufficiently
small delays, while taking into account the possible physical dis-
tribution of nodes (making impossible to have an instantaneous
global knowledge of the plant), that data access to the network is
ruled by a protocol (thus constraining the access times), and an
unperfect model of the plant. To the best of our knowledge, this
constitutes the first bridge between two analysis approaches: that
combining sampling and delays, such as [2], [6], [5], [1], [17],
[9], and that based on a hybrid formalism oriented more towards
limited nodes simultaneous access, quantization, etc. such as [12],
[8], [7]. Following the general formalism introduced in [8], our
results apply to nonlinear plants, while most of the literature in this
field addresses linear dynamics, e.g. [12], [2], [5], [17], [6], [14].

In the spirit of [9], [10], [5], the approach presented here consists
in exploiting the possibly large payload available on each packet by
sending, whenever possible, not only the value of the control law
to be applied at this instant, but also a prediction of the control law
that will be applied, obtained based on an (imprecise) model of the
plant. The so-obtained control-packet, thus containing a sequence
of control values valid on a given time-horizon, is then stocked in
an embedded memory. Based on a local re-synchronization, made
possible by a time-stamping of measurements, we are then able to
compensate the effect of sufficiently small communication delays
in the control loop. Contrarily to [10] which uses model predictive
control, our result exploits the controller that would stabilize the
plant if network effects were not present.

After having presented the context and formulated the problem,
we present, in Section III, an explicit bound on the maximum
tolerable delay, as well as on the Maximum Allowable Time
Interval (MATI [12], i.e. the maximum duration between two suc-
cessive communications) are given under which global exponential
stability is guaranteed. These bounds depend on the bandwidth of
the network, as well as on the precision of the available model of
the plant (from which the control prediction is derived). The result
is obtained in a nonlinear context, and then adapted to linear time-
invariant plants. As a second step, in Section IV, we exhibit the
trade-off existing between embedded computation capabilities and
communication bandwidth, by showing that, thanks to a simplest
embedded computer, the restriction of the domain of attraction and
the resulting steady-state error of the closed loop system can be
reduce at will provided a sufficiently large size of the packets sent.
Proofs are provided in Section V.

II. PROBLEM STATEMENT

A. Notations and Assumptions
In the context of this work, the digital network is seen as a

communication channel which allows the sending of a limited
information of a unique node information at a time (e.g., only
partial instantaneous knowledge of the plant state if several sensors
are present), at given instants of time and with variable delays.
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More precisely, we assume that sensors measurements on the
plant are sent at instants {τmi }i∈N. These measurements are as-
sumed to be coded with sufficient precision to neglect quantization
effects, but do not transit instantaneously; we denote by {Tmi }i∈N
the (variable) measurements data delays, which cover delays result-
ing from both processing and transmission. Based on the measure-
ments received, the controller then computes control signals which
are then encoded into packets that are sent over the networks at
time instants {τ cj }j∈N. Depending on the quantity of information
to be coded into these control packets, imprecision resulting from
sampling may need to be considered. These control packet finally
reach the plant after a variable delay {T cj }j∈N which covers both
transmission and computation delays. In this setting, measurements
thus arrive at the controller at instants {τmi +Tmi }i∈N, while control
packets reach the plant at instants {τ cj + T cj }j∈N.

We assume that the maximum time interval (MATI) between two
consecutive successful accesses to the network is bounded, both on
the measurement side (i.e., from the plant to the controller) and on
the control side (i.e., from controller to the plant.

Assumption 1 (MATI) There exist two constants hm, hc ≥ 0

such that τmi+1 − τmi ≤ hm and τ cj+1 − τ cj ≤ hc for all i, j ∈ N.

We also assume that the delays cannot overpass a certain limit.

Assumption 2 (Bounded delays) There exist two constants
Tm, Tc ≥ 0 such that Tmi ≤ Tm and T cj ≤ Tc for all i, j ∈ N.

At each instant τmi at which a measurement can transit over the
network, the error z between the state estimate x̂ and the actual
state measure x of the system is somehow evaluated (relying on
the measurements available from the sensors) and, based on this, a
protocol decides which node (sensor) should communicate its data
among all nodes data available at this time instant. The fact that a
unique node may communicate at a time generates a dynamical
error between the information sent by the plant and the data
actually received by the controller, even without considering delays
and sampling. In the spirit of [8], we model the network protocol
as a time-varying discrete system involving the error z ∈ Rn that
this type of communication generates:

z(i+ 1) = hi(z(i)) , ∀i ∈ N ,

If the network was able to send the measurement of the whole state
x at each time instant τmi , then the function hi would be identically
zero; this is an assumption commonly posed in the literature on
network controlled systems (see for instance [2], [19], [5], [1], [17],
[6], [10], [9]) which may not be justified when numerous sensors
are involved or when they are physically distributed.

Note that some protocols are purely static, such as the Round
Robin protocol which executes a cyclic inspection of each node, in
which case the function hi does not depend on z = x̂−x but purely
on i. On the opposite, some networks purely relies on the present
value of the network error, in which case h is independent of i: this
is the case of the Try-Once-Discard protocol [12].

We will see in the sequel that the fact of considering network
communication on both sides of the feedback loop may impede
the exploitation of some measurement sent. We therefore introduce
the following definition, which is more restrictive than the original
definition of a UGES protocol [8, Definition 7].

Definition 1 (Invariably UGES protocol) Given positive con-
stants a, a, c and ρ ∈ (0; 1), the protocol defined by the discrete
dynamics {

z(0) = z0

z(k + 1) = hk(zk) , ∀k ∈ N

is said to be invariably uniformly globally exponentially stable with
parameters (a, a, ρ, c) if, for any increasing sequence {σk}k∈N ∈
N, there exists a differentiable function W : N× Rn → R≥0, such
that, for all z ∈ Rn, k ∈ N,

a |z| ≤W (k, z) ≤ a |z| (1)

W (k + 1, hσk (z)) ≤ ρW (k, z) (2)∣∣∣∣∂W∂z (k, z)

∣∣∣∣ ≤ c . (3)

Not only the above definition imposes an exponential convergence
of the discrete update law induced by the protocol, but it also
requires that this property remains valid when the update is not
made at each step but according to an arbitrary increasing sequence
{σk}k∈N ∈ N. It can easily be shown that the Round Robin
protocol is not invariably GES (just consider two nodes and the
sequence {σk}k∈N = {1, 3, 5, 7, . . .} which corresponds to the
update of the same unique node, regardless of the data provided
by the other node). On the opposite, for time-invariant protocols
(that is, z(k + 1) = h(z(k)) ), (1) and (2) are equivalent to GES.
In view of [8, Proposition 5], it can easily be shown that the TOD
protocol is invariably (U)GES with W (k, z) = |z|.

In the sequel, we consider invariably UGES protocols:

Assumption 3 The protocol z(k + 1) = hk(z(k)) is invariably
UGES with some parameters (a, a, ρ0, c).

III. A PACKET-BASED STRATEGY

Although communication networks do limit the data load that
may transit between the plant and its controller, the size of each
packet is often relatively large. In the spirit of [10], [9], the strategy
here consists in exploiting this characteristic to provide a feedfor-
ward control signal between two transmission instants. Roughly
speaking, at each reception of a new measurement, the controller
updates an internal model-based estimate of the current state of
the plant. We assume here that the whole state is measured, but
the ideas presented here may be extended to partial measurements
(in that case, the controller would have to run an internal observer
for this state estimation). Based on this estimate, the controller
computes1 a prediction of the control signal on a fixed time horizon
by running the plant model. This signal is then coded and sent in
a single packet at the next network access. When received by the
plant, it is decoded and resynchronized by an embedded computer,
based on the time-stamping of the original measurement.

A. State estimation

In order to guarantee that a reasonable control signal is always
available, the fixed time horizon on which each state prediction is
achieved is chosen, in view of Assumptions 1 and 2, as

T0 ≥ Tc + Tm + hm + hc . (4)

1The time required for this computation is included in the delay T cj .
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For all j ∈ N, we let γ(j) := max
{
i ∈ N : τmi + Tmi < τ cj

}
. The

estimate x̂j(t) is obtained based on the knowledge of a (possibly
unperfect) model f̂ of the plant f . At the instant τ cj , at which a new
control packet can be sent, we run the model of the plant initialized
with the latest measurement received by the controller, i.e.

˙̂xj(t) = f̂(x̂j(t), κ(x̂j(t))) ,

∀t ∈ [τmγ(j) + Tmγ(j); τ
m
γ(j) + Tmγ(j) + T0] ,

x̂j(τ
m
γ(j) + Tmγ(j)) =

x(τmγ(j)) + hγ(j)

(
x̂γ(j−1)(τ

m
γ(j))− x(τmγ(j))

)
,

(5)

where k is a stabilizing control law for the nominal plant, (i.e.,
in the ideal case when the plant and its controller are wired
analogically), arising from the following assumption:

Assumption 4 (Nominal GES) The nominal closed-loop system
ẋ = f(x, κ(x)) is globally exponentially stable with a Lyapunov
function V satisfying, for all x ∈ Rn,

α |x|2 ≤ V (x) ≤ α |x|2

∂V

∂x
(x)f(x, κ(x)) ≤ −α |x|2∣∣∣∣∂V∂x (x)

∣∣∣∣ ≤ d |x| ,
where α, α, α and d denote positive constants.

The proofs of the results exploit the robustness introduced by this
nominal property. They require sufficient regularity of the plant:

Assumption 5 The vector fields f and f̂ and the feedback law k

are continuously differentiable and their gradients are bounded
by positive constants λf , λf̂ and λk respectively. In addition,
f̂(0, κ(0)) = 0.

B. Hybrid formulation

In this section, we neglect the sampling induced by the digital-
ization of the control signal sent from the controller to the plant,
to focus first on the phenomena resulting from single node access,
delays and model imprecision.

Due to the communication delays and the ensured “continuity of
control”, the corresponding control laws are seen from the plant as

uj(t+ T cj ) = κ(x̂j(t)) , ∀t ≥ τmγ(j) + Tmγ(j) , ∀j ∈ N .

With our approach, the model-based estimate (5) of the state of
the plant not only allows to provide a control law at the instants
between two accesses to the network and to attenuate the effect
of the parsimonious access to the network, but also to compensate
for the transmission delays. Indeed, by the time-stamping of the
transmitted data, it is possible to locally re-synchronize the control
law on the plant. Mathematically, this boils down to anticipating
the jth control packet of the whole accumulated delay, that is T cj +

Tmγ(j). The control law actually applied is then, for each j ∈ N,

u(t) = uj(t+ T cj + Tmγ(j)) , ∀t ∈ [τ cj + T cj ; τ cj+1 + T cj+1] . (6)

Using the time-invariance of (5), it holds that

x̂j(t+ Tmγ(j)) = x̄j(t) , ∀t ≥ τmγ(j) , (7)

where x̄j(·) is the solution of

˙̄xj = f̂(x̄j , κ(x̄j)) , ∀t ≥ τmγ(j)

x̄j(τ
m
γ(j)) =x(τmγ(j))+hγ(j)

(
x̄γ(j−1)(τ

m
γ(j))−x(τmγ(j))

)
. (8)

The above re-formulation simply states that the delayed state
estimates x̂j coincide with the state estimate x̄j up to the cor-
responding delay Tmγ(j). This writing possesses the advantage of
simplifying the expression of the overall closed-loop system as, in
view of (6)-(7), the applied input becomes

u(t) = κ(x̄j(t)) , ∀t ∈ [τ cj + T cj ; τ cj+1 + T cj+1) . (9)

The above notation still uselessly involves an infinite number of
state variables x̄j , j ∈ N. In order to condense the notation, we use
the fact that each signal x̄j(t) is only used over [τmγ(j); τ

c
j+1+T cj+1).

This allows us to make use of only two variables updated alterna-
tively: one (xc1) being reset at instants of time τmγ(j) corresponding
to an odd integer j and the other one (xc2 ) initialized at each
τmγ(j) for even j’s. However, in order to ensure that none of these
variables is reset while still in use in the control, we first extract
the following integer subsequence, defined in a recursive way:
µ(j+1) = min {k ≥ µ(j) : ∃i ∈ N, τ ck + T ck ≥ τmi } starting with
µ(0) = 0. Note that, with this notation, it holds that τmγ◦µ(j+1) >

τ cµ(j) + T cµ(j), meaning that the measurement instants considered
by this subsequence τmγ◦µ(j+1) are always greater than the last time
instant τ cµ(j) + T cµ(j) at which the corresponding variable was in
use in the control law at the previous step. For simplicity, we let
γ̃(j) := γ ◦ µ(j) for all j ∈ N. With this sequence of times, the
dynamics of the variables xc1 and xc2 is given by the hybrid system{

ẋc1 = f̂(xc1, κ(xc1))

ẋc2 = f̂(xc2, κ(xc2))
(10)


xc1(τmγ̃(j)

+) = x(τmγ̃(j)) + hγ̃(j)

(
x̃c2(τmγ̃(j))

)
+
[
x̃c1(τmγ̃(j))− hγ̃(j)

(
x̃c2(τmγ̃(j))

)]
η(j)

xc2(τmγ̃(j)
+) = x(τmγ̃(j)) + hγ̃(j)

(
x̃c1(τmγ̃(j))

)
+
[
x̃c2(τmγ̃(j))− hγ̃(j)

(
x̃c1(τmγ̃(j))

)]
(1− η(j))

where, for notation compactness, we have introduced

x̃c1(τmγ̃(j)) := xc1(τmγ̃(j))− x(τmγ̃(j))

x̃c2(τmγ̃(j)) := xc2(τmγ̃(j))− x(τmγ̃(j))

η(j) :=

{
1 if j ∈ 2N
0 otherwise.

(11)

The applied input (9) can then be written as u(t) = ua(t, xc(t))

where, for all t ∈ R≥0, ua(t, xc) := κ(xc1)P(t)+κ(xc2)(1−P(t)),
with xc := (xTc1, x

T
c2)T and2, for all t ∈ R≥0,

P(t) :=

{
1 if ∃j ∈ 2N : t ∈ [τ cj + T cj ; τ cj+1 + T cj+1)

0 otherwise.

It is worth noting that, in (10), the update of xc1 depends, through
hγ̃(j), on the current value of xc2 , and vice versa. This comes from
the fact that each of these variables is alternatively updated, and
that the value of the current state estimate is used by the protocol
to decide which node should be updated. So the state estimate that
matters is the one of the previous step, in conformity with (5)-(8).

2Note that, with this definition, P(t) = 0 if and only if there exists an
odd integer j such that t ∈ [τcj + T cj ; τcj+1 + T cj+1).
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Remark 1 For the sake of clarity, the above formulation does not
take into account the fact that more than one measurement may
be received between two packet sendings, which would allow for
a more precise state estimate. This can however be addressed by
simply considering a more involved update function hγ̃(j).

Based on this formulation, the closed-loop dynamics can be
summarized as the following hybrid dynamical system:

ẋ = F (t, x, e) (12a)

ė = G(t, x, e) (12b)

e(t+i ) = H(i, e(ti)) , (12c)

where, omitting to write the arguments of some functions,

e =

(
e1

e2

)
:=

(
xc1 − x
xc2 − x

)
(13a)

F := f(x, ua(t, e+ Jnx)) (13b)

G :=

(
f̂(e1 + x, κ(e1 + x))− f(x, ua(t, e+ Jnx))

f̂(e2 + x, κ(e2 + x))− f(x, ua(t, e+ Jnx))

)
(13c)

H :=

(
hν(i)(e2) +

[
e1 − hν(i)(e2)

]
η(i)

hν(i)(e1) +
[
e2 − hν(i)(e1)

]
(1− η(i))

)
. (13d)

The matrix Jn := (In, In)T is just to adapt the dimensions between
x ∈ Rn and e ∈ R2n. The time-sequence {ti}i∈N is defined as{

t0 := τmγ̃(0)

ti+1 := minj∈N
{
τmγ̃(j) : τmγ̃(j) > ti

}
, ∀i ∈ N≥1 ,

(14)
and the index ν(i) is defined as

ν(i) := min
{
j ∈ N : ti = τmγ̃(j)

}
, ∀i ∈ N . (15)

The hybrid system (12) is in the form of the NCS studied in [8],
which is at the basis of all developments in the sequel.

C. Main result
Based on these preliminaries, we are now ready to present our

main result. It states that, when sampling effects on the transmitted
control signal are neglected, our strategy preserves global expo-
nential stability under network communication, provided that the
MATI and the delays involved remain below a certain limit. The
latter bound is given explicitly, based on the parameters character-
izing the quality of the model and the stability of the protocol and
of the nominal closed-loop plant. Its proof in given in Section V.

Theorem 1 Assume that Assumptions 1-5 hold and let hm, hc, Tm,
Tc, ρ0, a, a, c, α, d, λf , λf̂ , λk be generated by them. Assume that
there exists a constant ε > 0 such that3

hm + hc + Tm + Tc <
1

L
ln
(

L+ γ

(ρ0 + ε)L+ γ

)
, (16)

where

L :=

√
2(1 + ε)c

amin{1, ε} max
{
λf̂ (1 + λk); 2λfλk

}
(17)

γ :=
2dλfλkc(1 + ε)(λf + λf̂ )(1 + λk)

α
√
amin{1, ε}

. (18)

Then, the origin of the NCS (12) is uniformly globally exponentially
stable.

3We also implicitly assume that there exists ε > 0 such that ti+1−ti ≥ ε
for all i ∈ N, in order to avoid Zeno solutions.

The upper bound (16) gives an explicit sufficient condition on
the the maximum tolerable delays and times between two trans-
missions to guarantee the preservation of exponential stability. This
bound can easily be computed based on the information available
on the stability properties of the nominal closed-loop system (pa-
rameters α and d), on the protocol characteristics (parameters a,
a, ρ0 and c) and on the plant, controller and model’s dynamics
regularity (parameters λk, λf and λf̂ ). The proposed approach
unifies the effects due to sequential access to the network (MATI)
and the effects of delays. If access to the network is frequent
enough, then larger delays can be tolerated, and vice-versa.

Other strategies exploiting a model-based prediction of the con-
trol signal to be applied between two accesses to the network have
recently been proposed in the literature; see e.g. [19], [5], [10], [9].
However, beyond the fact that [19], [5] considered only linear time-
invariant dynamics, they did not address the possible distribution of
the nodes nor the delays induced by processing and transmission.
Also, Theorem 1 tolerates (possibly large) imprecision between the
plant f and its model f̂ , which was not the case of [9]. Of course,
this is at the price of not guaranteeing full performance recovery
with respect to the nominal plant.

D. The linear case
In the particular case of linear time-invariant dynamics, as

addressed in e.g. [12], [2], [19], [5], [17], [6], [14], that is f(x, u) =

Ax+Bu, f̂(x, u) = Âx+ B̂u and κ(x) = Kx, the above system
boils down to

ẋ= (A+BK)x+BK (e1P(t) + e2(1− P(t))) (19a)

ė=


(Ã+ B̃K)x+ (Â+ B̃K)e1P(t)

+
[
(Â+ B̂K)e1 −BKe2

]
(1− P(t))

(Ã+ B̃K)x+ (Â+ B̃K)e2(1− P(t))

+
[
(Â+ B̂K)e2 −BKe1

]
P(t)

 (19b)

e(t+i ) =

(
hν(i)(e2) +

[
e1 − hν(i)(e2)

]
η(i)

hν(i)(e1) +
[
e2 − hν(i)(e1)

]
(1− η(i))

)
(19c)

where Ã := Â − A and B̃ := B̂ − B. We assume that a control
gain K has be selected to stabilize the nominal dynamics:

Assumption 6 There exists a symmetric positive definite matrix
P ∈ Rn×n satisfying

(A+BK)TP + P (A+BK) = −I . (20)

Following the prooflines of Theorem 1, we obtain the following
result, that better fits the particular LTI context.

Corollary 1 Assume that Assumptions 1, 2, 3 and 6 hold and let
hm, hc, Tm, Tc, a, a, ρ0, c and P be generated by them. Assume
that there exists a positive constant ε > 0 such that the following
bound holds

hm + hc + Tm + Tc <
1

L
ln
(

L+ γ

(ρ0 + ε)L+ γ

)
, (21)

where

L :=
(1 + ε)c

√
2

min{1, ε}amax
{∣∣∣Â+ B̂K

∣∣∣ ; |BK|+∣∣∣Â+ B̃K
∣∣∣} (22)

γ :=
2c(1− ε) |PBK|

∣∣∣Ã+ B̃K
∣∣∣

amin{1, ε} . (23)

Then, the origin of the NCS (19) is UGES.
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IV. EMBEDDED COMPUTATION VS. BANDWIDTH

We next underline the trade-off existing between communica-
tion capabilities, embedded computation and performance of the
controlled plant by distinguishing two cases: whether the main lim-
itation induced by application is communication or computation.

For applications where the bandwidth of the communication
network is the main constraint (e.g. distant wireless communica-
tion, high number of nodes, multiple interconnected systems, harsh
environment constraints, energy limitations, poor communication
medium), it is possible to apply Theorem 1 as it is, provided that
a sufficient computation capability is embedded on the plant. The
main idea is then to transmit only the current state estimate pro-
vided by the remote controller, and to achieve both the generation
of the control signal and the resynchronization on-board.

On the other hand, for applications that allow very limited
embedded computation capability (due to constraints in terms of
e.g. miniaturization, weight, heat, etc.) but ensure a reasonable
communication between the controller and the plant, it is necessary
to limit on-board computation as much as possible. To this end, a
possible strategy consists in making the controller pre-compute a
control signal valid on a given time horizon, then to encode this
signal into a digital format and transmit it through packet(s), and to
simply resynchronize it based on the time-stamping on the system.
In the sequel, we focus on a simple coding of the transmitted
control signals: the constant step-size sample-and-hold. The only
required embedded computation, as far as control is concerned,
is then very frugal, as its role consists only in evaluating the
difference between two quantities (stamped time and present time)
and in addressing the corresponding value in the control buffer.

Considering that at least N bytes of data can be effectively sent
in each control packet, we intuitively expect that this sampling has
an incidence on the performance of the overall closed-loop system,
but also that the effect of this imperfect coding diminishes as the
available network bandwidth increases (i.e. as N gets larger). We
formalize this intuition through Theorem 2.

In order to simplify the statement of this result, we first introduce
the following notation: given a piecewise continuous signal u :

R≥0 → Rm and a positive constant ∆, u¬∆ denotes the function
defined by (this notation extends to state-dependant signals):

u¬∆(t) :

{
R≥0 → Rm

t 7→ u(k∆) , ∀t ∈ [k∆; (k + 1)∆) , ∀k ∈ N .

For the sake of generality, let us focus on a plant with nonlinear
dynamics. In this situation, the closed-loop dynamics is given by
(12) with (13d) and, omitting some function arguments,

F = f(x, u¬∆
a (t, e+ Jnx)) (24)

G=

(
f̂(e1 + x, k(e1 + x))− f(x, u¬∆

a (t, e+ Jnx))

f̂(e2 + x, k(e2 + x))− f(x, u¬∆
a (t, e+ Jnx))

)
. (25)

It is important to notice that the original control input ua affected
by the sampling is a discontinuous signal. For this reason, the
instantaneous difference between the nominal control signal ua and
its ∆-sampled version u¬∆

a maybe large (around the discontinu-
ities) even for a small step-size ∆. In order to avoid this situation,
we make the following technical assumption.

Assumption 7 There exists a positive constant ∆0 such that
τmi , τ

c
i , T

m
i , T

c
i ∈ ∆0N, for all i ∈ N.

This assumption gives some information on the instants at which
the signal ua may be discontinuous. This knowledge will allow us
to choose a step-size ∆ that does not induce the above described
problem. We actually get the following result.

Theorem 2 Assume that Assumptions 1-5 and 7 hold and that the
delay bounds Tm and Tc in Assumption 2 satisfy

Tm + Tc <
1

L
ln
(

L+ γ

(ρ0 + ε)L+ γ

)
, (26)

where L and γ are defined as in Theorem 1. Assume also that
the state estimate is perfectly initialized, such that e0 = 0. Then
there exist some positive constants κ1 and κ2 such that, given
any M > δ > 0, there exists a positive N such that, for all
|x0| ≤ M , the solution of the NCS with sampling-based packets,
that is (12), (13d), (24) and (25), satisfies |x(t, t0, x0, e0 = 0)| ≤
δ + κ1 |x0| e−κ2(t−t0) for all t ≥ t0.

Remark 2 The result is stated in the case when the plant has
nonlinear dynamics. The linear time-invariant extension follows by
simply using the parameters L and γ given in (22) and (23).

Theorem 2 requires a perfect initialization of the state estimation
(i.e. e0 = 0). Beyond the fact that this is realizable in practice by
an off-line measurement, we stress that this assumption does not
strongly damage the qualitative observation of the result. Indeed,
the influence of its initial state on the error dynamics fades out with
time, yielding a similar asymptotic behavior of the overall plant as
when starting from any arbitrary initial value e0.

The proof of Theorem 2 is omitted here due to space constraints.
It mostly relies on that of Theorem 1 and on results on sampled-data
systems such as [4] by observing that, once (26) is fulfilled, one can
always pick a sufficiently small sampling time ∆ that the effects of
sampling on the overall behavior be reduced at will, provided that
a sufficient quantity N of information can transit in each packet.

V. PROOF OF THEOREM 1
We start by introducing the following result, which establishes

UGES of the error dynamics resulting from our approach, based on
the assumed GES of the protocol involved.

Proposition 1 Assume that the discrete dynamical system z(k +

1) = h0(k, z(k)) is UGES with a Lyapunov function W0 : N ×
Rn → R≥0 satisfying, for all k ∈ N and all z ∈ Rn, a |z| ≤
W (k, z) ≤ a |z|,W (k+1, hk(z)) ≤ ρ0W (k, z) and

∣∣ ∂W
∂z

(k, z)
∣∣ ≤

c, with some positive constants a, a, ρ0 and c. Consider the 2n-
dimensional system e(k + 1) = h′k(e(k)) where

h′k(e) :=

(
hk(e2) + [e1 − hk(e2)] η(k)

hk(e1) + [e2 − hk(e1)] (1− η(k))

)
,

with the function η defined in (11). Then, given any ρ > ρ0,
the function W : N × R2n → R≥0 defined as W (k, e) :=[
W0(k, e1)+(ρ−ρ0)W0(k−1, e2)

]
η(k)+

[
(ρ−ρ0)W0(k−1, e1)+

W0(k, e2)
]
(1− η(k)) satisfies, for all k ∈ N and all e ∈ R2n,

amin{1, ρ− ρ0} |e| ≤W (k, e) ≤ amax{1, ρ− ρ0} |e| (27)

W (k + 1, h′k(e)) ≤ ρW (k, e) (28)∣∣∣∣∂W∂e (k, e)

∣∣∣∣ ≤ (1 + ρ− ρ0)c . (29)
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Proof: Distinguishing the cases when k ∈ 2N and k /∈ 2N,
the bounds (27) and (29) follow directly. Concerning (28), assume
first k ∈ 2N. Then, writing h′k(e) as (h1(k, e)T , h2(k, e)T )T ,
we have that W (k + 1, hk(e)) = (ρ − ρ0)W0(k, h1(k, e)) +

W0(k+ 1, h2(k, e)) = (ρ− ρ0)W0(k, e1) +W0(k+ 1, hk(e1)) ≤
(ρ − ρ0)W0(k, e1) + ρ0W0(k, e1) ≤ ρW0(k, e1) ≤ ρW (k, e).
Similarly, we get the same bound for k /∈ 2N and (28) follows.

The proof of Theorem 1 consists in applying [8, Corrolary 2].
From the GES of ẋ = f(x, κ(x)), we know that f(0, κ(0)) =

0. Hence, from Assumption 5 and the mean value theorem, we
have that

∣∣∣f̂(e1 + x, κ(e1 + x))
∣∣∣ ≤ λf̂ (1 + λk) |e1 + x|, and

similarly for f . From this, and considering separately the cases
when P(t) = 0 and P(t) = 1, we have from (13c) that, for
all x ∈ Rn and all e ∈ R2n, the function G involved in (12)
satisfies, for all t ∈ R≥0, |G(t, x, e)| ≤ 2

(
λf + λf̂

)
(1+λk) |x|+

√
2 max

{
λf̂ (1 + λk); 2λfλk

}
|e|. Consequently, in view of As-

sumption 3 and Proposition 1, it holds that

∂W

∂e
G(t, x, e) ≤

∣∣∣∣∂W∂e
∣∣∣∣ |G(t, x, e)|

≤ (1 + ε)c
[
2
(
λf + λf̂

)
(1 + λk) |x|

+
√

2 max
{
λf̂ (1 + λk); 2λfλk

}
|e|
]

≤ |ỹ|+ LW (i, e) ,

where L is given by (17) and

ỹ := 2c(1 + ε)
(
λf + λf̂

)
(1 + λk)x . (30)

Furthermore, in order to show that (12a) is L2-stable from ỹ to W ,
we consider the Lyapunov function associated to the nominal con-
trolled plant ẋ = f(x, κ(x)). In view of Assumption 4, considering
first the cases when P(t) = 0 and using the mean value theorem
together with Assumption 5, the total derivative of V along the
solutions of (12a) yields

∂V

∂x
(x)F (t, x, e) =

∂V

∂x
(x)f(x, κ(x+ e2))

≤ ∂V

∂x
(x)f(x, κ(x)) +

∂V

∂x
(x) [f(x, κ(x+ e2))− f(x, κ(x))]

≤ −α |x|2 + dλfλk |e2| |x| .

But it can be seen that dλfλk |e2| |x| ≤ α/2 |x|2 +

d2λ2
fλ

2
k/2α |e2|2. Consequently, we obtain that, whenever P(t) =

0, ∂V
∂x

(x)F (t, x, e) ≤ −α
2
|x|2 +

d2λ2
fλ

2
k

2α
|e2|2. Similarly, at all

time instants where P(t) 6= 0, ∂V
∂x

(x)F (t, x, e) ≤ −α
2
|x|2 +

d2λ2
fλ

2
k

2α
|e1|2. Thus, using (27), we obtain that, for all t ∈ R≥0,

all x ∈ Rn and all e ∈ R2n, ∂V
∂x

(x)F (t, x, e) ≤ −α
2
|x|2 +

d2λ2
fλ

2
k

2αamin{1,ε}W (i, e)2. Integrating this differential inequality, we
get that, for any t0 ∈ R≥0, any t ≥ t0 and any x0 ∈ Rn,∫ t

t0

|x(s)|2 ds ≤ 2

α
V (x0) +

d2λ2
fλ

2
k

α2amin{1, ε}

∫ t

t0

W (i, e(s))2ds ,

(31)
where we used the shorthand notation x(·) to denote x(·, t0, x0).
Hence, in view of (30) and Assumption 4,√∫ t

t0

|ỹ(s)|2 ds ≤
2
√

2αc(1 + ε)(λf + λf̂ )(1 + λk)
√
α

|x0|

+
2dλfλkc(1 + ε)(λf + λf̂ )(1 + λk)

α
√
amin{1, ε}

√∫ t

t0

W (i, e(s))2ds ,

which means that (12a) is L2-stable from W to ỹ with gain γ given
in (18). Furthermore, the NCS (12) is L2-to-L2 detectable from
(W, ỹ) to (e, x). This follows from the fact that (31) implies√∫ t

t0

(
|x(s)|2 + |e(s)|2

)
ds ≤

√
2α

α
|x0|

+
1

amin{1, ε}

(
1 +

dλfλk
α

)√∫ t

t0

W (i, e(s))2ds ,

Finally, invoking the global Lipschitz of the righthand side of (12)
ensured by Assumption 5, we see with [8, Proposition 2] that the
NCS is UGFTIS. The conclusion then follows by invoking [8,
Corollary 2], which guarantees UGES of the overall NCS (12)
under the condition that ti+1 − ti ≤ 1

L
ln
(
L+γ
ρL+γ

)
for all i ∈ N,

which is itself ensured by (14).
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