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Abstract

This thesis aims at defining strategies to reduce haptic information
complexity, with minimum loss of information, to design more effec-
tive haptic interfaces and artificial systems. Nowadays, haptic device
design can be complex. Moreover, the artificial reproduction of the
full spectrum of haptic information is a daunting task and far to be
achieved. The central idea of this work is to simplify this information
by exploiting the concept of synergies, which has been developed to
describe the covariation patterns in multi-digit movements and forces
in common motor tasks. Here I extend and exploit it also in the
perceptual domain, to find projections from the heterogeneous infor-
mation manifold, generated by the mechanics of touch, and what can
be actually perceived by humans. In this manner, design trade-off be-
tween costs, feasibility and quality of the rendered perception can be
individuated. With this as motivation, referring to cutaneous sensing,
I discuss the development of a fabric-based softness display inspired
by “Contact Area Spread Rate” hypothesis as well as the characteriza-
tion of an air-jet lump display method for Robot-assisted Minimally
Invasive Surgery. Considering kinaesthesia, I analyze the problem of
hand posture estimation from noisy and limited in number measures
provided by low cost hand pose sensing devices. By using the infor-
mation about how humans most frequently use their hands, system
performance is enhanced and optimal system design enabled. Finally,
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an integrated device, where a conventional kinaesthetic haptic display
is combined with a cutaneous softness one, is proposed, showing that
the fidelity by which softness is artificially rendered increases.
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Introduction

This thesis aims at individuating models and strategies to harness
the complexity of the sense of touch, by following a geometrical re-
duction approach that maps between a higher dimensional space of
perceptual elemental variables (i.e. information provided by sensory
receptors) and a lower dimensional space of primitives of percepts and
performance variables, with limited loss of information. The goal is
to use these primitives to drive the design and the improvement of
haptic devices and artificial systems, in order to enable for a more
compelling and reliable human-machine interaction.

According to the definition in [11], haptic interfaces attempt to
replicate or enhance the touch experience of manipulating or perceiv-
ing a real environment through mechatronic devices and computer con-
trol. Haptics (haptic derives from Greek haptesthai, relative to touch)
is the science whose purpose is to create and experience tactile stimuli
in humans. The leading role in everyday life of the sense of touch and
of its primary physical organ, i.e. the hand, is widely recognized as
well as its importance both in the sensory and motor domain. Human
beings explore the external world by means of their hands, which rep-
resent the fundamental channels to convey haptic information and to
actively modify the environment. As Kant affirmed [12]: This sense
is the only one with an immediate exterior perception; due to this it
is the most important and the most teaching one, but also the rough-
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Introduction

est. Without this sensing organ we would not be able to grasp our
physical shape, whose perception the other two first class senses (sight
and hearing) have to be referred to, to generate some knowledge from
experience.

Under a biological point of view, this importance is emphasized
e.g. by the organization of sensorimotor functions and the distribu-
tions of body parts on the primary motor cortex and primary so-
matosensory cortex [13], where haptic stimuli are mainly processed.
As it shown in figure 1, a consistent portion of human cerebral cor-
tex is dedicated to fingers and hand, and haptic sense is predominant
within the sensorimotor functions. Consequently, it is not surprising

Figure 1: Human cerebral cortex: visualization of sensory functional
areas (on the left) and motor functional areas (on the right).

that touch is an extremely complex and heterogeneous information
generator with a large number of functions and sensors. Indeed, when
an object is haptically explored, information about texture, hardness,
weight, shape, size and thermal properties are conveyed, thus produc-
ing a manifold perception. Trying to reproduce all these dimensions
by means of haptic interfaces is a daunting task. What is challenging
is to individuate some suitable projections onto adapted perceptual
subspaces, which can approximate (and reduce) this complexity and
furnish design compromises between feasibility, costs and quality of
haptic stimuli to be rendered.

2
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Motivations. Nowadays haptic interface design can be complex
(and sometimes unsatisfactory) according to the perception to be re-
produced. This thesis aims at simplifying it (and improving it), with
minimum loss of information, taking inspiration from neuroscientific
studies that in the last twenty years have investigated the complex
biomechanical and neural apparatus of the human hand.

The main finding shared by all these studies is that, despite hand
complexity, simultaneous motion and force of the fingers is character-
ized by coordination patterns that reduce the number of independent
Degrees of Freedom (DoFs) to be controlled [14]. This experimental
evidence, which can be explained in terms of central (neural inputs
are shared by different units acting on different digits) and peripheral
(e.g. interconnections between tendons of hand muscles) constraints
in the neuromuscular apparatus, describes well the concept of hand
synergies, (synergy, from Greek work together) i.e. broadly, the afore-
mentioned covariation schemes observed in digit movements and con-
tact forces.

A very important geometrical interpretation can be drawn from
these results: i.e. for a wide range of hand behaviors, the kinematic
space of the hand has a smaller dimensionality than the one repre-
sented by its mechanical degrees of freedom. In a certain sense, syn-
ergies can be regarded as maps [15] between the higher dimensional
redundant complexity of purely mechanical architecture of the human
hand and the lower dimensional control space of the action and per-
formance, where it is possible to individuate kinematic and kinetic
primitives. Following this geometrical interpretation, dimensionality
reduction techniques such as Principal Component Analysis (PCA)
have been often exploited to quantify and define synergies from a set
of hand configurations, for example in grasping tasks [16]. Under a
kinematic point of view, in [16] authors demonstrated that a few linear
combinations of the measured DoFs of the hand can explain most of
the variance contained in the original set of hand postures. Moreover,
while lower order PCs (or postural synergies) are able to describe basic
finger motion patterns, the higher order PCs are mainly responsible
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for finer hand adjustments. Using the concept of basis from the the-
ory of vector spaces, it is possible to regard these PCs as a number of
linearly independent elements that are able to generate all members of
a given set. According to the number and type of these elements (i.e.
the level of truncation of the basis), a series of inner representations
of the hand [16, 17] of increasing complexity can be individuated.

In robotics, the concept of synergies has then been adopted to de-
fine simplified manners for the design and control of artificial hands [18–
21], using a reduced number of control inputs.

An interesting dual application of the aforementioned concepts
might be extended to the haptic sensing domain, in order to find maps
between the higher-dimensional redundant space of elemental sensory
variables involved in the mechanics of touch and the lower dimen-
sional space of perceptual primitives, i.e. “what we actually feel”. An
attempt to accomplish this goal was reported in [22], where authors
hypothesized the existence of a sort of sensory synergy basis. The
elements of this basis can be regarded as tactual perception manifold
projections onto constrained subspaces, the latter ones individuating
increasingly refined approximations of the full spectrum of haptic in-
formation. Also feature saliency paradigm described in [23] for the
individuation of the predominant characteristics in haptic shape per-
ception can be interpreted as an attempt to reduce haptic information
redundancy.

In [24] it was investigated the existence of a plenhaptic function for
determining the dimensionality of haptic perception. This function is
the dual of the plenoptic function [25], defined in the visual domain to
indicate the number of coordinates necessary to describe all possible
sensorimotor interactions. The plenhaptic function can be regarded
as the complete characterization, under a mechanical point of view,
of the haptic experience; in terms of vector basis, it comprises all the
elements necessary for an exhaustive description. Furthermore, the
author noticed that even if the number of dimensions needed to de-
scribe mechanical interactions in haptics is larger than three or four
(it is in general infinite), human touch-related experience seems to

4



i
i

“PPROVA” — 2012/12/18 — 15:43 — page 5 — #8 i
i

i
i

i
i

take place in a lower dimensional space; i.e. nervous system produces
nearly instantaneous reduction of dimensions, to convert a complex
problem into a manageable set of computational tasks. Tactile il-
lusions, for example, can be interpreted as the results of these low
dimensional simplifications of the plenhaptic function – sampled in
time and space – related to motoric and sensory capabilities.

In softness discrimination, a possible reduction of dynamic, force-
varying tactile information operated by nervous system can be de-
scribed by tactile flow paradigm [26, 27], which extends Horn and
Schunk’s equation [28] for image brightness to three-dimensional strain
tensor distributions. Tactile flow equation suggests that, in dynamic
conditions, a large part of contact sensing on the finger pad can be
described by the flow of strain energy density (SED) (or Equivalent
von Mises Stress), since Merkel-SA1 afferents, which are primarily re-
sponsible for dynamic form in tactile scanning, were proved to be
selectively sensitive to these scalar quantities [29]). However, the
flow components that are tangent to the iso-intensity curve itself
(i.e. components perpendicular to the intensity gradient) can not be
determined, as it results from the constraint equation. This intrinsic
ambiguity (the same exhibited also by optic flow) can generate hy-
potheses on some tactile illusions, which were also psychophysically
demonstrated [27]. These illusions can be interpreted in terms of in-
formation loss due to projections onto a low dimensional space, as it
was also discussed w.r.t. plenhaptic function [24].

Moreover, the integral version of tactile flow equation can be used
to explain the Contact Area Spread Rate (CASR) [30] experimental
observation, which affirms that a considerable part of tactile ability in
object softness discrimination is retained in the relationship between
the contact area growth over an indenting probe (e.g. the finger pad
which presses the object) and the indenting force itself.

These suitable approximations and reductions of haptic informa-
tion manifold can suggest new strategies to build haptic interfaces.
For example, recognizing that a simple force-area relation describes a
large amount of cutaneous information involved in softness discrimi-
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nation by probing has inspired the development of simpler and more
effective haptic displays for human-computer interaction, e.g. [30]. In
general, motor and sensory synergy concepts can be exploited to ad-
vance the state of the art in artificial systems, by learning from human
data and hypotheses-driven simulations.

Thesis Contributions. In this thesis I define models and methods
to convey haptic stimuli and design haptic devices and active touch
sensing instruments, by following the above described geometrical,
synergy-based reduction. More specifically, I adopt this approach
with the two main functions of haptic perception, cutaneous informa-
tion (which is mainly related to the mechanical deformation of the
skin) and kinaesthesia (which indicates the internal sensing of forces,
displacements and postures processed inside joints, muscles, tendons
and skin). This classification suggests an organization of this work in
three parts.

After a brief introduction about the two haptic modalities and
their rendering, in the first part I consider the problem to define prim-
itives for the design of tactile displays. More specifically, considering
softness discrimination and possible reductions of the involved tactile
information (tactile flow equation), I discuss the design of a fabric-
based softness display [A1,A2] inspired by Contact Area Spread Rate
hypothesis. Subjects interact with this display touching a deformable
surface which is naturalistically modelled under their fingertip, there-
fore their capability of tactually perceiving softness appears to be
increased compared with the one offered by a discrete CASR-based
pneumatic device previously developed in [30].

Afterwards I analyze the problem to find simple conceptual prim-
itives to vehiculate information about stiffness and geometry of hard
lumps (cancer) embedded in soft tissues. This information has to
be conveyed to surgeons during palpation tasks performed in Robot-
assisted Minimally Invasive Surgery (RMIS). A commonly explored
solution to this problem has involved various forms of pin-based tac-
tile arrays [31–33]. These devices can recreate a broad range of
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stimulus perceptions upon the finger pad, but their somewhat bulky
size [34] and complex electromechanical design do not satisfy the re-
quirements for implementation on a typical robot-assisted surgical
system; namely, a practical system must be simple in design, occupy
an extremely small footprint, and not impede the motion or dexter-
ity of the master manipulators. Moreover, few studies have demon-
strated tactile displays capable of integration within an RMIS system,
largely because the size and weight constraints of RMIS motivate a
more targeted approach. To overcome these limitations, it is possible
to perform a reduction from the higher dimensional space of tech-
nological solutions so far adopted to a lower dimensional space. In
this space, the design can be simplified by relating the technology
exploited for stimulus rendering to “what we actually feel” in a more
direct and natural manner. Therefore, a pneumatic air-jet approach
is proposed, in which pressurized air is directed to the finger pad
through a small circular aperture, creating a somewhat hemispherical
“lump-like” indentation upon the finger pad. This idea was previously
explored in [35], but not rigorously tested quantitatively or evaluated
psychophysically. Here, I describe the psychophysical characteriza-
tion and fluid dynamics modelling [A3] of an air-jet-based method,
which has then been implemented in a tactile display [A4]. This work
was developed in collaboration with James C. Gwilliam, a Biomedical
Engineering PhD candidate from Johns Hopkins University School of
Medicine, who equally contributed to it, and will be included also in
his PhD dissertation. This collaboration refers to my visiting period
(January-June 2011) at the Laboratory for Computational Sensing
and Robotics (LCSR) - Johns Hopkins University, under the super-
vision of Prof. Allison M. Okamura (Research Professor in the De-
partment of Mechanical Engineering and Vice Chair, Johns Hopkins
University till June 2011; from July 2011, Associate Professor in the
Department of Mechanical Engineering, Stanford University).

In the second part, I deal with the issue for a correct pose estima-
tion with active touch sensing systems, analyzing how artificial kinaes-
thetic rendering of hand posture can be simplified by means of hand

7
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synergy concept. Up to now, kinematic synergies have been mainly
used for the design and control of under-actuated robotic hands. This
concept can be easily extended to the observability domain; i.e. if a
reduced number of degrees of freedom is sufficient to control a human
or artificial hand, it is reasonable to assume that a subset of measured
hand DoFs is sufficient to guarantee a correct pose estimation as well.
This idea was pioneered in [36] where postural synergies for grasping
were exploited to animate a whole human hand avatar. In this thesis
I follow an optimal estimation approach to solve the problem of hu-
man hand posture reconstruction using sensing gloves. Sensing gloves
for hand tracking and configuration measuring are widely adopted in
many applications fields like, for example, virtual reality, musical per-
formance, video games, tele-operation and robotics, since they offer
useful interfaces for human-machine and haptic interaction. However,
the widespread commercialization of these systems imposes limits on
the production costs and affects the quality of measurements, which
can be limited under several regards. They can be generated through
an imperfectly known model, can be subject to noise, and can be less
than the number of degrees of freedom of the hand. Under these con-
ditions, direct reconstruction of the hand pose is an ill-posed problem,
and performance is reduced.

To obtain an acceptable level of accuracy without modifying the
glove hardware, hence basically at no extra cost, I propose to use the
information on most frequent human hand poses, as represented in a
database of postural synergies for grasping built beforehand [16]. By
following a Minimum Variance Estimation approach (MVE), such an
a priori information is fused with glove data in a consistent way, so
as to provide a good hand pose reconstruction in spite of insufficient
and inaccurate sensing data [A5].

As a second step, I analyze the problem of optimal glove de-
sign [A6]. Synergies-driven optimization leads to define, for a fixed
number of measures (usually noisy and inferior to the mechanical
kinematic space of the hand) and for a given a priori database, the
best linear combinations of DoFs as well as single DoFs of the hand

8
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model to be measured, which are able to maximize the knowledge on
the whole hand posture. Simulations and experiments are reported
which demonstrate the effectiveness of the proposed techniques.

In the third part, generalizing the “synergies as a basis” descrip-
tion [22] for softness discrimination, I venture to speculate about ki-
naesthesia and cutaneous sensing as the two main synergies of the
haptic synergies basis, which completely describe the mechanics of
touch and its perception. Moreover, in softness discrimination a gra-
dient was found [37] – where cutaneous cues are predominant – even
if both the modalities are necessary to get precise perceptual infor-
mation. Here, I study the problem of the fidelity by which softness
can be artificially rendered with the number of “synergies” (i.e. ki-
naesthesia and cutaneous cues) employed in rendering [A7,A8]. This
analogy is coherent with the idea that a large number of motor syn-
ergies is required to accomplish increasing complex motor tasks [16].
Therefore, I realized conceived specimens which can convey identical
kinaesthetic but different cutaneous stimuli, or the other way around,
asking subjects to probe them for softness. Results indicate that uni-
modal (i.e. when either haptic modality is present by itself) touch
alone is not sufficient to enable a satisfactory discrimination of soft-
ness, and that more elements of tactual information are necessary to
elicit a more exhaustive perception. With this as a motivation, I dis-
cuss the implementation and control of an integrated device, where
a conventional kinaesthetic haptic device is combined with a cuta-
neous CASR-based softness display. I investigated the effectiveness
of the integrated display via a number of psychophysical tests and
compared the subjective perception of softness with that obtained by
direct touch on physical objects. Results show that the subjects in-
teracting with the integrated haptic display are able to discriminate
softness better than with either a purely kinaesthetic (basically a force
display) or a purely cutaneous display (which conveys force, contact
and shape information to the skin).

9
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Chapter 1
Real Touch and Rendered Touch

The sense of touch is an astonishingly complex and heterogeneous
information generator. This information is essential for humans, and
animals in general, to properly perceive and interact with the environ-
ment, and hence to survive. As Aristotle affirmed in his de Anima:
Without touch it is impossible for animals to exist...the loss of this
one sense alone must bring death. Therefore, haptic perception rep-
resents a rich information manifold, as it results from the integration
and processing of a wide number of signals from measurement loca-
tions and sensors distributed through human body. Even if thermal
and pain information is also provided, haptics is mainly a mechanical
sensory system. Various types of sensors can be individuated refer-
ring to the two fundamental functions of human nervous system which
play a primary role in haptics: kinaesthesia and tactile (or cutaneous)
sensing.

Tactile receptors (mechanoreceptors) can be found in the outer ar-
eas of glabrous and hairy skin, usually in exposed positions (e.g. fin-
gertips). More specifically, these receptors are mainly located in the
dermis1, a fibrous layer which supports the epidermis, the outermost
layer of the skin (where it is possible to find primarily protective

1or in the dermo–epidermal junction [38]
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Real Touch and Rendered Touch

horny structures, such as stratum corneum) [39]. Mechanoreceptors
basically react on the strains of the skin and their reaction can be
proportional to velocity, acceleration or elongation [40]. Under a neu-
rophysiological point of view, the classic manner to classify the sen-
sory endings in the mammalian skin distinguishes between slow and
fast adapting receptors [38]. Slow Adapting (SA) receptors exhibit
a response during both the initial phase of the stimulus and steady
pressure; fast (or Rapid) Adapting (RA) ones respond only at the on-
set of the mechanical indentation of the skin. Hereinafter, following
classic engineering naming, the words receptors and sensors are used
as synonyms. There are three typologies of SA receptors, which can
be grouped in Type I receptors – which respond if the skin is stroked
rapidly – and Type II – which respond to a constant displacement of
the (stretched) skin – described as it follows [29,38]:

· slow adapting Type I (SA1) afferents that end in Merkel cells.
These receptors are distributed just beneath the epidermis. In
response to a sustained indentation they exhibit a sustained,
slowly adapting discharge, linearly related to the indentation
depth. SA1 receptors are selectively sensitive to points, corners,
edges and curvature as a consequence of their selective sensitiv-
ity to Strain Energy Density (SED) or closely related quantities
(e.g. Equivalent von Mises Stress). For this reason and because
of their high spatial resolution (0.5 mm in a receptive field with
2-3 mm diameter), SA1 sensors are able to transmit an acute
spatial neural image of a tactile stimulus;

· slow adapting Type II afferents (SA2) that are thought to end
in Ruffini corpuscles. The Ruffini corpuscles located in the deep
tissues of the dermis have a relatively large spindle shaped archi-
tecture. They are two-four times more sensitive to skin stretch
and six times less sensitive to displacement than SA1 afferents,
thus transmitting a neural image of skin stretch to the central
nervous system, with a minimized interference from eventual
objects held in the hand;
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· C-mechanoreceptors, with unmyelinated C-fibres originating from
the dermis. There is no differentiated sense endings associated
with them. These sensors respond to steady indentation of the
skin producing a slowly adapting discharge. However, C-fibres
produce responses also to non mechanical stimuli, such as tem-
perature and tissue damage.

On the contrary, rapid adapting receptors are defined as:

· rapidly adapting afferents that end in Meissner corpuscles.
These relatively large cell assemblies distributed in the dermal
ridges just beneath the epidermis, only in primate glabrous skin,
are insensitive to static skin deformation but four time more
sensitive to dynamic skin deformation than SA1 receptors, with
larger receptive field but with lower spatial resolution;

· Pacinian afferents that end in Pacinian corpuscles. Pacinian
corpuscles lie in the deeper tissues of the dermis in both glabrous
and hairy skin and are sensitive to deformation in the nanometer
range, with low spatial resolution and a receptive field that can
include the entire hand. They also exhibit an intense filtering
of low-frequency stimuli which could affect Pacinian sensitivity.
Even if single afferent is not able to represent in an accurate
manner the waveform of a complex stimulus, a whole Pacinian
population which fires randomly can provide a good represen-
tation;

· Hair Follicle Receptors, i.e. the complex meshwork around hair
follicle consisting of sensory nerve endings. They respond to any
movement of the hair.

A more exhaustive description of these receptors and their functions
can be found e.g. in [29,38].

Let consider now kinaesthetic sensing. The word kinaesthesia was
used for the first time by Bastian [41] in 1888, to indicate the intrinsic
capability to sense the position of our limbs and trunk. Moreover, an

13
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other object of kinaesthesia is the state of contraction and or/tension
of body’s muscles. This sense hence basically consists on force and
displacement processing and can be seen as a “mysterious sense”; in-
deed, humans are generally unaware of it and the sensation it provides
is hardly identifiable.

For this reason there is an ongoing debate – the so called debate
on the sensation of innervations, which raged from 19th century –
on which factors (and how they) contribute in an effective manner to
produce kinaesthetic perception. Indeed, while for much of the 20th
century it was assumed that receptors for joint positions and move-
ments were located at the joints themselves, today, after the ground-
breaking observations in [42], it is accepted that the primary role in
kinaesthesia is played by muscle spindles with additional important
contributions from skin and signals of central origin and very minor
contributions from joint receptors (which, under some circumstances,
can provide kinaesthetic inputs when signals from muscles and skin
are not available [43]).

Therefore, the leading kinaesthetic receptor is the muscle spin-
dle, which consists of a primary ending (responding to the size of
muscle length change and as well as its speed) and secondary end-
ing (which sense only position, with no velocity-related responsive-
ness) [44]. They are primary sensitive to vibration; however a signif-
icant contribution in kinaesthesia is provided also by passive tension
in muscles [45].

Other contributions to kinaesthetic perception can come from some
cutaneous receptors, the most likely is the skin stretch receptor, i.e. the
slow adapting Type II receptors served by Ruffini endings [46–49]. In-
deed, it was demonstrated that when the skin of the hand over proxi-
mal joints is stretched and muscle vibration is applied, the movement
illusions which arise from this stimulation are greater than when ei-
ther stimulus is present by itself [50]. The conclusion that authors
drawn from this finding is that cutaneous receptors contribute in an
independent manner to kinaesthesia. Other observations have been
done to further sustain this conclusion. For example, it was shown an
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occluding action of skin signals from local rapid adapting receptors;
when these receptors are stimulated by low-amplitude high-frequency
vibration, their response can affect the detection itself of the move-
ments [51]. Furthermore, a fundamental role in kinaesthesia is played
by those skin receptors located in the position adjacent finger joints,
to disambiguate muscle afferent information. Indeed the latter infor-
mation involves multiple joints; on the contrary, the proximity of the
receptors adjacent to each joint enables for joint-specific sensing [50].

For a more exhaustive review of kinaesthetic receptors and their
functionality see e.g. [45].

The aim of this biological introduction is to provide a concise de-
scription of these cutaneous and kinaesthetic sensors, since the correct
understanding of their functionality will be important to introduce
some aspects and considerations in next chapters. At the same time,
this description should underline the complexity that characterizes
tactual information manifold generated by the mechanics of touch.

What is noticeable from this brief description is that kinaesthesia
and cutaneous sense are complex and strictly related each other. In-
deed, some sensing elements can play an important role in both the
haptic modalities. Under an engineering point of view, classification
between kinaesthesia vs. tactile sensing has been usually adopted to
describe haptic interfaces [11]. In general kinaesthetic systems can be
impedance devices (they sense the position of the operator and then
apply a force vector to her/him in order to match a proper deflection of
the rendered object) or admittance devices (they sense operator’s force
and constrain her/his position to mimic rendered object deflection).
Commonly used haptic devices are e.g. Phantom Device (Sensable,
Wilmington, MA, USA) or Delta Haptic Device (Force Dimension,
Nyon, Switzerland), see figure 1.1.

These kinaesthetic devices primarily act as force displays, although
an inherent cutaneous sensation is provided through the contact with
the device tool.

On the contrary, tactile displays are purposely used to stimulate
skin, by conveying to it force, contact and shape information. They

15



Real Touch and Rendered Touch

Figure 1.1: Phantom Desktop Device by Sensable (on the left) and
Delta Haptic Device by Force Dimension (on the right).

are developed for a specific purpose, such as display of local shape,
shear or softness, see figure 1.2. Given the variety of cutaneous sensors
with different characteristics and sensitivity, it is particular challeng-
ing to properly design tactile displays able to render realistic contact
information.

Ideally, for touch to be real, it would be necessary to design haptic
devices which should be able to reproduce each dimension of tactual
sensation. However trying to render all these dimensions is clearly a
daunting task. Finding low dimensional projections of the mechanics
of touch, that I will argue to refer to as perceptual synergies according
to the concepts described in the Introduction, as well as suitable ge-
ometric reductions of design complexity, suggested e.g. by hand kine-
matic synergies, might lead to an useful trade-off between feasibility
and quality of rendering. In next chapters, following the kinaesthe-
sia/cutaneous sensing classification, I mainly focus on three types of
haptic and artificial systems:

I tactile displays:

softness display;

lump display for Robot-assisted Minimally Invasive Surgery;

II active touch systems for gesture measurement, mainly relying
on kinaesthetic perception;
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Figure 1.2: Latero Tactile Display by Tactile Labs [52] (on the lower
left) and the 36 pin tactile shape display [53] (on the upper right).

hand pose sensing glove performance enhancement;

hand pose sensing glove optimal design;

III integrated device, where a conventional kinaesthetic haptic de-
vice is combined with a cutaneous softness display.



Real Touch and Rendered Touch

Part I

Cutaneous Cues:
Softness Display

and RMIS Applications
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Chapter 2
Softness Displays: from Tactile
Flow to Contact Area Spread Rate
Paradigm.

Softness is the subjective measure of the compliance and hence of
the hardness (stiffness) of an object. When an object is haptically
explored, among the various types of information that can be con-
veyed, the material properties of hardness and texture appear to be
of particular importance. According to [54], hardness, together with
texture and thermal conductivity, is the maximally available dimen-
sion for processing after initial contact because, as opposed to geo-
metric properties, they do not need to be coded with reference to
a coordinate system. Indeed, it was observed that material proper-
ties provide faster perceptual access than the geometric properties of
size and shape [55]. Further behavioral [56, 57] and neuroimaging
[58] studies found out that, while remembering or imagining geomet-
ric features of an object evokes visual imagery, the interrogation of
material features evokes the processing of semantic object represen-
tations. This suggests that these are fundamentally tactual-related
properties, not easily accessed via vision or visual imagery.
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In [37] human capabilities in tactual discrimination of softness
were studied in order to isolate the involved information-processing
mechanisms. The main findings of this work can be summarized as:

· tactile information alone is sufficient in softness discrimination
for objects with deformable surfaces, since the spatial pressure
distribution within the contact zone is dependent on both the
force applied and the specimen compliance;

· on the contrary, kinaesthetic information alone is not sufficient
for softness discrimination of objects with deformable surfaces;

· for compliant objects with rigid surfaces, the pressure distribu-
tion and skin deformation are independent of object compliance.
As a consequence, both types of information are necessary to
have a correct perception.

Given that cutaneous sensing has a predominant role in softness
perception, I mainly focus on the mechanics of tactile information,
analyzing hypotheses on how the nervous system can cope it.

When a fingertip (or other tactually endowed parts of the body)
enters in contact with an object, a complex mechanical interaction
occurs, which generates tactile stimuli for the various mechanorecep-
tors. However, even if tactile information is extremely rich in content
and purposes, it might be not the case that all its richness is actually
necessary to discriminate softness of different materials. Therefore,
it is possible to argue about lower-dimensional projections of tactual
information manifold, which may provide conceptual models of how
softness information can be elicited from raw sensor data. These mod-
els should enable for a tractable, yet meaningful analysis, and hence
driving the design of more effective softness displays.

Using simple mechanics, let p(x) be the pressure exchanged at
point x on the contact surface between two deformable bodies, and
let the resultant contact force be denoted by P . Clearly, P equals the
integral of p(x) over the contact area A. Let also δ denote the overall
(rigid) relative displacement between the two bodies, i.e. the relative
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2.1 Tactile Flow Hypothesis

displacement of two reference frames attached to the two bodies in
positions as remote from contact as not to be subject to any deforma-
tion. The displacement δ is set to zero in the relative configuration
where the contact is first established. The resultant force P and rigid
displacement δ are already very simple and useful abstractions of con-
tact mechanics. Indeed, observing the process of tactile probing for
softness discrimination, the relationship between their evolutions pro-
vides a direct and very relevant information on softness - analogous
to the macroscopic force-displacement curve which characterizes de-
formability of material samples. Given that sensing resultant forces
and kinematic motions are primary objects of kinaesthesia, the P/δ
curve of a fingertip/object pair can be considered as the (abstract)
content of kinaesthetic information elicited by probing for softness.

Furthermore, under a cutaneous point of view, contact pressures
and displacements on the fingertip surface generate a distribution of
stress and strain tensors in the dishomogeneous, anelastic material
whose accurate modelling is very difficult. However, mechanorecep-
tors involved in softness discrimination (mainly SA1-Merkel corpus-
cles) appear to be predominantly sensitive to a single scalar mechan-
ical parameter, the Strain Energy Density (SED). This specific sensi-
tivity was used to define the following hypothesis about how nervous
system operates to reduce tactile information for softness discrimina-
tion into a manageable computational model.

2.1 Tactile Flow Hypothesis

Tactile flow paradigm [26] can be regarded as the tactual 3-dimensional
counterpart of the 2-dimensional optic flow model [28] for processing
dynamic tactile stimuli, which would gather information about soft-
ness discrimination, shape recognition and relative motion between
fingertip and explored object.

Let E(ξ, P ) denotes the SED at a point ξ within the volume VF
occupied by the deformed object of reference, under a given resultant
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force P (this relates to a specific pair finger pad/object, which is
henceforth assumed to be given). E is defined as

E =

√
2

2
·
√

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2 =
√

2·
√
τ 21 + τ 22 + τ 23

(2.1)
where σ1, σ2 and σ3 are the principal stresses and τ1, τ2 and τ3 are
the principal shear stresses. Consider now the locus of points within
the volume VF which have the same SED value. For instance, by
Σi =

{
ξ ∈ VF |E(ξ, P ) = Ei

}
will be denoted the iso-SED surface

whose points have SED equal to Ei. Assume that, from this condition,
the resultant force P is changed to P + ∆P : as a consequence, the
SED will change at points within VF . If for instance P is slightly
increased in magnitude, it can be expected that the SED for points
previously belonging to Σi will also increase. From another point of
view, the surface Σi can be considered as it moves, under the new
load conditions, to points that are farther away from the center of
the contact region. To describe how an iso-SED surface moves across
the volume VF , a simple differential equation for the conservation of
SED, analogous to optic flow equation in the form, is produced

dE(ξ, P )

dP
= 0 (2.2)

and, by expanding the total derivative,

∂E
∂ξ

∂ξ

∂P
+
∂E
∂P

= 0 (2.3)

or
∇E ~φ = − ∂E

∂P
(2.4)

Here, ∇E = ∂E
∂ξ

is the spatial gradient of E , i.e. a vector normal to the
surface in ξ, and ∂E

∂P
is the differential change in SED which is obtained

by measuring it at point ξ before and after applying the infinitesimal
load change dP . Finally, the vector ~φ(ξ) = ∂ξ

∂P
denotes the infinitesi-

mal motion of a surface element in Σi, and will be referred to as the
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2.2 Experimental CASR

flow of SED in the finger pad associated to the load change. Time-
varying excitation of SED-sensitive mechanoreceptors embedded in
VF is thus directly related to the SED flow through their location,
which might in turn be related to the perception of the spatial direc-
tion in which stimuli evolve. Notice that, analogously to optic flow
equation, tactile flow equation exhibits an intrinsic ambiguity since
it defines the 3-dimensional flow vector ~φ only up to a 2-dimensional
subspace 1.

Moreover, as it was suggested in [26], the rate of expansion of
iso-SED surfaces can be related to the rate of the expansion of con-
tact area under increasing load. Therefore tactile flow computational
model can be associated to the experimental paradigm of the Contact
Area Spread Rate (CASR) [30].

2.2 Experimental CASR

In [30], it was conjectured that, despite of the extreme richness of tac-
tile manifold, a large part of haptic information necessary to discrim-
inate softness of objects by touch is contained in the law that relates
resultant contact force to the overall area of contact, or in other terms
in the rate by which the contact area spreads over the finger surface
as the finger is increasingly pressed on the object.

This relationship is the so-called Contact Area Spread Rate (CASR);
in [30] authors also ventured to hypothesize that the area of the zone
itself is more relevant for softness discrimination than the actual shape
and location of the contact area. As further motivation for this obser-
vation, standard Hertz theory for contact modelling between elastic
bodies was exploited [59,60]. This theory provides a simple model of
the contact since it applies to homogeneous, isotropic bodies which
have dimensions larger than that of the contact area, and usually that
is not the case in common finger pad-object interactions. However it

1This ambiguity can provide an explanation for perceptual illusions psy-
chophysically observed in tactile domain [27]
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is useful to give a preliminary explanation of the phenomenon. In

Figure 2.1: Two bodies in contact according to Hertz theory.

case of contact between two spheres, the shape of the contact area is
circular with radius a, and the relative displacement of corresponding
points of objects by within the contact area is

ūz1 + ūz2 = δ − r

2R2
(2.5)

with δ = δ1 + δ2 representing the relative displacement, r the radial
distance from the center of contact and 1

R
= 1

R1
+ 1

R2
defines the

relative curvature. The resultant pressure distribution is obtained as

p(r) = p0 · [1−
(r
a

)2
]
1
2 (2.6)

where p0 is the pressure value at the center of the contact, while the
displacements by within the contact area are given as

ūzi =
1− ν2i
Ei

· πp0
4a

(2a2 − r2) (2.7)
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2.3 First Discrete CASR-based Display

with r ≤ a and νi, Ei indicate the Poisson coefficient and Young
Modulus of the two specimens in contact, respectively. After some
algebras the radius a is obtained as

a =
πp0R

2E?
(2.8)

where 1
E?

=
1−ν21
E1

+
1−ν22
E2

.
Computing the total force involved in the contact P as

P =

∫ a

0

p(r)2πr dr =
2

3
p0πa

2 (2.9)

it can be found that the contact area A is related to the force P as

A = π · a2 = π

(
3PR

4E?

) 2
3

(2.10)

Obviously CASR paradigm depends also from the geometrical
properties of the specimens, even if this dependence is assumed to be
weaker than the one with the elastic parameters (i.e. Ei and νi) [30].
Varying elastic parameters yields to different rates of spread of the
contact area A with the contact force P .

Recognizing that a simple force P vs area A relation describes a
large amount of cutaneous information involved in softness discrim-
ination by probing has inspired the development of new compelling
tactile displays.

2.3 First Discrete CASR-based Display
In [30] a prototype CASR display was also presented. Its role is to
mimic the rate at which the contact area of the probed material grows
over the surface of the probing finger pad. The implementation pro-
posed in [30] consists of a set of cylinders of different radii, assembled
in telescopic arrangement (see figure 2.3). Because of the disconti-
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(a) Elements of the display (b) Geometry of the display

Figure 2.2: CASR display scheme.

Figure 2.3: The discrete prototype CASR display.

nuity in the structure due to the cylinders, this CASR display will be
hereinafter referred as discrete CASR display. A regulated air pres-
sure is inflated inside acting on one end of the cylinders according to
the desired force to be perceived by subjects during indentation (see
figure 2.2). Pressure is applied on all the cylinders. When the subject
finger probes the display, pushing down against the cylinders, it comes
into contact with a surface depending on the height of the cylinders
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2.3 First Discrete CASR-based Display

Figure 2.4: Experimental force-area curves of the prototype CASR
display with constant pressure.

themselves and perceives a resultant force correlated to the pressure.
The length of the cylinders is chosen such that, when the operator
exerts no force, the active surface of the display can be approximated
in a stepwise manner as a cone whose vertex has a total angle of
2a. After the finger is pushed down by an amount of δ, the con-
tact area A can be approximately computed as A(δ) = π δ2 tan(δ)2.
Consequently, the resultant force P which is opposed to the finger
is P (δ) = pA (δ), with p is the pressure to be provided to the inner
chamber by the external pressure regulator. In this prototype, the
displacement δ can be measured with an optoelectronic sensor or a
proportional Hall sensor placed at the bottom of the chamber. In [30],
it was proved, by means of several psychophysical experiments, that
the discrete CASR display is able to provide better performance in
softness discrimination than the one achieved using a purely kinaes-
thetic display (i.e. the discrete CASR display covered with a hollow
cylinder).

From figure 2.4 what is noticeable is that the experimental curves
P/A obtained for the discrete CASR display, at a fixed pressure, are
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linear; to mimic real object CASR curves, typically nonlinear, the
display has to be controlled in feedback acting on the variable p. In
Chapter 5, I will illustrate a control strategy based on the principle
of virtual work.

2.4 A New CASR-based Display: the Fab-
ric Yielding Display (FYD)

So far I have described the discrete CASR display which is able to
replicate a desired force-area curve, enabling for a more realistic soft-
ness perception than the one achieved with a purely kinaesthetic de-
vice. However, the structure of this display does not provide sub-
jects with a continuously deformable surface. This fact, especially for
tele-operation applications, could lead to a not completely immersive
experience due to edge effects. Moreover, the contact area involved
in the interaction can be known only after some geometric consid-
erations related to the measured displacement. To mimic in a more
efficient manner real CASR curves, a real-time accurate measurement
of the contact region represents an important requirement.

To overcome the aforementioned limitations, I propose a fabric-
based display which allows subjects to interact with a deformable
surface at different levels of stiffness. In recent years, the role of the
exploration of both real and virtual textiles and fabrics has became
an important topic in haptic research [61–64]. For example HAP-
TEX Project [65] combines research in the field of haptic interfaces
and textile simulations with the final objective of providing a virtual
reality system for multi-point haptic interaction with a real-time simu-
lated virtual fabric. To achieve this purpose, mechanical and physical
parameters of textiles have to be evaluated. Here, I exploit the bi-
elasticity of a real fabric to convey both cutaneous and kinaesthetic
information; at the same time, a direct measurement of the contact
area involved in the interaction between the fingertip and the object
is also provided.
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2.4 A New CASR-based Display: the Fabric Yielding
Display (FYD)

2.4.1 FYD: Structure Description and Functional-
ity Explanation

The here proposed system, called hereinafter FYD (Fabric Yielding
Display) [A1,A2] is based on a layer of bi-elastic fabric which can be
touched by subjects with their forefinger. Bi-elastic means that the
fabric exhibits properties which render it elastic in at least two sub-
stantially perpendicular directions, and preferably in all directions.
By changing the elasticity of the fabric, subjects are able to feel dif-
ferent levels of softness. The FYD prototype is comprised of a hollow
plastic cylinder containing a DC motor. A thin layer of bi-elastic
square shaped fabric (250× 250 mm) is placed on the top of the hol-
low cylinder and it is tied to a circular crown which can run outside
along the cylinder, with a minimum friction. When the motor pulls
down the crown, the fabric is stretched and its apparent stiffness in-
creases. Conversely, when the motor pushes up the crown, the fabric
is relaxed and it is felt softer. The FYD also behaves like a contact
area display, by suitably processing signals coming from a couple of
photo-devices. A view of the display is reported in figures 2.5 and 2.7.

Figure 2.5: The FYD system: starting from the left side, it is possible
to see the electronic box, which contains the motor driver and the
DAQ card, the FYD prototype and a computer to control the system.
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Figure 2.6: External view of the prototype. The potentiometric sen-
sor connected to the crown is not reported to enable for a better
visualization.

Figure 2.7: Prototype internal view. It is possible to see the trans-
mission system and the DC motor position.

The FYD prototype is 300 mm high and 60 mm wide in diameter
and consists of three sections (see figure 2.6):

1. Motor section (80 mm high). The motor is controlled using a
Sabertooth Syren10 dual motor driver (Dimension Engineering,
Akron, OH, USA). This driver allows to get a bidirectional ro-
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2.4 A New CASR-based Display: the Fabric Yielding
Display (FYD)

tation of the motor. Using the National Instrument (Austin,
TX, USA) DAQ card PCI6036E, it is possible to acquire the
position of the crown with an external potentiometer connected
to it, and, consequently, apply the input voltage to the motor
in order to reach the desired position, i.e. the desired stretching
state of the fabric (see Section 2.4.2);

2. Transmission section (160 mm high). The transmission system
converts the rotational movement of the motor into the transla-
tional movement of the crown. The system consists of a screw-
female screw, the latter is attached to the crown by means of
three, 120◦ spaced, metallic supports. They are moved with the
crown. The DC motor is connected to the screw with an Oldham
joint, which is a homo-kinetic transmission joint, i.e. it is able
to transmit the same angular position, velocity and acceleration
from an input transmission shaft to an output one. The screw-
female screw system is one of the principle mechanical system
for linear or translational movement. It is adopted in order to
have an acceptable trade-off between the velocity of the crown
and the torque necessary to reach a good state of stretching of
the fabric. In addition, the screw-female screw system enables
for a bidirectional movement of the crown;

3. Web camera section (60 mm high). The camera (whose resolu-
tion is 320 × 240 pixels) is placed inside the hollow cylinder at
the center of the mechanical interface, just beneath the fabric.
The camera is endowed with high luminosity LEDs and frames
the lower surface of the fabric. During the tactual indentation,
the fabric is strained and the fabric area which comes into con-
tact with the fingertip changes according to the applied force.
The camera allows to acquire the image of the strained fabric
and, by means of suitable processing algorithms, the contact
area can be estimated (see Section 2.4.3).

The prototype as a whole is connected on a base (15 mm high and
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90 mm diameter) in order to guarantee the physical stability.
Several materials (including commercial Lycra R©, latex layer, and

silicon rubber) were tested to verify their suitability for my purpose.
The best performance was provided by Superbiflex HN by Mectex
(Erba, Como, Italy) because it exhibits both a very good elastic be-
havior with a large range of elasticity and a high resistance to traction.

2.4.2 Control

The control strategy is chosen in order to have a low computational
workload and guarantee a real-time functioning.

Control is based on the comparison of two signals (see figure 2.8):
Posref and Posr that are, respectively, the reference position and the
current position of the crown read by the potentiometer.

Figure 2.8: Control blocks architecture: Posr is the signal acquired by
the potentiometric sensor, S is the signal produced by the comparison
between Posref and Posr.

The comparison produces a third signal (s) for the motor driver
activation. In pseudo-code the situation is represented as

if(Posref==Posr){s=0}
if(Posref>Posr){s=+1}
if(Posref<Posr){s=-1}
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Display (FYD)

The signal s has three logical levels. When s = −1 the motor is
driven to clockwise rotate, while when s = +1 the motor rotates
counterclockwise. When s = 0, the DC motor is stopped at the
current position. Posref is the position of the circular crown, to which
a specific level of stretching of the fabric is associated. It is calculated
from the characterization curves (see Section 2.4.5). Posr is the signal
recorded by the potentiometric sensor and gives the current position
of the crown. At each simulation step, the control produces the signal
s and the DC motor is moved until the actual crown position is equal
to Posref. In figure 2.8 the control block diagram is reported, where
the delay unit is put in to prevent algebraic loop when the control
starts to run.

2.4.3 Area Acquisition

The FYD system allows to visually display the contact area between
the fabric and the finger. A suitable segmentation algorithm gives an
estimation of the contact area which is visualized in real time. The
contact area acquisition algorithm is based on RGB image binariza-
tion. More properly, only one image band (the R band, which is a
320 × 240 matrix of integer numbers) out of three is involved in the
area detection algorithm to avoid a computational workload too high
for assuring a real-time processing.

During the tactual probing, the indented fabric surface is closer
to the camera with respect to the outer region. Consequently, this
area will be more lighted up by the LEDs. The difference between
background luminosity and contact area luminosity is discriminated
by binarization thresholds (see figure 2.9), which are heuristically cal-
culated. Using a linear interpolation, at each vertical position of the
crown a binarization threshold is associated. In this manner, the pix-
els in the image which belong to the contact area are displayed as
white pixels.

The contact area in [cm2] is estimated as
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Figure 2.9: Scheme of the area acquisition and the illumination sys-
tem.

Carea = Np ×
Ac
Sp
, (2.11)

where Np is the number of white pixels belonging to the contact area;
Ac is the frame area in [cm2] and Sp is the web camera resolution
(i.e. 320 × 240 pixels). The accuracy of the contact area measure-
ment is crucial because the indentation force and the indentation dis-
placement are indirectly estimated using force-area, P (A), and force-
displacement, P (δ), characteristics. The result of the area detection
algorithm is reported in figure 2.10.

2.4.4 Characterization and Interpolation

The device here proposed is controlled in order to simulate mechanical
compliance of materials having specific P (δ) and P (A) curves. By
exploiting the bi-elasticity properties an acceptably large range of
levels of stiffness can be reproduced (from 0.45 N/cm to 2.05 N/cm).
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Figure 2.10: The results of the contact area detection algorithm: the
RGB acquisition (on the left side) and the result of the final binariza-
tion (on the right side).

In figure 2.11, the P (δ) and P (A) curves of the fabric at different
levels of stretching are reported. These levels were obtained changing
the position of the crown, from 0 mm (0 mm indicates the position of
the crown at the top of the cylinder) to 30 mm, with an incremental
step of 5 mm. A load-cell was used to measure the force applied on
the fabric during the indentation.

Indentation tests were performed by means of a compressional
indentor driven by an electromagnetic actuator. The actuator is a
Bruel & Kjear (Naerum, Denmark) minishaker, capable of applying
a maximum displacement of 10 mm in the axial direction. The in-
dentor was a wood model of the human fingertip of 15 mm in di-
ameter and 100 mm in length, representing a first approximation of
human fingertip. To achieve greater accuracy, differences between the
wood indentor (which is a non-compliant object) and human fingertip
(which is a compliant object) should be taken into account. However,
since deformations induced onto a fingertip which interacts with the
fabric are relatively small, the usage of a non compliant indentor is
reasonable. The indentor was equipped with both a magnetic lin-
ear transducer, Vit KD 2300/6C by KAMAN Science Corporation
(Bloomfield, Connecticut, USA), in order to measure the vertical dis-
placement of the fabric surface, and a load cell sensor, ELH-TC15/100
by Entran (Hampton, Virginia, USA), which is able to detect forces
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Figure 2.11: Characterization: P (δ) (upper figure) and P (A) (lower
figure) curves, obtained using a 5 mm step for the vertical crown
displacement.

up to ±50 N. In this manner, I obtained a real-time measurement of
P (δ) characteristics for each position of the crown.

At the same time, it was possible to acquire the image of the
strained fabric, by means of the camera endowed with high luminosity
LEDs, placed just beneath the fabric surface (at a distance of 30 mm).
Upon previously described processing algorithms, an estimation of the
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contact area under the indenting force was given. In this manner, a
real-time measurement of P (A) characteristics was obtained.

What is noticeable is that P (A) and P (δ) curves are linear over
all the positions of the crown.

During the characterization phase, only a finite set of positions was
acquired. For intermediate values, an interpolation is necessary; since,
as it results from figure 2.11, even if P (A) and P (δ) curves are linear
at fixed positions of the crown, fabric elasticity does not change in a
linear manner across all these positions, a piecewise linear interpolant
is adopted. It is possible to mimic a given material with a specific
stiffness coefficient (which can be regarded as the angular coefficient
of the P (δ) linear curve), by suitably identifying the corresponding
position of the crown. Moreover, from the actual measure of the
contact area, since P (δ) and P (A) curves are coupled, an indirect
estimation of the indented force and hence of the displacement can
be obtained.

Notice that these estimations are strongly related to the nature
of the contact. Indeed, in order to obtain coherent values, subjects
should touch the fabric in the same manner as the wood indentor did
during the characterization phase. However, this fact is not much re-
liable, since many factors can vary, e.g. the inclination of the fingertip
w.r.t. fabric surface. Therefore the indirect estimations of P and δ
have to be considered only as rough approximations, which can be
useful to provide a general idea of the interaction, without any claim
of exhaustiveness.

To overcome this problem, a second camera should be used, to
accurately measure fabric indentation, e.g. by processing the length
of a small line drawn on the lower surface of the fabric.

2.4.5 Graphical User Interface and Virtual Reality
Implementation

A GUI (Graphical User Interface) is implemented in Matlab by Math-
Works (Natick, Massachusetts, USA) to enable for a correct utilization
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of the display. The GUI presents a hierarchical structure and consists
of four windows: two for the initialization of the prototype and two
for the contact area measurement, and force and indentation indirect
estimation (see figure 2.12).

Figure 2.12: GUI: HOME and INITIALIZATION windows for the
initialization of the prototype; MEASUREMENT and VIRTUAL RE-
ALTY windows to display the values of force, area and indentation.

The “Home” window has the main role of managing all the simu-
lation levels. In fact, from the “Home”, each level of the GUI can be

40



i
i

“PPROVA” — 2012/12/18 — 15:43 — page 41 — #26 i
i

i
i

i
i

2.4 A New CASR-based Display: the Fabric Yielding
Display (FYD)

reached using an easy drop-down menu. The “Initialization” window
permits to insert a stiffness coefficient for the simulation of a par-
ticular material. This stiffness coefficient corresponds to an angular
coefficient of an unknown P (δ) characteristic, which can be obtained
interpolating the characterization curves. At the same time, the angu-
lar coefficient describing the related P (A) characteristic is calculated.
The “Measurement” window offers a complete environment for the
real time visualization of the principal contact parameters (measured
contact area, estimated force and indentation), with the possibility of
visualizing both the results from the area detection algorithm and the
RGB acquisition of the indented fabric surface. The “Measurement”
window also enables for a control of the correct functionality of the
display, in terms of motor performance monitoring. In the “Virtual
Reality” window a simple virtual reality application is realized to geo-
metrically describe both the contact area and the exerted indentation
indirectly estimated from

The Virtual Reality is also implemented in Matlab, see figure 2.15.
To describe the geometry of the indentation, two hypotheses are as-
sumed:

a. Contact area shape: the contact area shape is a perfect cir-
cle with radius of

√
Carea/π (Carea is calculated using the area

detection algorithm);

b. Indentation: the axis of the indentation is the vertical axis of
FYD.

Starting from assumptions (a) and (b), the indented surface is ap-
proximated using a set of truncated right cones nested together. They
present the same larger base area (which is equal to the upper base of
FYD), while the surface of the smaller base corresponds to the contact
area and it changes according to the value of indentation. Each value
of indentation is associated with a truncated cone, i.e. each value of
indentation describes the height of a truncated cone, figure 2.13. In
this manner, only the internal lateral surface of the truncated cone
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Figure 2.13: The set of truncated cones associated to different levels
of indentation. The term “C.A.” refers to the contact area. The term
δ refers to the indentation.

is useful for a correct visualization in a virtual environment and so
visible, while the rest of the cone is not displayed, even if drawn. To
completely describe the lateral surface, the only parameter to deter-
mine is the total height of the cone, h. This parameter can be ob-
tained by exploiting very simple geometric considerations. Referring
to figure 2.14, it is possible to write

AB = R

BK = OJ = r∗

AK = AB −BK = R− r∗,

(2.12)

with R ed r∗, respectively, the radius of the larger base and the radius
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Figure 2.14: Cross section of a cone and some geometric parameters.
h is the total height of the cone (to be determined), i the indentation
and R and r∗, respectively, the radius of the larger base and the radius
of the smaller base. h can be obtained by exploiting the similarity of
the triangles ĴKA and ĈOJ .

Figure 2.15: Final representation of the geometry of the indentation
in the virtual reality.

43



Softness Displays: from Tactile Flow to Contact Area
Spread Rate Paradigm.

of the smaller base (known from assumption (a)). Moreover

BO = KJ = i

OC = h∗ = BC −BO = h− i,

(2.13)

with i ed h, respectively, the indentation (indirectly estimated) and
the cone height (unknown). Exploiting the similarity of ĴKA e ĈOJ
triangles, it is possible to write

OC =
OJ ·KJ
KA

=
r∗ · i
R− r∗

. (2.14)

Considering that cone height h is given by

BC = BO +OC, (2.15)

finally, h is calculated as

h = i+
r∗ · i
R− r∗

=
R · i
R− r∗

. (2.16)

2.4.6 Psychophysical Experiments

The experimental session was designed to evaluate the performance
of the FYD, comparatively with a discrete CASR display [30]. The
performance of the FYD is assessed both with the integration of the
virtual reality rendering and without it, in order to evaluate if the sys-
tem improves when visual stimuli are provided. Five simulated level
of stiffness (SS1, SS2, SS3, SS4 and SS5) were chosen to be ren-
dered both with FYD and the discrete CASR display. The latter one
was experimentally characterized by means of indentation tests at dif-
ferent constant pressures. A compressional indentor was driven by an
electromagnetic actuator (Bruel & Kjear mini-shaker). The indentor
was a metallic cylinder of 1.5 cm in diameter and 10 cm in length and
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was equipped with a magnetic linear transducer, Vit KD 2300/6C by
KAMAN Science Corporation and a load cell sensor, ELH-TC15/100
by Entran.

In table 2.1 the input parameters for FYD and of the discrete
CASR device necessary to reproduce the five simulated stiffness values
are reported.

Stiffness Coeff. (N/cm) Pressure (bar) Position (cm)

SS1 0.67 0.35 0.16

SS2 1.00 0.5 0.41

SS3 1.18 0.6 0.86

SS4 1.28 0.7 1.44

SS5 1.71 0.8 2.33

Table 2.1: Discrete CASR display (third column) and FYD (fourth
column) parameters. The term “Position” refers to the vertical posi-
tion of the crown of the FYD ( position 0 is chosen near the top of the
cylinder) associated to a given stiffness coefficient. The term “Pres-
sure” refers to the pressure of the air inflated into the internal camera
of the discrete CASR display to mimic a given stiffness coefficient. At
each value of “Position” of FYD corresponds a value of “Pressure” of
discrete CASR device, in order to render the same level of stiffness.

2.4.6.1 Subjects

After written consensus, 10 healthy volunteers participated in the
study. Their age ranged from 23 to 40. None had a history of nerve
injury or finger trauma and their finger pads were free of calluses.
5 volunteers participated only in the experiments with the discrete
CASR display; 5 volunteers participated only in the experiments with
the FYD display (with and without the virtual reality integration);
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5 volunteers participated in all the experiments. In conclusion, each
type of experiment was performed by 10 subjects. Their handedness
was evaluated by the Edinburgh Handedness Inventory (EHI) [66] and
they were allowed to use the dominant hand to perform the task. They
always performed the tests comfortably sat, blindfolded (except for
the tests performed with the integration of the virtual reality render-
ing, in which subjects were requested to look at a monitor visualizing
the rendered tactile experience in the virtual environment) and with
plugged up ears, to prevent the possible use of any other sensory cues
and eliminate any diversion from the task. The chosen arm was locked
to the table and the subject was able to move the wrist and fingers
only.

2.4.6.2 Experiments: Design and Procedure

Subjects participating in these experiments were presented with ren-
dered levels of stiffness and were asked to judge them by touch. They
were instructed to do so by pressing vertically or tapping the index
finger of their dominant hand against the displays. Subjects were rec-
ommended to not perform movements of the finger across the surface
and to not apply lateral forces. In this manner, according to the liter-
ature [54], any anisotropic effect or distortion in softness perception
due to the radial/tangential discrepancy in touch is eliminated, only
focusing on normal indentation of the specimens. Experiments were
designed to test the ability of subjects to tactually discriminate soft-
ness both through the discrete CASR display and through the FYD,
with and without the integration of the virtual reality feedback. The
experiments included pairwise discrimination and ranking tasks. In
all tests, subjects had no time limitations and were allowed to check
each haptic stimulus as many times as they wished going back and
forth between them at will. The design of the experiments, in evalu-
ating ranking and pairwise discrimination performance, is similar to
the approach reported by [37].
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2.4.6.3 Pairwise discrimination

In each trial, a standard (SS3) and a comparison rendered level were
presented to the subjects in random order. After probing the spec-
imens, subjects were asked to report which of the two was softer.
Each task was performed three times for each subject. Subjects were
presented with new stimuli in less than a second.

2.4.6.4 Ranking

In the ranking experiment subjects were asked to probe and sort in
terms of softness the set of 5 level SS1 to SS5, presented in random
order. Ranking tasks were repeated three times for each subject.
Subjects were presented with new stimuli in less than a second.

2.4.7 Experimental Results and Discussion

2.4.7.1 Pairwise discrimination

Results of pairwise discrimination experiments, for both the displays,
are reported in figure 2.16. Answers are classified as X = 1 if the sub-
ject correctly identifies the softer specimen, or X = 0 otherwise. The
average number of correct answers mn is represented by the height
of the histogram bars in figure 2.16. The number of correct answers
is normalized, i.e. it is expressed in percentage terms as the ratio
between the number of correct pairwise discriminations and the to-
tal number of the pairwise discriminations. Therefore, the maximum
possible value assumed by mn is 1, equivalent to a percentage of cor-
rect recognition of 100%. The statistics of this binary experiment
are described by its Bernoulli distribution. Confidence intervals for
expected values E(X) with statistical significance (1 − α) are also
reported in figure 2.16. The intervals are computed as:

E(X) ∈

[
mn − zα/2

√
mn(1−mn)

N
,mn + zα/2

√
mn(1−mn)

N

]
,

(2.17)
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Figure 2.16: Results of pairwise test with CASR and FYD, with and
without the virtual reality feedback.

with α = 5%, sample size N = 30, and critical value of the nor-
malized standard distribution zα/2 = 1.96 (from standard statistical
tables). A chi-squared binary was performed to test the hypothesis
of sample independence between the three conditions (i.e. discrete
CASR, FYD with virtual reality environment, FYD without virtual
reality environment), using chi2bintest function for Matlab (Peder Ax-
ensten, c© 2007). In this case, p-value expresses the error risk to claim
that the samples are independent. A significant level of α = 0.05 is
assumed. It is worthwhile noting that for both the displays the nor-
malized correct answers are very similar and comparable (p > 0.05).

2.4.7.2 Ranking

Results from ranking experiments are shown in tables 2.2, 2.3 and
2.4, where subjective softness is reported versus objective compliance
in a confusion matrix structure [37] for the five levels, under the three
different conditions. Values on the diagonal express the number of
correct answers. The percentage of total accuracy is calculated con-

48



i
i

“PPROVA” — 2012/12/18 — 15:43 — page 49 — #30 i
i

i
i

i
i

2.4 A New CASR-based Display: the Fabric Yielding
Display (FYD)

SS1 SS2 SS3 SS4 SS5 N◦ Relative A.

SS1 18 4 1 1 6 30 60%

SS2 0 19 8 3 0 30 63%

SS3 2 1 18 8 1 30 60%

SS4 8 1 1 17 3 30 56%

SS5 2 5 2 1 20 30 66%

Total A.

N◦ 30 30 30 30 30 150 61%

Table 2.2: Confusion matrix of ranking experiments with the discrete
CASR display. The term “Relative A.” refers to the accuracy, i.e. the
percentage of correct recognition, associated to a specific level. The
term “Total A” refers to the total percentage of correct recognition,
considering all the levels.

sidering the sum of all correct answers. The correspondence between
an objective estimation of the compliance and the subjective evalu-
ation in terms of numerical values in a given scale was already used
in other work [37, 67]. The results obtained with the discrete CASR
display exhibits a percentage of total accuracy of 61%. The results
obtained with FYD, without virtual feedback, exhibits a percentage
of total accuracy of 82%. When subjects were allowed to exploit the
virtual reality rendering, a total accuracy of 84% is observed. In ad-
dition, the dispersion of the matrix for FYD display is reduced and
the matrix appears to be diagonal. The latter result is more evident
when visual cues are provided.
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SS1 SS2 SS3 SS4 SS5 N◦ Relative A.

SS1 22 4 0 2 2 30 73%

SS2 4 25 1 0 0 30 83%

SS3 0 1 27 0 2 30 90%

SS4 3 0 0 25 2 30 83%

SS5 1 0 2 3 24 30 80%

Total A.

N◦ 30 30 30 30 30 150 82%

Table 2.3: Confusion matrix of ranking experiments with FYD dis-
play, without the virtual reality feedback. The term “Relative A.”
refers to the accuracy, i.e. the percentage of correct recognition, as-
sociated to a specific level. The term “Total A." refers to the total
percentage of correct recognition, considering all the levels.

2.4.8 Conclusions

Results show that FYD seems to enable for a better softness per-
ception than the discrete CASR display. In pairwise discrimination
results between these two devices are comparable, but in ranking ex-
periments FYD exhibits the best performance. This enhancement is
probably due to the absence of edge effects during the interaction
between fingertip and fabric surface. This new device appears to pro-
vide cues for a more reliable and realistic perception, since the fabric
is deformable in a controlled way under the fingertip. This fact can
help to develop in a more effective manner haptic memory required
for multiple comparisons.

Furthermore, the real-time contact area measurement might allow
to mimic real CASR curves in a more efficient way.

Notice that FYD structure, in which everything is controlled by

50



i
i

“PPROVA” — 2012/12/18 — 15:43 — page 51 — #31 i
i

i
i

i
i

2.4 A New CASR-based Display: the Fabric Yielding
Display (FYD)

SS1 SS2 SS3 SS4 SS5 N◦ Relative A.

SS1 24 6 0 0 0 30 80%

SS2 6 24 0 0 0 30 80%

SS3 0 0 30 0 0 30 100%

SS4 0 0 0 24 6 30 80%

SS5 0 0 0 6 24 30 80%

Total A.

N◦ 30 30 30 30 30 150 84%

Table 2.4: Confusion matrix of ranking experiments with FYD and
the virtual reality feedback. The term “Relative A.” refers to the
accuracy, i.e. the percentage of correct recognition, associated to a
specific level. The term “Total A." refers to the total percentage of
correct recognition, considering all the levels.

measuring the position of the external crown, is simpler than the one
required for discrete CASR display, where the telescopic arrangement
of the cylinders as well as the embedded sensor placement can be quite
difficult to realize.

When FYD is used with the integration of the virtual reality feed-
back, the best results are observed in ranking experiments, when hap-
tic memory is integrated with visual memory. Indeed, since visual
information is related to the contact area and local deformation of
the fabric it can provide helpful cues in discriminating softness, with
many possible applications, e.g. medical training and video-games.

The above discussed results are very encouraging and further sup-
port the CASR paradigm in softness discrimination.

A new version of FYD with reduced dimensions has also been
realized, as it is shown in figure 2.17. In this version, a linear actua-
tor L12 with integrated controller (Firgelli Technologies Inc., Victoria,
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Figure 2.17: The last version of FYD (dimensions: 110 x 90 x 222 mm)
and a subject’s fingertip interacting with the display.

BC, Canada) has been used instead of the screw-female screw system,
improving dynamic characteristics and control. Device miniaturiza-
tion will be useful to enlarge the range of applications characterized
by a limited workspace, e.g. RMIS.
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Chapter 3
New Strategies to Convey
Cutaneous Information: a RMIS
Application

In previous chapters, methods to harness cutaneous information mani-
fold have been discussed. More specifically, referring to discrimination
of softness, a fabric-based device has been proposed, which is able to
produce a compelling perceptual experience.

In this chapter, the geometrical approach that has been followed so
far is used to individuate simple design primitives and strategies to ve-
hiculate information about stiffness and geometry of hard lumps (can-
cer) embedded in soft tissues. This information has to be conveyed
to surgeons during palpation tasks performed in Robot-assisted Min-
imally Invasive Surgery (RMIS) to enhance diagnostic performance.

RMIS represents a very challenging application field, since the
need to restore tactile feedback during typical surgical exploration is a
well-documented problem [32,68,69]. Common tasks like localization
of hard lumps embedded in soft tissues are extremely affected by the
complete lack of tactile feedback, since robot-assisted surgery prevents
direct contact between surgeon’s hand and tissues.

53



New Strategies to Convey Cutaneous Information: a RMIS
Application

With numerous tactile display mechanisms and even more pro-
posed applications, there is seemingly an infinite number of possible
tactile devices to be used.

Pin-based tactile arrays [31–33] represent commonly explored tech-
nology for this problem; these systems are built in various forms and
are able to produce a wide range of perceptual stimuli upon the finger
pad. However, their somewhat bulky size [34] as well as the design
complexity are not well suited for typical RMIS applications, in which
the main requirements are simplicity in design, reduced dimensions
and footprint, in order to avoid any limitations to master manipulator
workspace. For this reason, a more targeted approach is necessary.

The idea is to search for reductions from the high-dimensional
complexity of the technological devices so far exploited to a low-
dimensional space, where the perception of the lump is related in a
more direct and natural manner to the technological solution adopted
to render it.

Therefore I propose a pneumatic air-jet approach in which a pres-
surized air is directed to the finger pad through a small circular aper-
ture, creating a somewhat hemispherical “lump-like” indentation upon
the finger pad, see figure 3.1.

Figure 3.1: Proposed lump display method.

This idea was previously explored in [35], but not rigorously tested
quantitatively or evaluated psychophysically. In [35] authors directed
an air-jet into a thin membrane and varied lump size by changing the
distance between the jet and the finger. This technique provides a
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sensation of feeling a lump within tissue, which is clinically realistic,
but may restrict the range of stiffness that can be achieved. Moreover,
RMIS workspace limitation can prevent an easily implementation of
this approach which relies on changing the distance w.r.t. user’s finger
to convey different lump perceptual cues.

In this work, the basic concept is to adopt two independent control
parameters, which are hypothesized to enable for the manipulation of
the perceived stiffness and size of the lump, respectively. These pa-
rameters are (1) the supply pressure of the air and (2) the size of the
aperture through which that air escapes. This format allows some-
what compact design and may eventually result to be more suitable
for RMIS integration.

Notice that the term pneumatic “air-jet” here indicates a stimulus
in which air flows out of a nozzle over a distance until it contacts
the finger. There are other pneumatic-based devices in literature and
sometimes they are referred to as “air-jet”; however, they act more
like a pin-based or balloon arrays [33,70,71].

Air-jet techniques have been already used in tele-manipulation to
provide general touch feedback cues to the operator [72]. Moreover,
large arrays of air jets have also been used as stimulation devices
for functional somatotopic mapping in conjunction with fMRI ma-
chines [73]. These applications use air-jets for general instructional
or directional cues, while RMIS requires a more targeted approach.
Furthermore, an air-jet as a haptic stimulus is largely unexplored and
untested. The more it is possible to understand about it and how it
is controlled and the perception it induces, the larger the number of
applications in which it can be used.

With this as a motivation, in this chapter I describe the devel-
opment of the pneumatic lump display apparatus. Capacitive tactile
sensors were used to measure the output of the display, which is quan-
titatively analyzed by using classic fluid dynamics tools. Moreover,
psychophysical experiments were conducted to individuate the small-
est changes in supply pressure and aperture size which are detectable
to the human finger.
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Part of the results of this characterization was illustrated in [A3].
These results have provided the theoretical framework and guidelines
for the development of a novel air-jet pneumatic lump display [A4].

As already said in the Introduction, the work described in this
chapter was done in collaboration with James C. Gwilliam, a Biomedi-
cal Engineering PhD candidate from Johns Hopkins University School
of Medicine, who equally contributed to it, and will be included also
in his PhD dissertation.

This collaboration refers to my visiting period (January-June 2011)
at the Laboratory for Computational Sensing and Robotics (LCSR)
- Johns Hopkins University, under the supervision of Prof. Allison
M. Okamura (Research Professor in the Department of Mechanical
Engineering and Vice Chair, Johns Hopkins University till June 2011;
from July 2011, Associate Professor in the Department of Mechanical
Engineering, Stanford University).

3.1 Theoretical Background

To describe air-jet lump display, turbulent jet theory is exploited [74].
A jet is defined as a system in which a fluid (e.g. air) issued unidi-
rectionally from a localized source enters a quiescent medium of the
same fluid, causing turbulence in the process.

In the case here analyzed, the jet impinges against an obstacle
during its motion, more precisely against a finger pad.

In figure 3.2 the three distinct regions of turbulent jet impinge-
ment flow are illustrated: (1) the zone of flow establishment begins at
the jet nozzle and ends 4-6 A downstream, where A is the diameter of
the jet nozzle. This region contains the “potential core”, where there
remain regions of jet fluid which have not mixed with the surround-
ing fluid. (2) The second region is referred to as the established jet
region, where the asymptotic scaling for jet spread and velocity de-
cay pertains [75]. (3) The third region, called the impingement zone,
exhibits very different characteristics from the first two regions. It
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3.1 Theoretical Background

Figure 3.2: A typical round jet develops as a conical shape with a jet
spreading rate, S. The jet radius (R) is a function of the distance
from the outlet (x) and the aperture diameter (A). The jet exhibits
properties which can be divided into three distinct regions of interest.

begins when the pressure and velocity of the flow are altered by the
presence of the obstacle and includes the stagnation point, at which
the local velocity of the flow is zero.

Beyond the establishment region, free-jets spread linearly with dis-
tance from the nozzle exit and the centerline velocity decays inversely
with this distance. The jet velocity decay with distance can be defined
by

U0(x)

UJ
=

B

(x− x0)/A
(3.1)

where U0(x) is the jet centerline velocity at a distance x from the
jet nozzle, UJ is the jet centerline velocity at exit, x0 is the virtual
origin, A is the aperture diameter, and B is an empirical constant
called the velocity decay coefficient [74]. The linear spreading rate
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(S) of the jet can be defined by

S =
dr1/2(x)

dx
(3.2)

where r1/2(x) is the radial distance at which axial velocity falls to half
of centerline speed.

The goal of the measurements performed in this study is to char-
acterize the specific flow setup contained in the air-jet lump display.
Classical jet theory serves only as a reference point from which to
view the results of this study.

3.2 Design and Characterization
An experimental apparatus was built to measure distributed pressure
patterns on a tactile sensor array while air supply pressure and outlet
aperture size are controlled. The apparatus (figure 3.3) consists of
three main components: (1) an electronically controlled air pressure
regulator, (2) a set of interchangeable aperture diameters through
which the air escapes, and (3) a tactile sensor array to measure the
output.

The electronically controlled pneumatic regulator (SMC-ITV2031-
21N2L4, SMC Corporation, Noblesville, IN, USA) provides step-less
control of air pressure (0.05 - 0.5 MPa) proportional to an electrical
signal (0 - 5 V), with a maximum flow rate of 1500 L/min. Linearity
between the input signal and set pressure is within ±1% full scale
(F.S.), hysteresis within ±0.5% F.S. and sensitivity within 0.2% F.S.

The aperture size was set with six acrylic plates (5.4 mm thick),
each with a single drilled hole diameter ranging from 1.0 - 4.5 mm (as
reported in table 3.1). These values were chosen in order to match
common dimensions of small-medium lumps embedded in tissues. A
plate was clamped to the underside of the apparatus with the aperture
centered over the air source aperture, separated by a rounded rubber
washer to prevent air leaks. The regulator-supplied air was then forced
through the fixed aperture onto the tactile sensors.
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Table 3.1: Parameters for tactile sensor measurements

Aperture Diameters (mm)

A1 A2 A3 A4 A5 A6 A7
1.0 1.9 2.3 2.75 3.2 3.6 4.5

Supply Pressures (psi)

P1 P2 P3 P4 P5 P6 P7
10 20 30 40 50 60 70

The tactile sensor array is composed of three smaller sensors (Dig-
iTacts, Pressure Profile Systems, Los Angeles, CA, USA) arranged
contiguously to form a 6× 12 array of tactile sensing elements, oc-
cupying a total footprint of 12× 25 mm (figure 3.3, left). Each indi-
vidual sensor contains 24 sensing elements (each element measuring
1.8× 1.8 mm). The sensors are capacitive and provide a linear re-
sponse with a sensing range of 0 - 0.14 N/mm2 and a sensitivity of
6.9× 10−4 N/mm2.

A graphical user interface was developed in the QT environment
(QT Creator, Nokia, Helsinki, Finland) to send pre-calibrated voltage
levels from the computer via a NI-DAQ card (DAQCard-6024E by
National Instruments) to the electronic pressure regulator. The tactile
sensor array was centered 14 mm below the output aperture on a flat
rigid surface. Seven discrete and equally spaced supply pressure levels
between 10 and 70 psi (68.9 - 482.6 kPa) were used (cf. table 3.1) to
output air from the display onto the sensor array. Given the supply
pressure values as well as the turbulence nature of the jet, gravity
effects are assumed to be negligible. Pressure values were heuristically
chosen in order to enable for the simulation of a wide range of pressure
stimuli on the finger pad, thus avoiding too much high pressure that
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Figure 3.3: Setup for tactile sensor measurement. The air pressure
regulator forces pressurized air through the aperture plate. It con-
nects directly to the air source aperture and controls supply pressure.
Tactile sensors placed under the aperture record distributed pressure
as supply pressure and aperture size are varied.

can induce pain. The distance of 14 mm was heuristically chosen since
it provides a safety distance for user’s finger pad and does not affect
master manipulator dexterity.

3.2.1 Quantitative Characterization

The pneumatic lump display can be characterized by determining
the complex relationships between the supply pressure of the air, the
aperture size, and the resulting output pressure upon the finger (or
in this case, the tactile sensor array). This characterization occurs
as the two independent variables (supply pressure, aperture size) are
varied in a systematic manner, while the dependent variable (output
pressure) is measured on the tactile sensor array.

Ideally, the display output pressure would be determined using
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3.2 Design and Characterization

models of fluid dynamics. However, an accurate model is difficult to
obtain since the system is affected by many factors, including air tem-
perature, the type of air flow (e.g., laminar, turbulent), and resistive
pressure losses due to friction along the length of the tubing. There-
fore, given the simplicity of the test apparatus system (and hence dis-
play mechanism), the measured tactile data is a valuable substitute
for a full fluid dynamics system model. The output pressure of the
pneumatic lump display is evaluated in terms of (1) the peak pres-
sure value obtained during a measurement and (2) the distributed
pressure profile produced as the air impinges on the surface of the
tactile sensors.

Additionally, the sensor-based characterization is necessary for es-
tablishing the desired output pressures for subsequent human psy-
chophysical experiments.

Tactile sensors were used to measure air-jet output using every
permutation of seven apertures sizes and seven supply pressures (ta-
ble 3.1). A single trial consisted of a tactile sensor recording at 35 Hz
for 30 seconds, after which recording stopped. Prior to each measure-
ment, the tactile sensor array was set to a zero baseline to remove
any residual pressures and increase the signal-to-noise ratio (SNR) of
the measurement. For each aperture size, measurements began with
the smallest supply pressure (10 psi) and proceeded ascending order
of supply pressures, followed by descending order of supply pressure
measurements. Values assumed by tactile sensor elements were aver-
aged across the duration of the recording (referred to hereafter as a
“tactile image”, T ), and the maximum (peak) pressure value (Tpeak)
extracted from the resulting tactile image (figure 3.4, left).

Moreover, for each measurement, the column (Tc) of sensor el-
ements which contains the peak pressure value is used to analyze
the resulting pressure profile distributions. In all cases, Tpeak (and
hence Tc) is expected to be near the center of the tactile sensor array
since the air-jet was centered over the sensors. The values assumed
by elements from Tc were used to fit the distributed pressure profile
produced as the air impinges on the surface of the tactile sensors. Al-
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though, using a column of sensor elements provides less elements for
curve fitting (due to sensor array footprint), it ensures that elements
used span a single sensor, thus eliminating inter-sensor variabilities.

Figure 3.4: Example of peak pressure value and corresponding column
of tactile sensor elements. (Left) Sensor element data are averaged,
resulting in a “tactile image” with a peak pressure value at element
Tpeak. (Right) Tpeak determines which column of sensor elements (Tc)
is used to fit the distributed pressure profile.

3.2.2 Tactile Sensor Results

Figure 3.5 shows tactile sensor peak pressure values for every combi-
nation of aperture size and supply pressure. Each marker represents
a tactile sensor peak pressure value from a particular aperture size
and supply pressure. Aperture sizes increase from left to right on
the horizontal axis, while supply pressures are indicated by unique
line colors and marker types. Several observations can be made from
these data. First, increasing the supply pressure for a single aper-
ture size results in somewhat consistent incremental increases in the
resulting tactile sensor peak pressure. Second, the peak pressure val-
ues are minimum at the smallest and largest aperture diameters, and
maximum in between. This effect is especially exaggerated for larger
supply pressures and much more subtle for smaller supply pressures.
At small aperture sizes, resistive forces dominate, resulting in high
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3.2 Design and Characterization

Figure 3.5: Peak pressure values obtained from tactile sensor mea-
surements. Aperture sizes increase from left to right. Each line and
marker type represent a unique supply pressure. Solid and dashed
lines represent measurements obtained during descending and ascend-
ing series of supply pressures, respectively.

flow impedance and subsequently smaller pressure outputs, as seen
in the left half of figure 3.5. However, as aperture size increases, the
impingement zone becomes closer to the nozzle exit, where the ve-
locity profile is flatter [75], thus resulting in a decreasing of the peak
pressure amplitudes, as observed in the right half of figure 3.5. Third,
there is little hysteresis in the sensor measurements, as evidenced by
nearly identical traces of ascending and descending series recordings.
Finally, the highest supply pressures (P6, P7) were not attainable
using the larger aperture sizes with the experimental equipment, as
shown by the incomplete traces shown at the higher supply pressure
levels.

Figure 3.6 shows the pressure profiles obtained from the set (Tc)
of tactile sensor elements containing the peak pressure value, with
each point representing an individual tactile sensor pressure value.
Since the static pressure profile of an air-jet at an impinging surface is
normally considered to be Gaussian [76], a two-dimensional Gaussian
curve was fit to these averaged pressure profile values (figure 3.4) using
the ezyfit curve fitting toolbox for Matlab (Frèdèric Moisy, c© 2010).
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Figure 3.6: Gaussian curve fits for each tactile measurement. The
curve is fit to the profile of the row of tactile sensor elements contain-
ing the peak pressure value.
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Figure 3.7: Gaussian fit parameters and r2 values for all aperture sizes
and supply pressures. (a) Gaussian fit amplitudes (α) show similar
responses to peak pressure values. (b) Gaussian fit variance (σ) shows
consistent increases in spatial spread as aperture size increases. For a
single aperture, σ is largely independent of supply pressure. (c) Co-
efficient of determination (r2) values show how each Gaussian curve
fits to corresponding tactile sensor pressure profile.

The Gaussian equation is given by

y = αe
−(x−µ)2

2σ2 , (3.3)
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where α is the amplitude of the curve, µ represents the centering of the
curve with respect to the tactile sensor array, and σ defines the spatial
spread, or standard deviation of the curve. Each individual plot in
figure 3.6 represents the pressure profile and curve fit for a specific
aperture size and supply pressure. Plots with shaded backgrounds
indicate measurements for which the specified supply pressure is not
completely attainable at the given aperture size. Figure 3.6 qualita-
tively illustrates the changing shape of the pressure profiles. What is
noticeable is that the magnitude of the curve increases as the supply
pressure increases, as expected. However, to quantitatively assess the
change in pressure profiles shape as a function of the stimulus param-
eters, the Gaussian fit parameters were also evaluated (figure 3.7).
Figure 3.7a shows the amplitude (α) of the Gaussian curve fits, which
are consistent with the general shape of the peak pressure value curves
in figure 3.5. Figure 3.7b shows the spatial spread (σ) of each Gaus-
sian fit. Two important observations can be made from this data.
First, σ increases monotonically as aperture size increases, with few
exceptions. Second, for a single aperture size, σ is largely indepen-
dent of the supply pressure. Figure 3.7c shows (r2) values for each fit,
indicating how closely the Gaussian curves fit the tactile sensor pres-
sure profile data. Results indicate that as aperture size increases, r2
values decrease rapidly, especially for smaller supply pressures. This
may be partially explained by two factors. First, jet theory shows
that when the downstream impingement distance (H) is less than 4-5
times as large as the aperture size (A), the impingement occurs in the
potential core of the flow establishment region (figure 3.2), where the
flow profile has not yet become Gaussian [75]. Second, at lower supply
pressures, the sensor signal to noise ratio (SNR) is at a minimum, al-
lowing the sensor noise to become more dominant in the prescribed fit
of the curve. The term µ in (3.3) describes the offset distance between
the center of the Gaussian fit with respect to the center of the tactile
sensor array. This term might physically represent the position error
during placement of the aperture over sensor array. In all cases, this
error is within ± 0.5 mm. The extreme aperture sizes show Gaussian
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fits centered slightly right of center, while all others were slightly left
of center. No meaningful trend is established from this parameter.

Results from figure 3.7 have important implications for the control
of an air jet lump display mechanism. Figure 3.7a indicates that
the amplitude, or desired peak output pressure (α) of the display is
effected by both the aperture size and the supply pressure. The curves
on this plot represent the “display-space” of the mechanism given the
current range of parameters, and describe the space of achievable
peak output pressures. Changes in peak output pressure are most
sensitive to changes in aperture size at larger supply pressures. In
contrast, figure 3.7b shows that the width of the pressure profile (σ)
is largely independent of supply pressure, and is primarily a linear
function of the aperture size. If psychophysical perception of lump
size is indeed dictated by the width of the Gaussian pressure profile,
then this result suggests that perceived lump size could be controlled
only by adjusting the aperture size. The width of a Gaussian curve
described by (3.3) at a height of α/2 is referred to as the full width
at half-maximum (FWHM), and is denoted here by 2b, where b is
the half-width of the Gaussian curve at α/2. Figure 3.8 shows the
non-dimensionalized variation of 2b/H. For H/A > 5 approximately,
b is proportional to H (linear fit, r2 = 0.99), indicating a linear rate
of air-jet expansion with increasing distance from the source. For
H/A ≤ 5 (i.e., for impingements of the potential core occuring in the
flow establishment region), 2b/A approaches a value of 1. Figure 3.8
also shows data from Tu et al. [76] acquired from a plane jet over
a slightly larger range of H/A, which compares favorably with the
measured data of the air-jet lump display.

Moreover, notice that ratio b/H is found to be S = 0.091, which is
very comparable to the values obtained in [77] - (0.096) - and in [78,79]
- (0.102, 0.094, respectively) - in previous jet literature. An impor-
tant consideration in this comparison to previous work is that the jet
spread rate, S was defined by the rate at which the radial distance
of the profile achieved half of the centerline velocity (r1/2). Since
no direct velocity measurements was performed, the radial distance
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Figure 3.8: Dependence of pressure profile width on H/A. For H/A
> 5, approximately, b is proportional to A (r2 = 0.99). For H/A ≤ 5
(i.e, for impingement of the potential core), 2b/A is nearly constant
with a value approaching 1.

(b) at which the Gaussian pressure profile achieves half-width is used
instead.

3.3 Human Subject Experiments

All human subjects participating in this study were right handed vol-
unteers and gave informed consent to perform psychophysical experi-
ments. No subjects had any physical limitations that would affect ex-
perimental outcomes. All data collected in this study was approved by
the Johns Hopkins University Homewood Institutional Review Board.
Details for the three human subject experiments performed in this
study are summarized in table 3.2.

3.3.1 Preliminary Open Paradigm Experiment

A preliminary perceptual experiment was conducted to evaluate how
effectively the pneumatic display could produce a compelling lump
percept. Subjects were provided with four different pneumatic stim-
uli (AP1, AP2, BP1, BP2), summarized in table 3.3. Letters correspond
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Table 3.2: Summary of human subject experiments

Experiment M F Age

Open Paradigm 6 4 20 - 30
Pressure JND 5 5 20 - 28
Size JND 11 5 20 - 32

to the size of the aperture diameter (A= 1.6 mm, B= 2.5 mm) and
subscripts indicate the output peak pressure (P1 = 20 kPa, P2 =
60 kPa). The remaining numbers show the supply pressures required
to produce the desired peak pressures. These values were chosen to
investigate the perceptual effects on the mid-range of the control vari-
ables. A subject’s finger was fixed in a finger holder 14 mm from the
aperture. Subjects were allowed to move the finger horizontally over
the aperture but any vertical movement of the finger was prevented by
applying skin-specific adhesive tape (Trutape LLC, USA) to the back
side of the finger distal and middle phalanges to restrict movement
about the distal interphalangeal joint. This constraint fixed the dis-

Table 3.3: Stimuli for Open Paradigm Experiment

Aperture Size (mm)
Stimuli A B

(1.6 mm) (2.5 mm)

Peak Pressure (kPa) Supply Pressure (psi)
P1 20 (kPa) 20 14
P2 60 (kPa) 62 36
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(a) Typical Response (b) Exception: Round Corners

(c) Exception: Sharp Corners

Figure 3.9: Subject interpretations of open paradigm experiment
stimuli. Subjects experienced four unique stimuli spanning a wide
range of aperture size and output pressure, after which they were
asked to draw the perceived indentation shape upon their finger pad.
Three subjects’ renderings are shown here for all four of the stimuli.

tance between the finger pad and the nozzle for all the experiments.
The experiment administrator alternated the stimulus between the
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two aperture sizes (A or B) and the two pressure stimulus level (P1
or P2) as verbally requested by the subject. At all times, subjects
could view the current stimulus parameters on a computer display.
Subjects wore in-ear headphones playing white noise to avoid bias
from auditory cues. Subjects were allowed to experience each stimu-
lus as many times as desired (each stimulus lasting 1.5 seconds). After
a subject deemed their exploration of the four experiment stimuli suf-
ficient, they were asked to draw on paper the profile of the shape
they perceived by interacting with each stimulus. Eight of the ten
subjects drew “lump-like” shapes for all four stimuli, similar to those
shown in figure 3.9a. Subject 1 drew a rectangular shape for stimu-
lus B1 but with rounded edges (figure 3.9b), while subject 10 drew
a sharp triangular profile for stimulus BP2 and a wide rectangular
profile for stimulus BP1 (figure 3.9c). Results suggest that the major-
ity of subjects perceived profiles which were curved in shape, many
of them resembling a Gaussian curve. Furthermore, most subjects
varied their depiction of the profile amplitude and width (relative to
the other stimuli), indicating that subjects perceived changes in the
peak pressure and pressure profile width. Though it is not clear how
well subjects can translate a pressure profile felt at the fingertip to a
drawing canvas, it is reasonable to assume from the results obtained
here that the sensation conveyed by these stimuli were reasonably as-
sociated with a lump profile in the majority of cases. This preliminary
psychophysical experiment indicates that the sensation conveyed by
the pneumatic display for different peak pressure levels and aperture
sizes can be reasonably associated with a lump profile.

Next described experiments assess the magnitude of change in
stimulus parameters required for subjects to notice differences in lump
profile perception.

3.3.2 Psychophysical - Pressure JND

The aim of this experiment was to determine the minimum change
in air supply pressure required to detect a just noticeable difference
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Figure 3.10: Setup for both psychophysical experiments. A subject’s
right index finger is fixed in place 14 mm above the aperture. Sub-
jects enter responses about paired stimuli using a numerical keypad
with the left hand. The display apparatus is placed within a sound-
reducing box and subjects wear in-ear headphones playing white noise
and over-ear protection to prevent auditory cues.

(JND) at each aperture size. Subjects were seated comfortably with
the right index finger fixed in a finger holder, palm down, with the
center of the distal finger pad centered over the aperture (figure 3.10,
left). A skin-safe adhesive tape (Trutape LLC, USA), was applied to
the back of the index finger distal and middle phalanges to restrict
any movement of the distal interphalangeal joint. An additional finger
brace was fastened around the back side of the finger to prevent mo-
tion of the proximal interphalangeal joint. Securing the finger in this
manner prevents the introduction of unwanted experimental biases.
The distance from the exposed finger pad to the aperture was fixed at
14 mm, consistent with the distance used in the tactile sensor experi-
ment. Subjects received air-jet pressure to the finger pad in the form
of separate but paired supply pressure stimuli, and they were asked to
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indicate which stimulus in the pair produced the larger output pres-
sure percept. Each pair consisted of a reference stimulus (RS) of 45 psi
(310.3 kPa) and a comparison stimulus (CS), presented in random or-
der. Seven equally spaced comparison stimuli were used ranging from
30 to 60 psi (206.8 - 413.7 kPa). The minimum and maximum supply
pressure levels used were chosen in a preliminary study such that they
were almost always judged as less than or greater than the RS, respec-
tively [80], and in order to not be painful for subjects. The experiment
consisted of five sub-parts, one for each of the five aperture sizes tested
(1.3, 1.6, 1.9, 2.2, 2.5 mm). These values were chosen since the highest
supply pressures were not attainable using the larger aperture sizes.
The order of aperture sizes tested was randomized for each subject.
An aperture plate was fixed to the apparatus in the same manner as
described in the tactile experiment (Section 3.2). A single trial con-
sisted of: the first stimulus (150 ms), an inter-stimuli interval (50 ms),
and the second stimulus (150 ms), followed by the subject’s response.
An external monitor displayed “1” or “2” during the presentation of
the first or second stimulus, respectively, followed by “Respond Now"
at the conclusion of paired stimuli. Subjects then indicated the per-
ceived greater pressure stimulus (“1” or “2”) using an external numer-
ical keypad, which was stored and written to a file. Subjects were
permitted to experience a particular paired stimuli as many times as
necessary by inputting an invalid response, which would repeat the
previous paired stimuli. The procedure was automated, such that
a subject’s response automatically initiated the next trial using the
randomly pre-generated stimulus set. Each sub-part consisted of 168
paired stimuli presented randomly (7 stimulus levels× 24 pairwise dis-
criminations), and lasted approximately 15 minutes, with at least a
two-minute break afterward. For all trials, subjects wore in-ear head-
phones playing white noise and over-ear hearing protection to prevent
auditory cues (figure 3.10, top). Prior to the experiment, subjects
were trained briefly using manually selected pressure pairs. These
responses were not recorded.
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Table 3.4: Summary of JND Pressures (kPa)

Subject
Aperture Diameter

1.3mm 1.6mm 1.9mm 2.2mm 2.5mm

1 24.1 22.3 21.3 25.1 19.7
2 15.8 23.1 16.3 15.2 14.7
3 ∗25.8 20.0 15.6 18.2 21.7
4 27.7 26.3 27.7 24.1 19.7
5 30.2 37.1 27.9 29.0 33.4
6 27.4 17.0 15.6 14.4 18.6
7 31.8 30.7 40.6 35.2 18.2
8 25.7 31.2 21.5 23.8 20.6
9 17.1 14.7 13.8 3.3 18.2
10 19.7 12.9 ∗20.2 18.6 11.9

Mean 24.4 23.5 22.3 20.7 19.6

Std. Dev. 5.7 7.8 8.6 8.9 5.6

∗ Indicates JND obtained from a psychometric curve which did
not demonstrate goodness of fit to the response proportion (P )
data. Values with ∗ are excluded from mean values.

3.3.2.1 Results

A subject’s response proportion (P ) was computed for each stimulus
level and expressed as P =

∑
yi/n, where yi = 1 if the comparison

stimulus (CS) was perceived as greater than the reference stimulus
(RS), and yi = 0 otherwise, and n is the number of pairwise discrimi-
nations performed for each CS. In trials where the RS was compared
against itself, the first stimulus was randomly predefined as the RS in
half of the trials, and the second stimulus in the other half of trials.

A psychometric function was fit to each data set using the pypsig-
nifit toolbox version 3.0 (http://psignifit.sourceforge.net/), with the
default logistic function, which implements the maximum-likelihood
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method described by Wichmann and Hill [81] [82]. The pypsignifit
toolbox is also used to evaluate the goodness of fit for each curve in
terms of deviance and deviance residuals.

Results for pressure JND are reported in table 3.4. Each numerical
result is the pressure JND obtained from the psychometric function
fit to that data set using the psypsignifit toolbox. Those subjects
for which goodness of fit is not obtained are denoted by (*) and are
not used in the resulting mean or standard deviation values reported
in the table. JND values for pressure range from 19.6-24.4 kPa. A
one-way analysis of variance (ANOVA) reveals that no statistical dif-
ference exists between the JNDs for different aperture sizes (p=0.62),
indicating that the pressure JND does not change significantly with
aperture size. Although no statistically significant difference is ob-
served, it should be noted that the mean JND values monotonically
decrease as the aperture size increases.

3.3.3 Psychophysical - Aperture Size JND

The aim of this experiment was to determine the minimum change in
aperture size required to detect a JND. In the pressure JND exper-
iment (Section 3.3.2), changing supply pressure had no effect upon
aperture size. However, in this study, changing the aperture size does
effect the output pressure, as illustrated in the aforementioned tactile
data measurements (figure 3.5). Since the focus of this experiment
was to perceive changes in the size of the stimulus, it was crucial to
decouple the aspects of perceived pressure and size, such that sub-
jects were only making judgments about the stimulus size (and not
the changes in perceived pressure). This required using separately
calculated supply pressure levels for each aperture size tested. The
tactile measurements allow this relationship to be determined em-
pirically since it relates the supply pressures, aperture sizes, and the
resulting peak output pressures in the same data set (figure 3.5). Sup-
ply pressure levels for each aperture size were calculated by selecting
a constant peak pressure and interpolating to find the necessary sup-
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Table 3.5: JND size psychophysical experiment

Aperture Diameter (mm)

1.9 2.3 2.75 3.2 3.6

Peak Pressure (kPa) Supply Pressures (psi)

10 kPa 10 9 8 11 13
30 kPa 27 22 21 24 29
50 kPa 44 36 32 35 39

ply pressures to achieve that particular peak pressure. For example,
supply pressure levels required to achieve a peak output pressure of
30 kPa can be obtained by drawing a horizontal line on figure 3.5
at 30 kPa and then linearly interpolating between supply pressures
where the horizontal peak pressure (e.g. 30 kPa) intersects with each
aperture size.

Subjects were asked to perform the experiment in three subparts,
one for each selected peak pressure (10, 30, 50 kPa). Supply pressures
used for each subpart are summarized in table 3.5.

The experimental apparatus (figure 3.10, right) consisted of a lin-
ear actuator (Firgelli L16, Victoria, BC Canada) endowed with analog
position feedback signal, connected to a 4 mm thick acrylic plate with
five different aperture sizes (table 3.5). The acrylic plate slided in a
track along the direction of motor actuation over the air supply aper-
ture. A rubber washer seated in the base sliding track created an
airtight seal between the base and the acrylic plate when the sys-
tem was pressurized, forcing all supplied air through the acrylic plate
aperture. A voltage signal controlled the stroke distance of the linear
actuator which moved the acrylic plate between aperture sizes (20
mm/s max speed). Predetermined voltage values corresponding to
linear actuator stroke positions allowed the acrylic plate apertures to
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be placed over the source aperture accurately and repeatably.
Subjects were seated comfortably with the right index finger fixed

in a finger holder, palm down, with the center of the distal finger
pad centered 14 mm over the aperture. A skin-safe adhesive tape
(Trutape LLC, USA) was applied to the back of the index finger
distal and middle phalanges to restrict any movement of the distal
interphalangeal joint, as before. In this experiment, subjects were
allowed to move their finger horizontally approximately 3 mm in each
horizontal direction, thus allowing the finger to explore the stimulus
size while maintaining a fixed stimulus-finger distance.

Subjects received pairs of air-jet stimuli to the finger pad in the
form of separate, but distinct stimuli, separated by an inter-stimulus
duration. Each stimulus pair consisted of a reference stimulus (RS)
of 2.75 mm and a comparison stimulus (CS), presented in random
order. Five equally spaced comparison stimuli were used, centered at
2.75 mm, and separated by approximately 0.44 mm (table 3.5). The
minimum and maximum aperture sizes were selected from preliminary
results of a pilot study suggesting that they could be almost always
judged as less than, and greater than the RS, respectively. Moreover,
they were chosen to span as much as possible the range of apertures
used in the experiments with sensors. Notice that in this kind of
psychophysical experiments the number of stimuli can be 7 or 5 [80].

The order of levels was randomized for each subject. A single
trial consisted of: the first stimulus (1.5 seconds), an inter-stimuli
interval (2 seconds), and the second stimulus (1.5 seconds), followed
by the subject’s response. Moreover, a delay of 30000 micro-seconds
between the command that imposes a zero pressure (at the end of each
stimulus presentation) to the regulator and the successive command
that determines slide displacement was added, for safety reason.

An external monitor displayed “1” or “2” during the presentation of
the first and second stimulus, respectively, followed by “Respond Now”
at the conclusion of paired stimuli. Subjects then indicated which
stimulus was perceived as containing a larger contact area upon the
finger-pad (“1” or “2”) using an external numerical keypad, which was
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3.3 Human Subject Experiments

stored and written to a file. Subjects were permitted to experience
a particular stimulus pair as many times as necessary by inputting
an invalid response, which would repeat the previous stimulus pair.
The procedure was automated, such that a subject’s response auto-
matically initiated the next trial using the randomly pre-generated
stimulus set. Each level of the experiment consisted of 120 paired-
stimuli trials presented randomly (5 stimulus levels × 24 pairwise dis-
criminations), and lasted approximately 15 minutes. Throughout the
experiment, all subjects wore 32 dB reduction ear plugs and over-ear
noise canceling headphones playing white noise to prevent auditory
cues. Vibrations from motor movement were difficult to perceive, but
were present and similar enough in duration to be safely ignored (fig-
ure 3.10, right). Prior to the experiment, subjects were briefly trained
with the span of individual stimuli to be used in the experiment.

3.3.3.1 Results

Results for aperture size JND are reported in Table 3.6. Each JND
value is obtained using pypsignifit toolbox v3.0 by fitting the opti-
mal psychometric function to each data set using the logistic func-
tion, which implements the maximum likelihood method described
by Wichmann and Hill [81] [82]. Those subjects for which goodness
of fit was not obtained are denoted by (*) and are not used in the
resulting mean or standard deviation values reported in Table 3.6.
Mean values for aperture size JND range from 0.50-0.66 mm. A one-
way ANOVA reveals no statistical differences between the aperture
size JNDs at different peak pressure levels (p=0.37)1.

1Notice that in both the JND size and pressure experiments, some subjects
commented that their stimulated finger pad began to feel cold in the latter
stages of the experiment. To prevent or minimize these types of effects, both
psychophysics studies were broken into small blocks with subjects taking breaks
in between blocks. Additionally, the order in which different experiment levels
were performed was always randomized, so that any possible effects of finger skin
temperature on tactile discrimination were distributed equally throughout the
experiment.
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Table 3.6: Summary of JND Size (mm)

Subject
Peak Pressure (kPa)

10 kPa 30 kPa 50 kPa

1 0.36 0.30 1.23
2 0.60 0.39 0.46
3 ∗1.05 ∗1.74 0.76
4 ∗0.43 0.85 0.51
5 0.56 0.33 ∗0.33
6 0.37 0.31 0.92
7 0.74 ∗0.43 0.70
8 ∗0.61 0.66 ∗0.71
9 1.16 0.62 0.79
10 0.24 0.12 0.26
11 0.19 0.22 0.24
12 0.71 0.43 0.60
13 ∗0.38 ∗0.03 0.43
14 ∗1.19 1.23 0.83
15 ∗0.83 0.51 ∗0.61
16 0.45 ∗0.14 0.82

Mean 0.54 0.50 0.66

Std. Dev. 0.29 0.31 0.28
∗ Indicates JND obtained from a psychometric curve which did not
demonstrate goodness of fit to the response proportion (P ) data. Val-
ues with ∗ are excluded from mean values.

3.4 Conclusions

An air-jet lump display is a promising technique to elicit the percept
of a lump to the skin. This display type is simple in design and can
display a wide variety of “lump-like” pressure profiles to the finger by
controlling only two control parameters (pressure, aperture size). The
results of the characterization study indicate that output peak pres-
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sure is dependent on both supply pressure and aperture size, while the
pressure profile width is solely dependent on the aperture size. In this
manner, different combinations of perceptual cues of rendered lumps
can be reproduced. JND experiments provide benchmark values for
future psychophysical experiments with this display type. An impor-
tant consideration is that the intended target of the pneumatic lump
display is the human finger, which is (in comparison with the tactile
sensor array used for the characterization) not firm or flat, exhibiting
compliance and curvature which change the local shape of the finger
as it is stimulated. The psychophysical studies implicitly account for
these complex factors of skin compliance, finger curvature, and per-
ceptual capabilities as a function of the stimulus parameters, which
can not be accounted for during tactile quantitative characterization,
whereas the tactile sensor array characterize the output of the pneu-
matic air-jet display and capture the isolated effects of the control
parameters upon the display output. As previously mentioned, this
characterization has furnished the theoretical framework for the de-
velopment of an actual haptic device [A4] used in a training platform
for surgeons. Next steps will be aimed at a proper integration in a
RMIS systems.
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Part II

Kinaesthetic Cues:
Hand Pose Sensing Devices
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Chapter 4
Synergy-based Hand Pose Sensing

I deal now with the problem of correct hand posture estimation from
hand pose sensing devices. According to the definition of Bastian [41],
since kinaesthesia represents the intrinsic capability to sense the po-
sition of our limbs and trunk and hence it is associated to posture
processing, this problem can be regarded as a kinaesthetic problem.
As already described for cutaneous sensing, here the goal is to find
suitable reductions and simplifications, with minimum loss of infor-
mation, in order to guarantee a consistent pose reconstruction even
if measurements are inaccurate and insufficient. This can be the case
of low-cost glove-based systems. Indeed, cost limits affect the quality
of measures which can be generated through an imperfectly known
model, subject to noise and usually less than the number of the hand
DoFs. In these situations, the concept of synergies in motor domain is
very useful, because it affirms that the dimensionality of the kinematic
space of the human hand is significantly smaller than that individu-
ated by its mechanical DoFs.

In this chapter, after an introduction about kinematic hand syner-
gies, I describe sensing gloves and provide solutions to improve their
reconstruction performance and design by exploiting the knowledge
on how humans most frequently use their hands. First, to increase
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the accuracy of pose estimation without modifying the glove hardware
(hence basically at no extra cost) I propose to collect, organize, and
exploit information on the probabilistic distribution of human hand
poses in common tasks [A5]. I discuss how a database of such an a
priori information can be built, represented in a hierarchy of correla-
tion patterns or synergies, and fused with glove data in a consistent
way, so as to provide a good hand pose reconstruction in spite of
insufficient and inaccurate sensing data.

In the second part, I focus on the problem of optimal design of
pose sensing gloves, i.e. the problem of individuating which DoFs (gen-
erally a reduced number of total DoFs of the hand kinematic model
subject to noise) have to be measured in order to maximize the in-
formation acquired by the measurement process, and hence increas-
ing reconstruction performance [A6]. To achieve the optimal design
configuration, closed-form solutions relying on the geometrical syn-
ergy definition (i.e. principal components of the a priori covariance
matrix) as well as gradient flow-based techniques are provided and
discussed, for both noise-free and noisy sensors. Simulations and ex-
periments on a given low-cost glove are reported, which demonstrate
the effectiveness of the proposed strategies.

Notice that all these methods are valid to reconstruct hand pos-
tures in static grasping tasks, since they depend on the structure of
the a priori database. In the case I analyze this database consists of
grasp poses and can be represented by means of the so-called postural
synergies [16], (see Introduction). However, since human hands share
many commonalities in how they are shaped and used across every-
day tasks, the here discussed strategies can be generalized to other
types of poses, e.g. for sign language applications [83,84], by suitably
extending the a priori set. Moreover, since modulation of the coeffi-
cients of linear combinations of PCs can take into account for a wide
range of basic grasping movements [16, 36], the techniques I propose
can be used also for dynamic hand configuration estimation, in which
hand movement is analyzed as a series of static grasp frames.

The performance enhancement and optimal design solutions I dis-
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cuss in this chapter are contained in an Italian patent proposal sub-
mitted on behalf of University of Pisa [A10].

4.1 Kinematic Synergies and Their Appli-
cations

As already said in the Introduction, despite hand complexity, simul-
taneous motion and force of the fingers occurs in a consistent fashion
and is characterized by coordination patterns that reduce the number
of independent degrees of freedom to be controlled [14]. This exper-
imental evidence, which can be explained in terms of central (neural
inputs are shared by different units acting on different digits) and pe-
ripheral (e.g. interconnections between tendons of hand muscles) con-
straints in the neuromuscular apparatus, summarizes well the concept
of hand synergies, which in a broad sense indicate the aforementioned
covariation schemes observed in digit movements and contact forces.

Under a kinematic point of view, many studies have analyzed and
exploited this concept for the description of simultaneous movement
patterns of fingers and thumb, e.g. in the early stage of development
(palmar grasp reflex) [85] and for grasp posture classification [86].
Spatial and temporal coordinations of digit movements were then
studied in serial tasks with one digit isolated motion [87, 88] (as typ-
ing) and more digits (as finger spelling); these coordination schemes
were proved to facilitate hand shape recognition [89]. The main find-
ing of the aforementioned studies is that in addition to the focal move-
ment of the finger used to type, unnecessary motion for task accom-
plishment were observed at other fingers, with higher correlation for
adjacent digits.

Moreover, in [88] it was shown that, due to musculoskeletal and
neural constraints, the number of DoFs independently controlled by
the nervous system is reduced since only a few principal components
(PCs)1 characterize the motion of the hand 17 DoFs.

1The concept of synergies has been often quantified and defined through dimen-
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Referring to grasping tasks, systematic covariations of joint angu-
lar excursions of hand postures were described in terms of synergies
as well. Indeed, it was shown that individuated finger motions were
phylogenetically superimposed on basic grasping movements [90]. The
paper that has mainly inspired my work is [16], which first analyzed
hand postural synergies for grasping by means of PCA. In this work,
authors focused on central contributions to hand posture modulation,
analyzing a large number of different imagined grasped objects, thus
avoiding any mechanical interference as it would result from the con-
tact with real elements. Subsequent analogous work with physical
objects led to coherent observations [91]. In [16] it was demonstrated
that only a few linear combinations of hand DoFs (in this case a 15
DoF kinematic model was considered) is sufficient to take into account
most of the variance in the set. Moreover, a gradient in PCs was indi-
viduated; lower order PCs take into account covariation patterns for
metacarpophalangeal (MCP) and interphalangeal (IP) joints, which
are mainly responsible for coarse hand opening and closing, while
higher order PCs are used for fine hand shape adjustments.

Therefore, even if PCs do not have any physical significance and
can not be used to quantitatively evaluate the contributions of periph-
eral and central constraints, they can somehow furnish an expression
of the covariation patterns that, as previously reported, exist and are
not obligatory for task accomplishment. Furthermore, although task-
dependencies w.r.t. the type and number of elicited PCs have been
observed [92–94], some commonalities of digit movement coordination
schemes exist across tasks, as it results e.g. from [95], in which PCs
employed in haptic exploration provide also grasp pose reconstruction.
For a more complete review of kinematic synergies see e.g. [14].

The main idea shared by all the above discussed studies is that
there are some inner hand representations of increasing complexity,
which allow to reduce the number of hand DoFs to be used according
to the desired level of accuracy required for a given motor task. From

sionality reduction techniques (principal components analysis, PCA and singular
value decomposition, SVD)
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a controllability point of view, this idea has been then adopted in
robotics to define simplified approaches for the design and control
of artificial hands with a reduced number of controls [18–21, 96, 97].
Among the others, in pioneer papers such as [20,21], synergy concept
is used to reduce the dimensionality of the search space for automated
grasp synthesis and applied in an effective manner to derive pre-grasp
shapes for complex robotic hands. In [97] synergistic finger coupling is
exploited using a dimensional reduction technique to drive a 12 DoF
hand with only 8 independent actuators; in [19] principal component
analysis of real/world data on a variety of human hand postures was
used to calculate characteristic patterns of actuation, or synergies,
which were combined to control a 17 DoF 5 fingered robot hand (which
was proved to be able to reproduce a wide range of hand shapes with
only 2 DC motors).

On the other hand, from the observability point of view, these
considerations also suggest that it is possible to reduce the number
of independent DoFs to be measured in order to obtain hand pose
estimation with a given level of approximation. An application of
this concept was developed in [36] for hand avatar animation. The
key of this approach was to exploit synergy variables [98] to approx-
imate principal motion components, thus improving the realism of
animation. Virtual springs, which couple the avatar tips to the corre-
sponding operator’s tips, were used to compute the forces necessary
(for the avatar fingertips) to track real finger trajectories. These forces
were then transformed in the synergy-space general forces and used
to recursively estimate the new synergy variables, which characterize
the whole-hand configuration. This kind of estimation, which is de-
pendent on the number of synergy variables, was proved to be good
enough in qualitative terms but no quantitative and numerical evalu-
ation was furnished.

In this work, the idea is to use the information embedded in a
known grasp set, which expresses the postural constraints for multi-
fingers joints, to improve the reconstruction of the hand posture in
static grasping tasks when only a limited and inaccurate number of
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measures are available by low-cost sensing gloves for gesture measure-
ment. Moreover, this information is also used to inspire an optimal
design of these systems in a Minimum Variance (MV) sense.

Glove-based devices2 consist of an array of sensors, electronics for
data processing and acquisition, and a support for the sensors, typi-
cally a cloth glove of Lycra R©/where sensors are sewn (see figure 4.5).
This kind of glove is worn by the user and can record data related
to his/her hand configuration/motion. Sensing gloves provide useful
interfaces for human-machine and haptic interaction in many fields
like, for example, virtual reality, musical performance, video games,
tele-operation and robotics [83, 84]. However, the widespread com-
mercialization of electronic gloves imposes limits on the production
costs in terms of the amount and the quality of the sensors adopted.
As a consequence, the correctness of the hand pose reconstruction
obtained by these devices might be compromised. To overcome this
problem, in the next section I provide an optimal hand pose estima-
tion technique based on Bayes’inference.

4.2 Performance Enhancement

Two different approaches have been followed to achieve this goal. The
first one, which solves a constrained optimization problem of multinor-
mal probability density function (pdf), is mainly adopted with accu-
rate measured data. The second approach deals with noisy measured
data and relies on classic Minimum Variance Estimation (MVE). To
validate this technique I considered limited measurements from a set
of grasp postures acquired with a low cost sensing glove and an optical
tracking system, the latter one representing an accurate reference for
pose reconstruction. Effects of noise are also taken into account.

2Hereinafter the words “glove-based systems”, “sensing gloves”, “electronic
gloves” will be used as synonyms
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4.2.1 The Hand Posture Estimation Algorithm

Let consider a set of measures y ∈ Rm given by a sensing glove. By
using a n degree of freedom kinematic hand model, I assume a linear
relationship between joint variables x ∈ Rn and measurements y given
by

y = Hx+ ν , (4.1)

where H ∈ Rm×n (m < n) is a full rank matrix which represents the
relation between measures and joint angles, and ν ∈ Rm is a vector of
measurement noise. The goal is to determine the hand posture, i.e. the
joint angles x, by using a set of measures y whose number is lower
than the number of DoFs describing the kinematic hand model in use.
Equation (4.1) represents a system where there are fewer equations
than unknowns and hence is compatible with an infinite number of
solutions, described e.g. as

x = H†y +Nhξ , (4.2)

where H† is the pseudo-inverse of matrix H, Nh is the null space basis
of matrix H and ξ ∈ R(n−m) is a free vector of parameters. Among
these possible solutions, the least-squared solution resulting from the
pseudo-inverse of matrix H for system (4.1) is a vector of minimum
Euclidean norm given by

x̂ = H†y . (4.3)

However, the hand pose reconstruction resulting from (4.3) can be
very far from the real one. My purpose is to improve the accuracy
of the pose reconstruction, choosing, among the possible solutions
to (4.2), the most likely hand pose. As previously described in Sec-
tion 4.1, the basic idea is to exploit the fact that human hands, al-
though very complex and possibly different in size and shape, share
many commonalities in how they are shaped and used in frequent ev-
eryday tasks. Moreover, studies on the human hand in grasping tasks
showed that finger motions are strongly correlated according to some
coordination patterns, or synergies [16].
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To achieve this goal, I use the a priori information obtained by
collecting a large number N of grasp postures xi, consisting of n
DoFs, into a matrix X ∈ Rn×N . This information can be summarized
by means of a covariance matrix Po ∈ Rn×n, which is a symmetric
matrix computed as

Po =
(X − x̄)(X − x̄)T

N − 1
, (4.4)

where x̄ is a matrix n×N whose columns contain the mean values for
each joint angle arranged in vector µo ∈ Rn. I assume that the above
described a priori information is multivariate normal distributed, and
hence can be described by the covariance matrix Po.

4.2.1.1 Probability Density Function Maximization

I initially consider the case that measurement noise is negligible. The
best estimation of the hand posture is given by choosing as optimality
criterion the maximization of the probability density function (pdf)
of the multivariate normal distribution which describes the a priori
set, expressed by [99]

f(x) =
1√

2π‖Po‖
exp

{
−1

2
(x− µo)TP−1o (x− µo)

}
. (4.5)

This is equivalent to solving the following optimal problem:x̂ = arg min
x̂

1
2
(x− µo)TP−1o (x− µo)

Subject to y = Hx .
(4.6)

It is interesting to give a geometrical interpretation of the cost
function in (4.6), which expresses the square of the Mahalanobis dis-
tance [100].

The concept of Mahalanobis distance, which takes into account
data covariance structure, is widely exploited in statistics, e.g. in
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PCA, mainly for outlier detection [101]. Accordingly, to assess if a
test point belongs to a known data set, whose distribution defines an
hyper-ellipsoid, its closeness to the centroid of data set is taken into
account as well as the direction of the test point w.r.t. the centroid
itself. In other words, the more samples are distributed along a given
direction, the higher is the probability that the test point belongs to
the data set even if it is further from the center.

Taking into account (4.2), the optimal problem defined in (4.6)
becomes

ξ̂ = arg min
ξ̂

(H†y +Nhξ − µo)TP−1o (H†y +Nhξ − µo)

Subject to y = Hx .
(4.7)

By using classic optimization procedures I obtain ξ̂ = (NT
h P

−1
o Nh)

−1

NT
h P

−1
o (µo−H†y) and, substituting in (4.2), after some algebras, the

estimation of the hand joint angles is

x̂ = [I −Nh(N
T
h P

−1
o Nh)

−1NT
h P

−1
o ]H†y+

+Nh(N
T
h P

−1
o Nh)

−1NT
h P

−1
o µo . (4.8)

Problem (4.6) can be also solved through the method of Lagrange
multipliers. Let introduce a new variable λ ∈ Rm and consider

L =
1

2
(x− µo)TP−1o (x− µo) + λT (Hx− y) . (4.9)

By imposing ∂L
∂x

= ∂L
∂λ

= 0, it is obtained

x̂ = µo − PoHT (HPoH
T )−1(Hµo − y) . (4.10)

This solution can be easily shown to be equivalent to (4.8).
Finally, it is interesting to observe that the least-squared and pdf

maximization methods have a direct application in case of only single-
DoF sensors are used in the devices (discrete sensing gloves, see Sec-
tion 4.3). In this case, H is a selection matrix whose rows are vectors
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of the canonical basis in Rn and the least-squared solution is simply
given as x̂ = HTy. In order to improve the hand pose reconstruction
by the a priori information, it is possible to easily maximize E[x|y]
in terms of multinormal conditional distribution [102]. Indeed, in this
case vector y defines a precise subset of the state variables, being
X1, whose values are known by means of the measurement process,
while X2 indicates the rest of state variables to be estimated. This
definition allows to partition the a priori covariance matrix as(

X1

X2

)
=⇒ Po =

(
Po11|Po12
Po21|Po22

)
(4.11)

as well as the a priori mean µo = (µo1|µo2). The estimation of X2 is
easily derived as

X̂2 = E[X2|X1 = y] = µo2 + Po21P
−1
o11(y − µo1) . (4.12)

4.2.1.2 Minimum Variance Estimation

Results in previous section are valid in the condition of ν ≈ 0. When
noise is not negligible, the role of a priori is more emphasized. Here I
consider noise effects and propose an algorithm based on the Minimum
Variance Estimation (MVE) technique. This method minimizes a cost
functional which expresses the weighted Euclidean norm of deviations,
i.e. cost functional J =

∫
X

(x̂ − x)TS(x̂ − x)p(x|y)dx, where S is an
arbitrary, semidefinite positive matrix. Under the hypothesis that
ν has zero mean and Gaussian distribution with covariance matrix
R, the solution for the minimization of J is achieved as x̂ = E[x|y],
where E[x|y] represents the a posteriori pdf expectation value. The
estimation x̂ can be obtained as in [103] by

x̂ = (P−1o +HTR−1H)−1(HTR−1y + P−1o µo) , (4.13)

where matrix Pp = (P−1o +HTR−1H)−1 is the a posteriori covariance
matrix, which has to be minimized to increase information about the
system. This result represents a very common procedure in applied
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optimal estimation when there is redundant sensor information. In
under-determined problems, it is only thanks to the a priori informa-
tion, represented by Po and µo, that equation (4.13) can be applied
(indeed, HTR−1H is not invertible).

When R tends to assume very small values, the solution described
in equation (4.13) might encounter numerical problems. However, by
using the Sherman-Morrison-Woodbury formulae,

(P−1o +HTR−1H)−1 = Po − PoHT (HPoH
T +R)−1HPo (4.14)

(P−1o +HTR−1H)−1HTR−1 = PoH
T (HPoH

T +R)−1 , (4.15)

equation (4.13) can be rewritten as

x̂ = µo − PoHT (HPoH
T +R)−1(Hµo − y) , (4.16)

and the a posteriori covariance matrix becomes Pp = Po−PoHT (HPo
HT+R)−1HPo (see (4.14)). By placing R = 0 in (4.16), it is possi-
ble to obtain equation (4.10) and the a posteriori covariance matrix
becomes

Pp = Po − PoHT (HPoH
T )−1HPo (4.17)

Notice that probability density function maximization approach
is a peculiar case of the here described MVE technique. For this
reason in the following sections I will always refer to the reconstruction
technique as MVE for both noise-free and noisy measures and the
solution (4.16) is used for the reconstruction, with R = 0 or R 6= 0,
respectively.

4.2.2 Model and Data capture

To assess hand pose reconstruction effectiveness, I adopted, without
loss of generality, the 15 DoF model3 used in [16, 96] and reported

3The human hand, considering only fingers and metacarpal joints, has 23
DoFs [83]. Various models have been proposed in literature, which try to repro-
duce hand and wrist kinematics at different levels of approximation, e.g. [104,105]
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DoFs Description
TA Thumb Abduction
TR Thumb Rotation
TM Thumb Metacarpal
TI Thumb Interphalangeal
IA Index Abduction
IM Index Metacarpal
IP Index Proximal

MM Middle Metacarpal
MP Middle Proximal
RA Ring Abduction
RM Ring Metacarpal
RP Ring Proximal
LA Little abduction
LM Little Metacarpal
LP Little Proximal

Figure 4.1: Kinematic model of the hand with 15 DoFs. Markers are
reported as red spheres.

in figure 4.1. A large number of static grasp positions were collected
using 19 active markers and an optical motion capture system (Phase
Space, San Leandro, CA, USA). More specifically, all the grasps of
the 57 imagined objects described in [16] were performed twice by
subject AT (M,26), in order to define a set of 114 a priori data.
Moreover, 54 grasp poses of a wide range of different imagined objects
were executed by subject LC (M,26) 4. The set of the latter poses
will be referred hereinafter as validation set, since these poses can be
assumed to represent accurate reference angular values for successive
comparisons with the obtained hand pose reconstructions. For this
reason, these data were recorded in parallel with the sensing glove
and the Phase Space system, to achieve also a glove calibration.

I consider the processed hand poses acquired with Phase Space as
reliable approximations of real hand positions, given the high accuracy
provided by this optical system to detect markers (the amount of
static marker jitter is inferior than 0.5 mm, usually 0.1 mm) and
assuming a linear correlation (due to skin stretch) between marker

4All these sets of data and more information about hand pose acquisitions are
available at http://handcorpus.org/
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motion around the axes of rotation of the joint and the movement
of the joint itself [106]. Since the sensing glove perfectly adapts to
subject hand shape when it is worn, the latter assumption is still
reasonable also in this case, even if departures from real reference
configurations can happen.

None of the subjects had physical limitations that would affect the
experimental outcomes. Data collection from subjects in this study
was approved by the University of Pisa Institutional Review Board.
Markers were placed on the glove, at joint locations, referring to [104]

Figure 4.2: The sensing glove by University of Pisa (on the left) and
sensing glove with added markers (on the right).

(see figure 4.2). Four markers were used for the thumb and three
markers for each of the rest of the fingers. Additional three markers
placed on the dorsal surface of the palm defined a local reference
system SH . Marker positions were sampled at 480 Hz and were given
referring to the global reference system SMC , as it was defined during
the calibration phase of the acquisition system.

Joint angles were computed w.r.t. SH by means of the ikine func-
tion of Robotics Toolbox for Matlab. This function implements an
iterative algorithm of kinematic inversion, which has been suitably
modified by adapting computational tolerance to guarantee numeri-
cal convergence. A moving average filter was exploited for data pre-
filtering, thus enhancing Signal Noise Ratio (SNR). As a preliminary
phase, the hand was posed in a reference position, where finger flexion-
extension is nearly zero, and phalanx length and eventual offset angles
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were computed.
I test the normality assumption on the acquired a priori set by

means of a Q-Q plot-based graphical method for multidimensional
variables [107, 108]. The quantile plot is usually obtained by plot-
ting the ordered estimated Mahalanobis measures against the chi-
square distribution quantiles. If normality is met, the graph should
display a fairly straight line on the diagonal (i.e. 45◦ slope line). In
my case, the linear fitting with straight 45◦ slope line provides an
adjusted r-squared coefficient of 0.6. This result suggests that the
normality assumption is reasonable even if not fully met. However,
the Gauss-Markov theorem [109] ensures, that the MVE is the Best
Linear Unbiased Estimate (BLUE) in the minimum-variance sense
even for non-Gaussian a priori distributions [110]. In addition, central
limit theorem [102] can guarantee, to some extents, the application
of MVE method to cases that depart from the strict linear-Gaussian
hypothesis for a priori (and noise distribution as well).

4.2.3 Simulation Results

I simulated an ideal glove which is able to measure only metacarpal
joints (see figure 4.1) by using the acquisitions from the validation set.
MVE reconstruction performance is compared with the one obtained
by means of the pseudo-inverse based method (hereinafter referred as
Pinv) (4.3).

The measurement matrix for this simulated glove is referred as Hs.
Estimation results obtained with the reconstruction algorithms are
compared with the corresponding reference values from the validation
set to compute errors.

An additional random zero-mean Gaussian noise with standard
deviation of 7◦ is considered on each measure. This value is chosen in
a cautionary manner, based on data about common technologies and
tools used to measure hand joints positions [111]. More specifically,
this value expresses the reliability threshold of manual goniometry
with skilled therapists in measures for rehabilitation procedures [112].
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DoF
Mean±Std Max Error

p-values
MVE Pinv MVE Pinv

TA 10.74±8.45 14.04±11.10 31.65 32.74 0.1794
TR 7.16±4.54 27.62±10.24 19.50 45.65 0
TM∗ 0 0 0 0 –
TI 4.81±3.68 6.74±5.54 19.69 23.16 0.1179
IA 11.96±5.33 6.27±3.27 26.35 14.90 0
IM∗ 0 0 0 0 –
IP 13.26±7.06 28.87±13.79 27.46 59.41 0

MM∗ 0 0 0 0 –
MP 12.35±7.75 29.84±13.64 29.94 57.78 0
RA 3.45±2.43 10.17±3.78 9.51 16.45 0
RM∗ 0 0 0 0 –
RP 13.40±9.65 34±13.88 39.33 65.43 0
LA 11.33±5.87 24.28±5.18 24.47 37.89 0 �
LM∗ 0 0 0 0 –
LP 11.94±9.50 26.50±13.65 26.58 63.64 0

1←−−−−−−−−−−−−−− 0
p-values

∗ indicates a measured DoF.

Table 4.1: Average estimation errors and standard deviations for each DoF [◦] for
the simulated acquisitions without noise. MVE and Pinv methods are considered.
Maximum errors are also reported as well as p-values from the evaluation of DoF
estimation errors between MVE and Pinv. A color map describing p-values is
also added to simplify result visualization. � indicates that Teq test is exploited
for the comparison. ‡ indicates a Tneq test. When no symbol appears near the
tabulated values, it means that U test is used. Bold value indicates no statistical
difference between the two methods under analysis at 5% significance level. When
the difference is significative, values are reported with a 10−4 precision. p-values
less than 10−4 are considered equal to zero.
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DoF
Mean±Std Max Error

p-values
MVE Pinv MVE Pinv

TA 8.93±6.64 14.04±11.10 31.12 32.74 0.0496 ‡
TR 8.10±5.66 27.62±10.24 22.53 45.65 0
TM∗ 2.96±2.16 5.62±4.25 8.25 17.01 0.0009
TI 6.80±4.95 6.74±5.54 20.10 23.16 0.66
IA 10.69±5.50 6.27±3.27 25.45 14.90 0
IM∗ 4.21±3.24 5.40±3.57 13.71 13.86 0.07
IP 14.63±7.86 28.87±13.79 34.16 59.41 0

MM∗ 4.80±2.74 5.23±3.97 10.35 20.03 0.95
MP 13.87±8.39 29.84±13.64 38.19 57.78 0
RA 3.13±2.18 10.17±3.78 9.00 16.45 0
RM∗ 4.62±3.42 5.28±3.73 13.75 17.56 0.34 �
RP 16.98±11.47 34.00±13.88 50.58 65.43 0
LA 8.99±5.16 24.28±5.18 20.44 37.89 0 �
LM∗ 4.27±3.14 5.78±4.30 15.47 18.71 0.09
LP 14.89±9.95 26.50±13.65 48.10 63.64 0 ‡

1←−−−−−−−−−−−−−− 0
p-values

∗ indicates a measured DoF.

Table 4.2: Average estimation errors and standard deviations for each DoF [◦]
for the simulated acquisitions with noise. MVE and Pinv methods are considered.
Maximum errors are also reported as well as p-values from the evaluation of DoF
estimation errors between MVE and Pinv. A color map describing p-values is
also added to simplify result visualization. � indicates that Teq test is exploited
for the comparison. ‡ indicates a Tneq test. When no symbol appears near the
tabulated values, it means that U test is used. Bold value indicates no statistical
difference between the two methods under analysis at 5% significance level. When
the difference is significative, values are reported with a 10−4 precision. p-values
less than 10−4 are considered equal to zero.
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The estimation performance is evaluated in terms of estimation
errors. Pose estimation errors (i.e. the mean of DoF absolute estima-
tion errors computed for each pose), and DoF absolute estimation er-
rors are considered and averaged over all the number of reconstructed
poses in the validation set. I perform these two types of analysis in
order to try to furnish a clear result comprehension. Indeed, pose es-
timation errors provide an useful but only global indication about the
technique outcomes, potentially leading to some biased observations.
For example, it might be the case in which a hand pose reconstruc-
tion with all the fingers in a “slightly right” position produces the
same average error of a hand pose reconstruction with all the fingers
but one in the right position and the one mispositioned very distant
from the real one. Therefore, to overcome this limitation I also ana-
lyze each DoF estimation accuracy. In addition, some reconstructed
poses are displayed w.r.t. the reference ones, to provide a qualitative
representation mainly focused on reconstruction likelihood exhibited
by reconstructed poses with common grasp postures. However, it is
important to notice that MV techniques are designed to minimize
error statistics but may lack robustness to outliers. Therefore they
might not be the preferable choice when the main goal to achieve is
to minimize worst-case sensing errors rather than error statistics.

Statistical differences between estimated pose and joint errors ob-
tained with above described techniques were computed by using clas-
sic tools, after having tested for normality and homogeneity of vari-
ance assumption on samples (through Lilliefors’ composite goodness-
of-fit test and Levene’s test, respectively). Standard two-tailed t-test
(hereinafter referred as Teq ) is used in case of both the assumptions
are met, a modified two-tailed T-test is exploited (Behrens-Fisher
problem, using Satterthwaite’s approximation for the effective degrees
of freedom, hereinafter referred as Tneq ) when variance assumption
is not verified and finally a non parametric test is adopted for the
comparison (Mann-Whitney U-test, hereinafter referred as U ) when
normality hypothesis fails. Significance level of 5% is assumed and
p-values less than 10−4 are posed equal to zero.
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In case of noise-free measurements, mean absolute pose error ob-
tained with MVE is 6.69 ± 2.38◦, while with Pinv it is equal to
13.89 ± 3.09◦, with observed statistical difference between the two
methods (p ' 0, Teq ). What is noticeable is that MVE provides a
better pose estimate than the one obtained using Pinv in terms of
both mean pose absolute estimate error and considering maximum
absolute pose estimation error (MVE: 13.18◦ vs. Pinv: 20.82◦).

In case of noisy measurements, mean absolute pose estimation
error with MVE is 8.52±2.86◦, while with Pinv is 15.71±3.08◦. Also
in this case statistical difference is observed between MVE and Pinv
(p ' 0, Tneq ). Notice that MVE still provides the best pose estimate
and the smallest pose absolute maximum error (MVE: 17.14◦ vs. Pinv:
23.39◦).

In table 4.1 absolute average estimation errors for each DoF with
their corresponding standard deviations are reported for MVE and
Pinv procedures. Noise-free measures are considered. Significant sta-
tistical differences between the two techniques are found for all DoFs
estimation errors, except for those directly measured and for TA and
TI, the latter ones referring to thumb finger. This fact might be par-
tially explained by the difficulties in modelling thumb phalanges under
a kinematic point of view. MVE exhibits an estimation performance
in terms of mean error which is better or not statistically different
from the one achieved by Pinv, except for IA DoF; however, in this
case the difference between the mean errors for the two methods is
the smallest (less than 6◦) among all the differences computed for
the significantly different estimated DoFs. MVE provides the small-
est maximum errors except for IA DoF; however the difference with
maximum error obtained using Pinv is less than 12◦.

In table 4.2 values of each DoF estimation absolute error averaged
over all poses, with their corresponding standard deviations, are re-
ported in case of noise. Maximum errors are calculated and statistical
significance in result comparison for each DoF estimation, between the
aforementioned techniques, is indicated in table 4.2. Notice that MVE
furnishes the best performance with average estimation errors which
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Real Hand Postures

Posture estimation by noiseless measures

P
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v

M
V
E

Posture estimations using measures affected by Gaussian noise
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Figure 4.3: Hand pose reconstructions with Pinv and MVE algorithms
by using a selection matrix Hs which allows to measure TM, IM, MM,
RM and LM (see figure 4.1). In color the “real” hand posture whereas
in white the estimated one.

are always inferior or not statistically different from the ones obtained
using Pinv algorithm, except for IA DoF for which Pinv produces the
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smallest average estimation error. However, the difference between
IA mean errors calculated with the two procedures is less than 3◦.
No statistically significant difference is found between MVE and Pinv
for TI, IM, MM, RM and LM DoFs. Notice that the DoFs for which
no statistical difference is observed between MVE and Pinv are DoFs
directly measured or they refer to thumb finger phalanx. Considering
maximum errors, MVE still exhibits the best results, except for IA
DoF. This fact is important, since MVE is suited for error statistics
minimization and can be sensitive to worst-case sensing cases.

In figure 4.11 some reconstructed poses are displayed in compar-
ison with their corresponding reference values achieved with Phase
Space system, with and without noise. What is noticeable is that
MVE qualitatively shows the best reconstruction results, thus main-
taining the likelihood with common grasping poses because of the a
priori information, unlike Pinv.

4.2.4 Experimental Results

I tested for the effectiveness of the reconstruction procedure using a
sensorized glove based on Conductive Elastomer (CE). CE strips are
printed on a Lycra R©/cotton fabric in order to follow the contour of
the hand, see figure 4.2. Connection to 20 different sensor segments of
the polymeric strip is realized using additional conductive elastomer
elements printed on the dorsal side of the glove [113], which will be
also referred as University of Pisa glove.

Since CE materials present piezo-resistive characteristics, sensor
elements corresponding to different segments of the contour of the
hand length change as the hand moves. These movements cause vari-
ations in the electrical properties of the material, which can be re-
vealed by reading the voltage drop across such segments. The sensors
are connected in series thus forming a single sensor line while the con-
nections intersect the sensor line in the appropriate points. An ad hoc
electronic front-end was designed to compensate the resistance vari-
ation of the connections, made by the same material of the sensors,
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Real Hand Postures
P
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Figure 4.4: Hand pose reconstructions with Pinv and MVE algo-
rithms, with measures given by sensing glove. In blue the “real” hand
posture whereas in white the estimated one.

using an high input impedance stage.
Data coming from the front-end are then low pass filtered, digi-

talized and acquired by means of a general purpose DAQ card, and
finally elaborated on a computer.

This glove can be considered as a continuous sensing device as it
will be more clearly described in Section 4.3 since each sensor con-
sists of a single sensing line all over different joints. Data processing
is based on the assumption that changes in the electrical characteris-
tics of the sensor elements, corresponding to different segments of the
contour of the hand, are associated with changes in the angle of the
joint such sensor elements cut across. Furthermore, it was assumed
that the hand aperture linearly relates to changes in the electrical
characteristics of the sensor elements occurring as joint angle change.
Considering this, a function that maps the sensor raw data to joint
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DoF
Mean±Std Max Error

p-values
MVE Pinv MVE Pinv

TA 12.12±9.98 14.37±10.78 36.63 34.28 0.28
TR 9.20±7.13 26.46±10.49 26.34 46.43 0
TM∗ 4.36±3.73 6.43±4.44 13.25 18.50 0.0093
TI 14.56±9.96 7.84±5.47 33.25 22.38 0.0008
IA 9.82±6.89 7.10±5.08 29.60 21.18 0.0381
IM∗ 15.27±11.86 16.48±12.62 46.76 43.58 0.58
IP 9.60±7.65 31.47±14.70 27.40 61.11 0

MM∗ 14.40±12.84 19.88±14.58 53.03 51.47 0.0232
MP 6.80±6.49 24.36±9.85 24.74 43.72 0
RA 6.20±4.31 5.69±4.72 15.72 20.90 0.51
RM∗ 19.00±13.44 19.22±11.81 61.98 46.32 0.67
RP 8.98±8.91 31.51±13.98 32.24 60.62 0
LA 11.42±8.50 32.24±6.98 29.59 48.11 0
LM∗ 17.37±12.51 17.98±11.81 58.40 45.05 0.26
LP 8.43±6.36 23.90±12.53 26.07 56.21 0

1←−−−−−−−−−−−−−− 0
p-values

∗ indicates a measured DoF.

Table 4.3: Average estimation errors and standard deviations for each DoF
[◦], for the sensing glove acquisitions. MVE and Pinv methods are considered.
Maximum errors are also reported as well as p-values from the evaluation of DoF
estimation errors between MVE and Pinv. A color map describing p-values is
also added to simplify result visualization. � indicates that Teq test is exploited
for the comparison. ‡ indicates a Tneq test. When no symbol appears near the
tabulated values, it means that U test is used. Bold value indicates no statistical
difference between the two methods under analysis at 5% significance level. When
the difference is significative, values are reported with a 10−4 precision. p-values
less than 10−4 are considered equal to zero.
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angles was designed. A linear regression model having hand aperture
as dependent variable and the output of the sensor elements as inde-
pendent variable was built. Fitting of the model was achieved using
a calibration phase. Subjects were instructed to perform two fixed
hand gestures, flat and grip, corresponding respectively to the mini-
mum and maximum elongation of sensor length. In the present study,
long finger flexion-extension recognition has been obtained by means
of an updated multi-regressive model having the metacarpophalangeal
(MCP) flexion-extension angles of the five long fingers as dependent
variables and the outputs of CE sensor covering MCP joints as in-
dependent ones. According to the hand kinematic model adopted in
this work they are referred as to TM, IM, MM, RM, LM. The model
parameters are identified by measuring the sensor status in two dif-
ferent positions: (1) hand totally closed (90 degrees), (2) hand to-
tally opened (0 degrees). For more information about the design and
structure of the here described sensing glove and the signal processing
system employed see e.g. [113–115].

This sensorized glove represents one of the most recent and inex-
pensive technology in glove device literature. However, this solution
is limited by some factors which can reduce its performance, e.g cloth
support which affects measurement repeatability as well as hysteresis
and non linearities due to piezo-resistive material properties. Indeed,
this kind of glove is suitable for general opening/closening hand move-
ment measurements but not for fine hand adjustment measurements.
Moreover, the assumptions done for data processing (the relation-
ship between joint angle and sensors as well the linearity between
hand aperture and electrical property changes) and the calibration
phase which is based only on two-points fitting can act like potential
sources of errors. To overcome the latter point a new calibration was
performed to estimate the measurement matrix.

105



Synergy-based Hand Pose Sensing

4.2.4.1 Results and Discussions

Firstly I obtained an estimation of the glove measurement matrix
Hg, i.e. Ĥg. For this purpose, a calibration phase was performed
by collecting a number of poses N in parallel with the glove and
the position optical tracking system. This number has to be larger
or equal than the dimension of the state to estimate, i.e. N ≥ 15.
Xc ∈ R15×15 collects the reference poses, while matrix Zc ∈ R5×15

organizes the measures from the glove. These measures represent
the values of the signals referred to measured joints, averaged over
the last 50 acquired samples. For the acquisition a DAQ card which
works at 250 kS/s (NI PCI-6024E by National Instruments) has been
used within Matlab/Simulink environment.

Matrix Ĥg is obtained by exploiting the relation Zc = ĤgXc as

Ĥg = Zc((X
T
c )†)T . (4.18)

Measurement noise has been characterized in terms of fluctuations
w.r.t. the aforementioned average values of the measures, thus obtain-
ing noise covariance matrix R . Noise level is less than 10% measure-
ment amplitude; however consistent errors in the measurement matrix
estimation might be obtained due to intrinsic non-linearities and hys-
teresis of glove sensing elements.

The average absolute pose estimation error with MVE is 10.94±
4.24◦, while it is equal to 19.00± 3.66◦ by using Pinv. Statistical dif-
ference is observed between the two techniques (p = 0, Teq). Notice
that MVE exhibits the best pose reconstruction performances also
in terms of maximum errors (25.18 ◦ for MVE vs. 30.30 ◦ for Pinv
). Absolute average reconstruction errors for each DoF are reported
in table 4.3. MVE produces the best results which are statistically
different w.r.t. Pinv algorithm outcomes, see table 4.3, except, re-
spectively, for those DoFs which are directly measured (i.e. IM, RM
and LM), for RA DoF, which exhibits a limited average estimation
error (≈ 6◦), and finally TA. For TI the smallest average estimation
is observed with Pinv; a possible explanation for this might be still
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related to the difficulties in modelling thumb phalanx kinematics, as
previously observed. IA DoF presents the smallest absolute average
estimation error with Pinv, although p-values from the comparisons
between the two techniques for the estimation of this DoF are close
to the significance threshold. All these observations are coherent with
the discussions developed in Section 4.2.2.

Maximum DoF reconstruction errors for MVE are observed espe-
cially for those measured DoFs with potentially maximum variations
in grasping tasks; this fact may be probably due to the non linearities
in sensing glove elements leading to inaccurate estimation of Hg, and
hence to inaccurate measures. Furthermore, MVE aims at minimizing
the error statistics and some worst-case sensing results can be found.

Conclusions that can be drawn is that, except for some singular
poses, the best estimation performance is provided by MVE for which
a good robustness to errors in measurement process modelling is also
observed. However, the latter errors are not taken numerically into
account in these analyses.

Moreover, as it can been seen in figure 4.4, reconstructed hand
configurations obtained by MVE preserve likelihood with real poses,
as opposed to pseudo-inverse based algorithm.

4.3 Optimal Design

In this section, I extend the analysis also to the optimal design of
sensing gloves, i.e. to find the optimal sensor distribution, providing,
for a given a priori information and fixed number of measurements,
the optimal design in MV sense, which minimizes in average the re-
construction error and error statistics. This problem becomes partic-
ularly relevant when limits on the production costs of sensing gloves
are taken into account. These cost constraints may limit both the
number and the quality of sensors used and hence, an optimal distri-
bution of sensors during the design phase is mandatory in order to
obtain good performance.
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It is important to notice that this optimization procedure is strictly
related to the reconstruction algorithm described in Section 4.2. The
pose reconstruction obtained using the optimal sensor design is ac-
tually optimal only if MV reconstruction approaches previously de-
scribed are used.

Optimal experimental design represents a challenging and widely
discussed topic in literature [116]. Among all optimal design criteria,
Bayesian methods are ideally suited to contribute to experimental de-
sign and error statistics minimization, when some information is usu-
ally available prior to experimentation (see [110,117,118] for a review).
On the contrary, non Bayesian criteria are adopted when the linear
Gaussian hypothesis is not verified at all and when the designer’s pri-
mary concern is to minimize worst-case sensing errors rather than er-
ror statistics. Criteria on explicit worst-case/deterministic bounds on
the errors and tools from the theory of optimal worst-case/deterministic
estimation and/or identification are discussed e.g. in [110,119–121].

However, most of these approaches refer to cases with a number
of basic sensors which is redundant or at least equal to the number
of variables to be estimated. Moreover, even if they are general and
easily extended to many practical applications, no one is able to take
into account in its formulation the peculiar structure of human hand
embodiment.

Considering sensing glove design, a more targeted method is re-
quired in order to enable the optimal device construction also when
sensor elements provide insufficient and inaccurate measures. In [122]
the problem of choosing the most appropriate number and locations
of sensors for glove devices was proposed. The approach was based
on the analysis of the DoFs of the application and their match to the
DoFs of the glove. In [123] authors discussed the properties, advan-
tages, and design aspects associated with piezoelectric materials for
sensing glove design, in an application where the device was used as
a keyboard. In this case, authors determined the location and hence
the number of sensors by recording and analyzing typing motions of
subjects wearing the glove. When the glove was used to control neuro-
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(a) University of Pisa
sensing glove.

(b) Humanglove. Im-
age courtesy by Human-
ware.

Figure 4.5: Examples of gloves: on the left a continuous sensing glove
with sensing elements measuring a linear combination of joint angles
and on the right a discrete sensing glove whose sensors measure single-
DoFs.

prosthesis [124], the location and number of sensors was determined
by classifying sensor locations based on the quality of their outputs
measured in terms of the reproducibility and the usefulness of the
force information produced during subject grasping.

Finally, [125] authors explored how to methodically select a min-
imal set of hand pose features from optical marker data for grasp
recognition. The objective was to determine marker locations on the
hand surface that was appropriate for the grasp classification of hand
poses.

All the aforementioned approaches rely on experimental observa-
tions: from actual sensor data, locations that provide the largest and
most useful information on the system are chosen.

Here I investigate in depth the problem, obtaining the optimal
distribution of sensors able to minimize in average the reconstruc-
tion error of hand poses, by using a classic Bayesian method which
minimizes the a posteriori covariance matrix norm and hence, maxi-
mizes the information on the real hand posture available by the glove
measurement.

The a posteriori covariance matrix, Pp = Po−PoHT (HPoH
T+R)−1

HPo, which depends on measurement matrix H, represents a measure
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of the amount of information that an observable variable carries about
unknown parameters. Here I explore the role of the measurement ma-
trix H on the estimation procedure, providing the optimal design of
a sensing device able to get the maximum amount of the information
on the actually measured hand posture.

I first consider the continuous sensing case, where individual sens-
ing elements in the glove can be designed so as to measure a linear
combination of joint angles. An example of this type is the sensorized
glove developed in [113] (see figure 4.5a), or the 5DT Data Glove
(5DT Inc., Irvine, CA, USA).

However, depending on the sensing technology adopted in the
glove the implementation of the continuous sensing can be difficult
and/or costly. For this reason, I consider also the discrete sensing
case, where each measure available by the glove corresponds to a
single joint angle. An example of this type is the Humanglove (Hu-
manware s.r.l., Pisa, Italy) shown in figure 4.5b or the Cyberglove
(CyberGlove Systems LLC, San Jose, CA, USA).

To validate the proposed techniques I considered reduced set of
measurements from grasp postures in the validation set, as if they
were provided by a discrete sensing device. Of course the locations of
optical markers are chosen coherently to the optimal discrete sensing
design. Moreover, effects of noise are also taken into account. Exper-
iments and statistical analyses demonstrate the improvement of the
estimation techniques proposed in Section 4.2 by using the optimal
design here described.

4.3.1 Problem Definition

In the ideal case of noiseless measures (R = 0), Pp becomes zero when
H is a full rank nmatrix, meaning that the available measures contain
a complete information about the hand posture. In the real case of
noisy measures and/or when the number of measurements m is less
than the number of DoFs n, Pp can not be zero. In these cases, the
following problem becomes very interesting: find the optimal matrix

110



i
i

“PPROVA” — 2012/12/18 — 15:43 — page 111 — #61 i
i

i
i

i
i

4.3 Optimal Design

H∗ such that the hand posture information contained in a reduced
number of measurements is maximized. Without loss of generality,
let assume H to be full row rank and consider the following problem.

Problem 4.1 Let H be an m × n full row rank matrix with m < n
and V1(Po, H,R) : Rm×n → R be defined as V1(Po, H,R) = ‖Po −
PoH

T (HPoH
T +R)−1HPo‖2F , find

H∗ = arg min
H

V1(Po, H,R)

where ‖·‖F denotes the Frobenius norm defined as ‖A‖F =
√

tr(AAT ),
for A ∈ Rn×n.

Frobenius norm has been already used in literature for optimization
in measurement problem, e.g. [126]. Here I adopt squared Frobenius
norm to exploit its useful relation with matrix trace operator, in order
to simplify the derivation of the matrix gradient flow later defined.
To solve problem 4.1 means to minimize the entries of the a posteriori
covariance matrix: the smaller the values of the elements in Pp, the
greater is the predictive efficiency.

Let me introduce some useful notations. If M is a symmetric
matrix with dimension n, let its Singular Value Decomposition (SVD)
be M = UMΣMU

T
M , where ΣM is the diagonal matrix containing the

singular values σ1(M) ≥ σ2(M) ≥ · · · ≥ σn(M) of M and UM is
an orthogonal matrix whose columns ui(M) are the eigenvectors of
M , known as Principal Components (PCs) of M , associated with
σi(M). For example, the SVD of the a priori covariance matrix is
Po = UPoΣPoU

T
Po
, with σi(Po) and ui(Po), i = 1, 2, . . . , n, the singular

values and the principal components of matrix Po, respectively.

4.3.2 Continuous Sensing Design

In this case, each row of matrix H is a vector in Rn and hence can
be given as a linear combination of a Rn basis. Without loss of gen-
erality, I can use the principal components of matrix Po, i.e. columns
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of previously defined matrix UPo , as a basis of Rn. Consequently,
naming Hc such a type of matrix related to a continuous sensing de-
vice, the measurement matrix can be written as Hc = HeU

T
Po
, where

He ∈ Rm×n contains the coefficients of the linear combinations. Given
that Po = UPoΣPoU

T
Po
, the a posteriori covariance matrix becomes

Pp = UPo
[
Σo − ΣoH

T
e (HeΣoH

T
e +R)−1HeΣo

]
UT
Po , (4.19)

where, for simplicity of notation Σo ≡ ΣPo .
I analyze the optimal continuous sensing design both under a nu-

merical and analytical point of view. For this purpose, let me intro-
duce the set of m × n (with m < n) matrices with orthogonal rows,
i.e. satisfying the condition HHT = Im×m, and let denote it as Om×n.

4.3.2.1 Numerical Solution: Gradient flows on Om×n
A differential equation that solves problem 4.1 is proposed. The fol-
lowing proposition describes an algorithm that minimizes the cost
function V1(Po, H,R), providing the gradient flow which can be used
to improve the method of steepest descent.

Proposition 4.1 The gradient flow for the function V1(Po, H,R) :
Rm×n → R is given by,

Ḣ = −∇‖Pp‖2F = 4
[
P 2
pPoH

TΣ(H)
]T

, (4.20)

where Σ(H) = (HPoH
T +R)−1.

For sake of completeness, I report the calculation to obtain the
gradient in the Appendix of this chapter.

Let me observe that rows of matrix H can be chosen, without
loss of generality, such that HiPoH

T
j = 0, i 6= j which imply that

measures are uncorrelated, i.e. satisfying the condition HHT = Im.
Of course, in case of noise-free sensors, this constraint is not strictly
necessary. On the other hand, in case of noisy sensors, the minimum
of V1(Po, H,R) can not be obtained since it represents a limit case
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that can be achieved when H becomes very large (i.e. an infimum)
and hence increasing the signal-to-noise ratio in an artificial manner.
Therefore, it is possible to use the constraint HHT = Im to reduce
the search space in order to find solutions.

To solve this the constrained problem it is possible to use the
Rosen’s gradient projection method for linear constraints [127], which
is based on projecting the search direction onto the subspace tangent
to the constraint itself. Hence, given the steepest descent direction
for the unconstrained problem, this method consists on finding the
direction with the most negative directional derivative which satisfies
the constraint on the structure of the matrix H, i.e. HHT = Im. This
can be obtained by using the projecting matrix

W = In −HT (HHT )−1H , (4.21)

and then projecting unconstrained gradient flow (4.20) into the sub-
space tangent to the constraint, obtaining the search direction

s = ∇‖Pp‖2FW . (4.22)

Having the search direction for the constrained problem, the gra-
dient flow is given by

Ḣ = −4
[
P 2
pPoH

TΣ(H)
]T
W (4.23)

where Σ(H) = (HPoH
T +R)−1. The gradient flow (4.20) guarantees

that the optimal solution H∗ will satisfy H∗(H∗)T = Im, if H(0)
satisfies H(0)H(0)T = Im, i.e. H ∈ Om×n 5.

Notice that both Om×n and V1(Po, H,R) are not convex, hence
the problem could not have a unique minimum. Therefore, I can only
assure that the proposed algorithm converges to a local minimum. To
overcome this common problem in gradient methods, a multi-start
search represents a classic procedure.

The here described gradient-based technique can be useful to char-
acterize optimal solutions also for discrete sensing design, in case of

5H(0) indicates the starting point at t = 0 for the gradient flow.
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large dimension problem. Moreover, they can furnish interesting sug-
gestions about a possible hybrid approach later discussed.

In case of noise-free measures, the invariance of the cost function
w.r.t. changes of basis, i.e. V1(Po, H, 0) = V1(Po,MH, 0) withM ∈ Rm

an invertible full rank matrix, suggests that there might exist a sub-
space in Rn where the optimum is achieved. Indeed, gradients become
zero when rows of matrix H are given by any linear combination of a
subset of m principal components of the a priori covariance matrix.
Unfortunately, this does not happen in case of noisy measures and
gradients become zero only for a particular matrix H which depends
also on the principal components of the noise covariance matrix.

4.3.2.2 Analytical Solutions

Here, I give a closed-form solution providing the optimal choice among
all matrices in case of noise-free and noisy measures, respectively.

Noise-Free Measures. I firstly consider the case of noiseless mea-
sures, i.e. R = 0. Let A be a non-negative matrix of order n. It is
well known (see [126]) that, for any given matrix B of rank m with
m ≤ n,

min
B
‖A−B‖2F = α2

m+1 + · · ·+ α2
n , (4.24)

where αi are the eigenvalues of A, and the minimum is attained when

B = α1w1w1
T + · · ·+ αmwmwm

T , (4.25)

where wi are the eigenvectors of A associated with αi. In other words,
the choice of B as in (4.25) is the best fitting matrix of given rank
m for A. By using this result I can determine when the minimum
of (4.19), and hence of

‖Σo − ΣoH
T
e (HeΣoH

T
e )−1HeΣo‖2F , (4.26)

can be reached. Let me preliminary observe that the row vectors (hi)e
of He can be chosen, without loss of generality, to satisfy the condition

114



i
i

“PPROVA” — 2012/12/18 — 15:43 — page 115 — #63 i
i

i
i

i
i

4.3 Optimal Design

(hi)e Σo (hj)e = 0, i 6= j, which implies that the measures are uncor-
related. As previously said, Om×n denotes the set of m× n matrices,
with m < n, whose rows satisfy the aforementioned condition, i.e. the
set of matrices with orthonormal rows (HeH

T
e = I). By using (4.24),

the minimum of (4.26) is obtained when (see [126])

ΣoH
T
e (HeΣoH

T
e )−1HeΣo = σ1(Σo)u1(Σo)u

T
1 (Σo) + · · ·+

+ σm(Σo)um(Σo)u
T
m(Σo) .

(4.27)

Since Σo is a diagonal matrix, ui(Σo) ≡ ei, where ei is the i-th element
of the canonical basis. Hence, it is easy to verify that (4.27) holds
for He = [Im | 0m×(n−m)]. As a consequence, row vectors (hi)c of Hc

are the first m principal components of Po, i.e. (hi)c = ui(Po)
T , for

i = 1, . . . ,m.
From these results, a principal component can be defined as a

linear combination of optimally-weighted observed variables meaning
that the corresponding measures can account for the maximal amount
of variance in the data set. As reported in [126], every set ofm optimal
measures can be considered as a representation of points in the best
fitting lower dimensional subspace. Thus the first measure gives the
best one dimensional representation of data set, the first two measures
give the best two dimensional representation, and so on.

Noisy Measures. Equation (4.25) can not be verified with noisy
measures since it represents a limit case that can be achieved when
H becomes very large and hence increasing the signal-to-noise ratio.
To avoid this, I present an optimal solution for problem 4.1 in the
set A =

{
H : HHT = Im

}
. This problem was discussed and solved

in [128], providing that, for arbitrary noise covariance matrix R,

min
H∈A

V1(H) =
m∑
i=1

σi(Po)

1 + σi(Po)/σm−i+1(R)
+

n∑
i=m+1

σi(Po) , (4.28)
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and it is attained for

H =
m∑
i=1

um−i+1(R)ui(Po) . (4.29)

Hence, if A consists of all matrices with mutually perpendicular,
unit length rows, the first m principal components of Po are always
the optimal choice for H rows in case of uncorrelated noise. As shown
in [128] this situation changes under the Frobenius norm constraint,
i.e. A =

{
H : ‖H‖F ≤ 1

}
(see [128] for details).

4.3.3 Discrete Sensing Design

Let me consider now the case that each measure yj, j = 1, . . . ,m
from the glove corresponds to a single joint angle xi, i = 1, . . . , n.
The problem here is to find the optimal choice of m joints or DoFs to
be measured.

Measurement matrix becomes in this case a full row rank matrix
where each row is a vector of the canonical basis, i.e. matrices which
have exactly one nonzero entry in each row: let Hd be such a type
of matrix. The optimal choice H∗d can be easily computed, by sub-
stituting all the possible sub-sets of m vectors of the canonical basis
in the cost function V1(Po, H,R). However, a more general approach
to compute the optimal matrix is provided in order to obtain the so-
lution also when a model with a large number of DoFs is considered,
and eventually extended to all human body.

Let Nm×n denote the set of m× n element-wise non-negative ma-
trices, then Pm×n = Om×n ∩ Nm×n, where Pm×n is the set of m × n
permutation matrices (see lemma 2.5 in [129]). This result implies
that if I restrict H to be orthonormal and element-wise non-negative,
I get a permutation matrix. In this work I extend this result in Rm×n,
obtaining matrices which have exactly one nonzero entry in each row.
Hence, the problem to solve becomes:
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Problem 4.2 Let H be am×n matrix withm < n, and V1(Po, H,R) :
Rm×n → R be defined as V1(Po, H,R) = ‖Po − PoH

T (HPoH
T +

R)−1HPo‖2F , find the optimal measurement matrix

H∗ = arg min
H

V1(Po, H,R)

s.t. H ∈ Pm×n .

4.3.3.1 Numerical Solution: Gradient Flows on Pm×n
A solution for this problem can be obtained defining a cost func-
tion that penalizes negative entries of H. In [129] authors defined
a function V2(P ) with P ∈ Rn×n that forces the entries of P to be
as “positive” as possible. In this chapter, I extend this function to
measurement matrices H ∈ Rm×n with m < n and hence, I consider
a function V2 : Om×n → R as

V2(H) =
2

3
tr
[
HT (H − (H ◦H))

]
, (4.30)

where A ◦ B denotes the Hadamard or elementwise product of the
matrices A = (aij) and B = (bij), i.e. A ◦ B = (aijbij). The gradient
flow of V2(H) is given by [129]

Ḣ = −H
[
(H ◦H)TH −HT (H ◦H)

]
, (4.31)

which minimizes V2(H) converging to a permutation matrix if H(0) ∈
Om×n.

Up to this point, I have introduced two gradient flows given by (4.23)
and (4.31), both on the space of orthogonal matrices, that respectively
minimize their cost function, while the second one also converges to
a permutation matrix. By combining these two gradient flows a so-
lution for Problem 4.2 can be achieved. Of course, I can combine
the gradient flows in two different ways: by adding them in a con-
vex combination or firstly ignoring the non-negativity requirement
and switching to the permutation gradient flow when the objective
function has been sufficiently minimized [129].
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Theorem 4.1 Let H ∈ Rm×n with m < n the measurement process
matrix and let me assume that H(0) ∈ Om×n. Moreover, I suppose
that H(t) satisfies the following matrix differential equation,

Ḣ = 4 (1− k)
[
P 2
pPoH

TΣ(H)
]T
W+

+ k H
[
(H ◦H)TH −HT (H ◦H)

]
, (4.32)

where k ∈ [0, 1] is a positive constant and Σ(H) = (HPoH
T + R)−1.

For sufficiently large k (near one), limt→∞H(t) = H∞ exists and
approximates a permutation matrix that also minimizes the squared
Frobenius norm of the a posteriori covariance matrix, ‖Pp‖2F .

A proof for this theorem can be obtained directly by using results
from [129].

From theorem 4.1, in order to exactly obtain a permutation matrix
I should choose k = 1. At the same time, with this choice, I lose track
of the main objective function to be minimized, i.e. ‖Pp‖2F . For this
reason, as in [129], I consider the following scheme in order to solve
Problem 4.2:

Phase I: Starting fromH(0) ∈ Om×n, I apply the gradient flow (4.20)
to obtain a solution H∗ for Problem 4.1, which minimizes func-
tion V1 in Om×n.

Phase II: Starting from matrix H∗ obtained in Phase I, I apply
the gradient flow (4.32) with k near to 1, converging toward a
permutation matrix.

4.3.4 Hybrid Sensing Design

Up to this point, I have provided optimal solutions for the continuous
and the discrete sensing case. However, in order to take advantage
from both of them (the amount of information achievable vs low-cost
implementation and feasibility) a hybrid sensing device which com-
bines continuous and discrete sensors might represent a valid improve-
ment, as it can be found also in biology. Indeed, human hand can be
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regarded as an example of hybrid sensory system. In [47], among
the cutaneous mechanoreceptors in the hand dorsal skin that were
demonstrated to be involved in the responses to finger movements,
and hence that possibly contribute to kinaesthesia, it is possible to
find fast (or Rapid) Adapting (RA) type ones, which mainly respond
to movements around one or at most two nearby joints and that can
be regarded as “discrete” sensors, as well as the discharge rate of Slow
Adapting (SA) afferents, which are influenced by several joints and
can be regarded as “continuous" type sensors. Further investigations
might use the results from this work of thesis, e.g. by suitably combin-
ing gradient flow solutions previously described to enable an optimal
hybrid design.

4.3.5 Continuous and Discrete Sensing Optimal Dis-
tribution

As previously shown, in case of continuous sensing design the optimal
choice H∗c of the measurement matrix H ∈ Rm×n is given by the
first m principal components of the a priori covariance matrix Po.
Figure 4.6 shows the hand sensor distribution for a number m =
1, 2, 3 of noise-free measures (for lack of space I omit the case of more
than 3 measures). Moreover, in figure 4.7, the first three synergies are
reported, with the corresponding coefficients for each joint.

In case of discrete sensing, the optimal measurement matrix H∗d ,
related to a discrete sensing device, for a number of noise–free mea-
sures m ranging from 1 to 14, is reported in table 4.4. Notice that,
H∗d does not have an incremental behavior, especially in case of few
measures. In other words, the set of DoFs which have to be chosen
in case of m measures does not necessarily contain all the set of DoFs
chosen for m− 1 measures.

Figures 4.8 and 4.9 show the values of the squared norm of the
a posteriori covariance matrix for increasing number m of measures.
In particular, in figure 4.8 values of V1 for matrices H∗c and H∗d are
reported, for both noise-free and noisy measures. In figure 4.9, val-
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Legend (see fig ure 4.1) m = 1 m = 2 m = 3

TR#
TA#

TM#

TI#

IM#

IP#

IA#

MM#

MP#
RP#

RM#

LP#

LM#RA#
LA#

1←−−−−−−−−−−−− 0
pwi

Figure 4.6: Optimal continuous sensing distribution form = 1, i.e. the
first PC of Po, for m = 2, i.e. the first two PCs of Po and for m = 3,
i.e. the first three PCs of Po. The greater is the weight pwi of the joint
angle in the optimal measures, the darker is the color of that joint.
For visualization purposes, I assume the weight of the i-th joint in the
optimal measures given as pwi =

∑m
k=1 |hk,i|, where hk,i is the (k, i)th

entry of matrix H, normalized w.r.t. the maximum value of pwi. For
example, for m = 3, weight of LA joint is 0.53, whereas for LM joint
is 0.74 and the maximum value is for TA joint.

ues of V1 in case of noisy measures, each affected by Gaussian zero-
mean noise with standard deviation of 7◦, are reported. These val-
ues are compared with the ones related to four random matrices Si,
i = 1, . . . , 4, corresponding to non optimal discrete sensing devices.

Notice that, in case of noise-free measures (see figures 4.8), V1 val-
ues decrease with the number of measures, tending to assume nearly
zero values in case of both continuous and discrete sensing. This fact
is trivial because increasing the measurements the uncertainty of the
measured variables is reduced. When all the measured information
is available, V1 assumes zero value with perfectly accurate measures.
In case of noisy measures, V1 values decrease with the number of
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Legend (see fig ure 4.1) PC1 PC2 PC3

TR#
TA#

TM#

TI#

IM#

IP#

IA#

MM#

MP#
RP#

RM#

LP#

LM#RA#
LA#

1←−−−−−−−−−−−− 0
psi

Figure 4.7: Optimal continuous sensing distributions for the first PCs
of Po (PC1, PC2, PC3). The greater is the absolute coefficient psi
of the joint angle in the PC, the darker is the color of that joint.
For visualization purposes, I assume the coefficient of the i-th joint
in the PC to be normalized w.r.t. the maximum absolute value of the
coefficients achieved across PC1, PC2, PC3.

m TA TR TM TI IA IM IP MM MP RA RM RP LA LM LP V1

1 X 7.12 · 10−2

2 X X 2.39 · 10−2

3 X X X 6.59 · 10−3

4 X X X X 3.30 · 10−3

5 X X X X X 1.90 · 10−3

6 X X X X X X 5.32 · 10−4

7 X X X X X X X 2.92 · 10−4

8 X X X X X X X X 1.98 · 10−4

9 X X X X X X X X X 1.30 · 10−4

10 X X X X X X X X X X 6.86 · 10−5

11 X X X X X X X X X X X 2.70 · 10−5

12 X X X X X X X X X X X X 1.40 · 10−5

13 X X X X X X X X X X X X X 3.39 · 10−6

14 X X X X X X X X X X X X X X 1.32 · 10−6

Table 4.4: Optimal measured DoFs for H∗d with increasing number of
noise–free measures m (see fig ure 4.1).

measures but, in this case, they tend to a value which is larger (see
figures 4.8 and 4.9), depending on the level of noise.
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Figure 4.8: Squared Frobenius norm of the a posteriori matrix with
noise–free and noisy measures (with standard deviation of 7◦) for both
H∗c and H∗d .
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Figure 4.9: Squared Frobenius norm of the a posteriori matrix with
noisy measures for the discrete case. The optimal measurement ma-
trixH∗d is compared with 4 random matrices adding the same quantity
of noise (with standard deviation of 7◦).

By analyzing how much V1 reduces with the number of measure-
ments w.r.t. the value it assumes for one measure, reduction percent-
age with three measured DoFs is greater than 80% for both H∗c and
H∗d . This result suggests that with only three measurements, also in
presence of noise, the optimal matrix can furnish more than 80% of
uncertainty reduction. This is equivalent to say that a reduced num-
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Legend (seefigure 4.1) Hs H∗d

TR#
TA#
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TI#

IM#

IP#

IA#

MM#

MP#
RP#

RM#

LP#

LM#RA#
LA#

Figure 4.10: Discrete sensing distribution for matrix Hs (TM , IM ,
MM , RM and LM), on the left, and H∗d (TA, MM , RP , LA and
LM), on the right (see figure 4.1), in absence of noise. The measured
joints are highlighted in color.

ber of measurements is sufficient to guarantee a good hand posture
estimation. In [16,96], under the controllability point of view, authors
stated that three postural synergies are crucial in grasp pre-shaping
as well as in grasping force optimization since they take into account
for more than 80% of variance in grasp poses. Here, the same result
can be obtained in terms of the measurement process, i.e. from the
observability point of view: a reduced number of measures coinciding
with the first three principal components enable for more than 80%
reduction of the squared Frobenius norm of the a posteriori covari-
ance matrix. The above reported result seems logic considering the
duality between observability and controllability.

4.3.6 Estimation Results with Optimal Discrete
Sensing Devices

In this subsection, I compare the hand posture reconstruction ob-
tained by applying the hand pose reconstructions algorithm described
in Section 4.2 to m = 5 measures provided by matrix Hs, also defined
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in Section 4.2, and by optimal matrix H∗d . Measures were provided
by grasp data from the validation set, where degrees of freedom to
be measured were chosen on the basis of optimization procedure out-
comes (or on the basis of the non-optimal matrix Hs, while the entire
pose was recorded to produce an accurate reference posture. In fig-
ure 4.10 sensor locations related to matrix Hs and H∗d are represented.
In order to compare reconstruction performance achieved with Hs and
H∗d I use as evaluation indices the average pose estimation error and
average estimation error for each estimated DoF. Maximum errors
are also reported. These errors as well as statistical tools are chosen
according to the ones considered in Section 4.2, where it is also possi-
ble to find a complete description of the here adopted naming. Both
noise-free and noisy measures are discussed.

4.3.6.1 Noise-Free Measures

In terms of average absolute estimation pose errors ([◦]), performance
obtained with H∗d is always better than the one exhibited by Hs

(3.67±0.93 vs. 6.69±2.38). Moreover, H∗d exhibits smaller maximum
error than the one achieved with Hs (i.e. 8.25◦ for H∗d vs. 13.18◦ for
Hs. Statistical differences between results from Hs and H∗d are found
(p ' 0, Tneq). In table 4.5 average absolute estimation errors with
their corresponding standard deviations for each DoF are reported.
For the estimated DoFs, performance with H∗d is always better or not
statistically different w.r.t. the one referred to Hs. Maximum esti-
mation errors underline cases where Hs furnishes smaller values and
vice versa, since they strictly depend on peculiar poses; however, re-
sults from the two matrices are globally comparable. In figure 4.12,
squared Frobenius norm for the a posteriori covariance matrix of Hs

with m = 5 measures, and H∗d with m = 2, 3, 4, 5 measures, in case
of noise-free measures. Notice that squared Frobenius norm is signif-
icantly smaller in the optimal case, even when a reduced number of
measures is considered.
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Real Hand Postures

Posture estimations by using noise–free measures
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Posture estimations by using noisy measures
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Figure 4.11: Hand pose reconstructions MVE algorithm by using ma-
trix Hs which allows to measure TM , IM , MM , RM and LM and
matrix H∗d which allows to measure TA, MM , RP , LA and LM (see
figure 4.1)– in noise–free case – and TA, MM , MP , LM and LP –
in case of noise. In color the real hand posture whereas in white the
estimated one.
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Figure 4.12: Squared Frobenius norm for the a posteriori covariance
matrix of Hs with m = 5 measures, and H∗d with m = 2, 3, 4, 5 mea-
sures, in case of noise-free measures.
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Figure 4.13: Squared Frobenius norm for the a posteriori covariance
matrix of Hs with m = 5 measures, and H∗d with m = 2, 3, 4, 5 mea-
sures, in case of noisy measures.

4.3.6.2 Noisy Measures

In case of noise, performance in terms of average absolute estimation
pose errors ([◦]) obtained with H∗d is better than the one exhibited
by Hs (5.96±1.42 vs. 8.18±2.70). Moreover, the maximum pose error
withH∗d is the smallest (9.30◦ vs. 15.35◦ observed withHs). Statistical
difference between results from Hs and H∗d is found (p=0.001, Tneq).

In table 4.6 average absolute estimation errors with standard de-
viations are reported for each DoF. For the estimated DoFs, perfor-
mance with H∗d is always better or not statistically different from the
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4.3 Optimal Design

DoF
Mean Error [◦] Hs vs. H∗

d Max Error [◦]
Hs H∗

d p-values Hs H∗
d

TA⊗ 10.74±8.45 0 0 31.65 0
TR 7.16±4.54 6.84±4.75 0.72 � 19.50 20.13
TM◦ 0 2.17±2.21 0 0 13.04
TI 4.81±3.68 5.33±4.16 0.64 19.68 15.15
IA 11.96±5.33 10.55±5.65 0.14 26.35 26.15
IM◦ 0 4.02±3.43 0 0 16.01
IP 13.26±7.06 5.42±6.44 0 27.46 43.86

MM◦⊗ 0 0 – 0 0
MP 12.35±7.75 4.90±2.91 0 ‡ 29.94 9.91
RA 3.45±2.43 3.82±2.94 0.73 9.51 12.68
RM◦ 0 6.68±3.68 0 0 16.01
RP⊗ 13.40±9.65 0 0 39.33 0
LA⊗ 11.33±5.87 0 0 24.47 0
LM◦⊗ 0 0 – 0 0

LP 11.94±9.52 6.27±3.97 0.0002 36.58 16.63

1←−−−−−−−−−−−−−−− 0
p-values

◦ indicates a DoF measured with Hs⊗ indicates a DoF measured with H∗
d

Table 4.5: Average estimation errors and standard deviation for each DoF [◦] for
the simulated acquisition considering Hs and H∗

d both with five noise-free mea-
sures. Maximum errors are also reported as well as p-values from the evaluation of
DoF estimation errors between Hs and H∗

d . � indicates Teq test. ‡ indicates Tneq
test. When no symbol appears near the tabulated values, U test is used. Bold
value indicates no statistical difference between the two methods under analysis at
5% significance level. When the difference is significative, values are reported with
a 10−4 precision. p-values less than 10−4 are considered equal to zero. Symbol
“–” is used for those DoFs which are measured by both Hs and H∗

d .

one referred to Hs. Maximum estimation errors with H∗d are usually
inferior to the ones obtained with Hs.

Notice that, noise randomness can slightly change which DoFs
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have to be measured compared with the zero noise case. In figure 4.13,
squared Frobenius norm for the a posteriori covariance matrix of Hs

with m = 5 measures, and H∗d with m = 2, 3, 4, 5 measures, in case of
noise. Also in this situation, squared Frobenius norm is significantly
smaller in the optimal case, even if a reduced number of measures is
considered, thus suggesting that an optimal design leading to error
statistics minimization can be achieved using optimal matrix with an
inferior number of measured DoFs w.r.t. Hs. Notice that in this case,
squared Frobenius norm values are larger than the corresponding ones
obtained in absence of noise, as it is expected.

Finally, in figure 4.11 some reconstructed poses with MVE algo-
rithm are reported by using both Hs and H∗d measurement matrix,
with and without additional noise. Under a qualitative point of view,
what is noticeable is that reconstructed poses are not far from the real
ones for both measurement matrices. Moreover, it is not surprising
that some poses seem to be estimated in a better manner usingHs and
vice versa, even if from the previously described statistical results H∗d
provides the best average performance. Indeed, MVE methods are
thought to minimize error statistics rather than worst-case sensing
errors related to peculiar poses [110].

4.4 Conclusions

In this chapter I have first considered reconstruction techniques to
estimate static hand poses from a reduced number of measures by a
given input glove-based device. These techniques are based on clas-
sic optimization and applied optimal estimation methods. The main
innovation relies on the exploitation of the a priori information em-
bedded in the covariance structure of a set of grasps. This covariance
individuates some coordination patterns, defined as postural synergies,
which reduce hand DoFs to be measured and controlled. Simulation
results, where noise effects are also considered, and experiments with
a low-cost sensing glove are reported. Performance is compared with
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4.4 Conclusions

DoF
Mean Error [◦] Hs vs. H∗

d Max Error [◦]
Hs H∗

d p-values Hs H∗
d

TA⊗ 6.7±5.62 4.87±3.57 0.19 23.35 15.93
TR 7.65±5.57 7.54±5.00 0.91 � 27.46 22.73
TM◦ 2.81±1.75 2.63±1.90 0.61 � 7.2 8.78
TI 6.08±4.63 5.42±4.74 0.32 19.6 19.10
IA 10.74±5.6 11.52±5.81 0.32 27.31 28.46
IM◦ 4.15±3.17 6.91±5.00 0.003 11.66 21.49
IP 14.61±7.93 6.61±6.01 0 31.85 38.07

MM◦⊗ 4.59±3.08 4.71±3.19 0.77 11.43 15.72
MP⊗ 13.71±8.07 4.08±2.98 0 ‡ 37.61 13.71
RA 3.12±2.37 3.28±2.45 0.71 9.18 9.37
RM◦ 4.03±3.07 6.30±4.72 0.01 ‡ 12.94 12.91
RP 16.78±11.07 6.89±3.82 0 ‡ 50.66 16.34
LA 8.97±5.11 9.86±5.45 0.38 � 20.86 21.48

LM◦⊗ 3.82±3.05 4.82±4.30 0.44 11.33 14.26
LP⊗ 14.64±9.68 3.94±2.95 0 48.61 11.03

1←−−−−−−−−−−−−−−− 0
p-values

◦ indicates a DoF measured with Hs⊗ indicates a DoF measured with H∗
d

Table 4.6: Average estimation errors and standard deviation for each DoF [◦] for
the simulated acquisition considering Hs and H∗

d both with five noisy measures.
Maximum errors are also reported as well as p-values from the evaluation of DoF
estimation errors between Hs and H∗

d . � indicates Teq test. ‡ indicates Tneq test.
When no symbol appears near the tabulated values, U test is used. Bold value
indicates no statistical difference between the two methods under analysis at 5%
significance level. When the difference is significative, values are reported with a
10−4 precision. p-values less than 10−4 are considered equal to zero. Symbol “–”
is used for those DoFs which are measured by both Hs and H∗

d .

the one obtained with a simple pseudo-inverse based algorithm. Sta-
tistical analyses demonstrate the effectiveness of the here analyzed
hand pose reconstructions.
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Afterwards, I have proposed an optimal design of sensing gloves
on the basis of the minimization of the a posteriori covariance ma-
trix. Optimal solution are described for both continuous and discrete
sensing and preliminary suggestions are given also for the hybrid case.
In the continuous sensing case, optimal measures are individuated by
principal components of the a priori covariance matrix, thus suggest-
ing the importance of postural synergies not only for hand control.
The reconstruction performance obtained by combining the aforemen-
tioned estimation techniques and optimal designed measures is signif-
icantly improved if compared with non optimal measure case. There-
fore, I have provided a complete procedure to enhance the perfor-
mance as well as the design of both sensorization systems for robotic
hands and active touch sensing systems, which can be used in a wide
range of applications, ranging from virtual reality to tele-robotics and
rehabilitation. By optimizing the number and location of sensors the
cost of production can be further reduced without loss of effectiveness,
thus increasing device diffusion.

4.5 Appendix

This appendix is devoted to the derivation of the gradient equation
given in theorem 4.1. In this regard, let me remark that the Frobenius
norm of a matrix A ∈ Rn×n is given as

‖A‖F =
√

tr(ATA) =

√√√√ n∑
i=1

σ2i , (4.33)

and hence,

‖Po − PoHT (HPoH
T +R)−1HPo‖2F = tr(P Tp Pp) (4.34)

where Pp = Po − PoH
T (HPoH

T + R)−1HPo. To find the gradient
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4.5 Appendix

flow, I need to compute

∂tr(PT
p Pp)

∂H
= tr

(
∂(PT

p Pp)

∂H

)
= tr

(
∂PT

p

∂H
Pp + PT

p

∂Pp

∂H

)
=

= tr

(
∂PT

p

∂H
Pp

)
+ tr

(
PT
p

∂Pp

∂H

)
= 2tr

(
PT
p

∂Pp

∂H

)
, (4.35)

as ∂(XY) = (∂X)Y + X(∂Y) and tr(AT ) = tr(A). Moreover, from
differentiation rules of expressions w.r.t. a matrix X, I get ∂X−1 =
−X−1(∂X)X−1 and hence, assuming Σ(H) = (HPoH

T + R)−1, it is
obtained

∂Pp

∂H
= −Po

[
(∂H)T Σ(H)H +HT

(
∂Σ(H)

∂H
H + Σ(H) ∂ H

)]
Po =

= −Po

[
(∂H)T Σ(H)H −HT

(
Σ(H)

(
∂HPoH

T +

+HPo(∂H)T
)

Σ(H)H + Σ(H) ∂H
)]
Po . (4.36)

Substituting (4.36) in (4.35) and by using a well note trace property
(tr(A+B) = tr(A) + tr(B)) it is achieved

∂tr(PT
p Pp)

∂H
= 2

[
−tr(PT

p Po(∂H)T Σ(H)HPo)+

+ tr(PT
p PoH

T Σ(H)∂HPoH
T Σ(H)HPo)+

+ tr(PT
p PoH

T Σ(H)HPo(∂H)T Σ(H)HPo)−
−tr(PT

p PoH
T Σ(H)∂HPo)

]
. (4.37)

Since tr(AB) = tr(BA)

∂tr(PT
p Pp)

∂H
= 2

[
−tr((∂H)T Σ(H)HPoP

T
p Po)+

+ tr(PoH
T Σ(H)HPoP

T
p PoH

T Σ(H)∂H)+

+ tr((∂H)T Σ(H)HPoP
T
p PoH

T Σ(H)HPo)−
−tr(PoP

T
p PoH

T Σ(H)∂H)
]

(4.38)
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and as tr(AT ) = tr(A)

∂tr(PT
p Pp)

∂H
= 2

[
−tr(PT

o PpP
T
o H

T Σ(H)T∂H)+

+ tr(PoH
T Σ(H)HPoP

T
p PoH

T Σ(H)∂H)+

+ tr(PT
o H

T Σ(H)THPT
o PpP

T
o H

T Σ(H)T∂H)−
−tr(PoP

T
p PoH

T Σ(H)∂H)
]
, (4.39)

whence, finally

∂tr(PT
p Pp)

∂H
= 2

[
−PT

o PpP
T
o H

T Σ(H)T +

+ PoH
T Σ(H)HPoP

T
p PoH

T Σ(H)+

+ PT
o H

T Σ(H)THPT
o PpP

T
o H

T Σ(H)T−
−PoP

T
p PoH

T Σ(H)
]

=

= 2
[
(PoH

T Σ(H)H − I)PoP
T
p PoH

T Σ(H)+

+ (PT
o H

T Σ(H)TH − I)PT
o PpP

T
o H

T Σ(H)T
]
. (4.40)

Matrices Pp, Po and Σ(H) are symmetric, and hence, for this partic-
ular case I can write

∂tr(P T
p Pp)

∂H
= −4

[
P 2
pPoH

TΣ(H)
]T

, (4.41)

with Σ(H) = (HPoH
T +R)−1. Equation (4.41), apart from the sign,

represents the gradient flow defined in theorem 4.1.
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Part III

Integration of Cutaneous
and Kinaesthetic Cues
for Softness Rendering
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Chapter 5
Integration of Cutaneous and
Kinaesthetic Cues in a Haptic
Device for Softness Rendering.

In Chapter 2 I have described how cutaneous information, which is
predominant in softness discrimination, can be harnessed using suit-
able reductions, which have enabled for the design of more effective
tactile displays. However, perception and precise discrimination of
softness depend on both cutaneous and kinaesthetic information: psy-
chophysical experiments leading to this conclusion have been reported
in the literature [37].

In this chapter I venture to speculate about kinaesthesia and cuta-
neous sensing as the two main synergies of the haptic synergies basis,
which completely describe the mechanics of touch and its percep-
tion [22]. Furthermore, as for motor task accomplishment, the more
complex the task the larger the number of motor synergies to be em-
ployed, the quality of perception and the fidelity by which softness can
be artificially rendered should increase with the number of perceptual
synergies enrolled in rendering. However, nowadays relatively little
work has been done on the realization of haptic devices replicating
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the two main haptic synergies in an integrated and effective manner
and the technology of haptic devices is still unsatisfactory as far as
softness rendering is concerned.

Although purely kinaesthetic devices, such as e.g. the PHANToM
by Sensable (Wilmington, MA- USA) or the Delta Haptic Device
(DHD) by Force Dimension (Nyon, Switzerland) have achieved out-
standing results in displaying hardness within their impedance range
(or Z-width), the impossibility to provide cutaneous cues severely
limits their capabilities. On the other hand, although recent advance-
ments in cutaneous displays [130–132] have provided promising re-
sults, a technical difficulty remains to achieve sufficient resolution of
the stimuli so as to convey a convincing softness information. De-
vices specifically intended to display softness properties have been
proposed in the literature (see e.g. [30,133,134,A1]), which are based
on surrogating detailed contact shape information with information
on the contact area on the fingertip and its changes with varying con-
tact force. This display has proved able to evoke a reliable softness
sensation, enabling better discrimination than a similar, but purely
kinaesthetic display [30] for objects in a given class. The main lim-
itations of this display are its limited workspace and softness range.
Moreover, the device is unable to decouple the rendering of cutaneous
and kinaesthetic information.

To fully exploit the integrated nature of human tactile perception
and correspondingly enlarge the class of objects that can be discrim-
inated, in this thesis I propose a combination of kinaesthetic and
contact area displays [A7,A8], so as to achieve independent and accu-
rate rendering of both kinaesthetic and cutaneous cues. To motivate
the need for integrated displays, I consider a simplified example in-
volving the mechanics of contact between elastic bodies, illustrating
unimodally ambiguous objects, i.e. objects that provide equal kinaes-
thetic but different cutaneous cues, or the other way around. I then
describe an integrated display and the control technique to achieve
independent control of the kinaesthetic and cutaneous information.
To assess the performance of the integrated display, I conducted psy-
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5.1 Motivation: Ambiguities in Unimodal Touch

chophysical experiments and compared the subjective perception of
softness with that obtained by direct touch on physical objects. Re-
sults show that the subjects interacting with the integrated haptic
display are able to discriminate softness better than with either a
purely kinaesthetic or a purely cutaneous display. This conclusion
can be easily interpreted in a geometrical-sense; i.e. the fidelity by
which softness can be artificially rendered increases with the number
of haptic synergies employed for rendering.

5.1 Motivation: Ambiguities in Unimodal
Touch

The complex mechanical interaction which occurs when a finger pad
touches an object generates a wide range of stimuli for skin receptors
and proprioceptive system. In previous chapters, I have introduced
some useful lower-dimensional projections of this perceptual manifold,
which can be interpreted in a geometrical manner as a synergy basis
of the sensory space, whose elements are able to simplify the haptic
sensing redundancy with an accuracy related to the level of basis
truncation.

To briefly summarize the aforementioned findings, given that sens-
ing resultant forces and kinematic motions are primary objects of ki-
naesthesia, the P/δ curve of a fingertip/object pair can be considered
as a close correlate of kinaesthetic information elicited by probing
for softness. For cutaneous information manifold, an high-level pro-
jection can obtained e.g. by means of Contact Area Spread Rate
paradigm (CASR) [30], which expresses the relation between the con-
tact force P and the measure of the region of contact, or contact area
A. Therefore, the P/A curve of a fingertip/object pair can be re-
garded as a correlate of cutaneous information elicited by probing for
softness. It is important to preliminary observe that there may exist
quite distinct objects which, probed for softness, provide identical ki-
naesthetic information but different cutaneous information; and that
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the opposite also applies. Indeed, consider objects having a 2-layered
structure, for which both layers are flat and have similar thickness,
but different Young’s moduli E1 > E2. Two objects, each consisting
of the superposition of the two layers, but probed from opposite sides,
would exhibit the same P/δ, but different P/A (see figure 5.1). The

Figure 5.1: An object comprised of two layers of different materi-
als is probed for softness from the two sides. The resultant force-
displacement (P/δ) curve is equal, while the force-area (P/A) curve
is steeper when the stiffer layer is above.

opposite case of two objects offering similar P/A, but different P/δ
curves, can also be conceived. Consider three materials for which the
Young’s moduli are E1 >> E2 > E3, and arrange them in two similar
2-layered objects as in (see 5.2).

A somewhat more detailed illustration of possible unimodal hap-
tic ambiguities can be easily given in terms of the classical Hertzian
model of contact. Although this is a very rough model of fingertip
contact, it does provide insight in the problem and will inspire and
motivate actual psychophysical discrimination experiments. More re-
fined models are available in the biomechanics and haptics literature,
e.g. the modified Hertzian model of [135, 136] or liquid-filled mem-
brane model of [137]. However, these models have only been validated
for fingertip contact with rigid objects and neglect the effect of the
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5.1 Motivation: Ambiguities in Unimodal Touch

Figure 5.2: Two objects producing similar force-area, but different
force-displacement curves.

compliance of the surface of the probed object, which is a crucial as-
pect of my analysis. Consider the simple contact between two elastic
bodies, pressed against each other by force P . Assume the two bodies
are locally spherical at the contact, with radii R1 and R2, respec-
tively. Let the Young’s modulus and Poisson ratio for the material of
the two spheres be E1, ν1, resp. E2, ν2. In Chapter 2, using elemen-
tary Hertz contact theory [59, 60], I have described equation (2.10),
which expresses contact area under a given loading condition.

By defining E

E =

(
1− ν21
E1

+
1− ν22
E2

)−1
(5.1)

equation (2.10) can be rearranged to obtain a simple relationships
between force P and contact area A = πa2 as

P (A) =
4

3

E

R

(
A

π

) 3
2

. (5.2)

Moreover, a relation between force P and total displacement δ is
also achieved as

P (δ) =
4

3
E
√
Rδ3 (5.3)
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These relationships can be used to compare the force-displacement
(P/δ) and force-area (P/A) curves obtained for the contact of differ-
ent pairs of spherical objects. Consider two contact pairs formed by
an idealized (linear elastic spherical) fingertip and two objects O1, O2.
Let the fingertip be characterized by constants Rf , Ef , and νf . Ex-
perimental in vivo characterization of the skin in various parts of the
body reported in [60] provides values in the range from 0.7 ·104N/m2

to 3.3 · 104N/m2 for the Young’s modulus (parameters in [60] were
obtained by applying the Hertzian model of contact to experimental
data from skin indentation with spherical objects), whereas a gener-
ally accepted value for the Poisson ratio for the skin is 0.5. I assume
Rf = 15 mm. Let Ri, Ei, i = 1, 2 denote the Young’s modulus and
radius of the two objects, and Rfi, Efi the relative radius and equiv-
alent modulus, respectively. From simple calculations, and assuming
for simplicity identical Poisson ratio for objects and fingers, it follows
that an object O2 would provide the same kinaesthetic (P/δ) infor-
mation as an object O1 if its geometric and elastic parameters satisfy
the relation

1

R2

=
1

E2

(
Ef1
Rf1

)
+

(
Ẽ1

R1

− 1− Ẽ1

Rf

)
(5.4)

where Ẽi = Ei
Ei+Ef

. On the other hand, if

R̃2 =
Ẽ2

1

Ẽ2
2

R̃1, (5.5)

with R̃i = Ri
Ri+Rf

, then the finger would observe the same cutaneous
P/A information. From these observations, it follows that if either
information is used alone, than there exist simple objects for which
their different radii and moduli make them indistinguishable (see fig-
ure 5.3). As a consequence of these results, it is expected that there
exist objects whose softness can only be distinguished if the number
of employed elements from the sensory synergy basis increases (i.e.
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5.2 The Integrated Haptic System

Figure 5.3: Comparison of the force-displacement (left column) and
force-area (right column) curves for finger-object contacts. In the first
row, two objectsMA andMB have parameters EA = 106 N/m2, RA =
2.5 mm, EB = 1.5·105 N/m2, RB = 7.3 mm, which satisfy relation 5.4.
In the second row, two objects MC and MD have parameters EC =
2·105 N/m2, RC = 30 mm, ED = 2·104 N/m2, RD = 3 mm, satisfying
relation 5.5.

only when both kinaesthetic and cutaneous cues are available), and
that, in general, tactual discrimination of softness can be improved
by an integrated device.

5.2 The Integrated Haptic System
The integrated kinaesthetic/cutaneous haptic system is comprised of
a softness display combined in series with a commercial haptic inter-
face, the Delta Haptic Device (DHD) (see figure 5.9). For the softness
display, I consider the discrete-CASR type device [30], as it has been
described in Chapter 2. In order to enable for a better comprehen-
sion of the control equations and strategy, in figure 5.4 the geome-
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try and the appearance of the display are reported. To smooth the
change of distribution of pressure against the finger pad, the cylin-
ders were covered with a latex sleeve. In this way any edge effect was
reduced. As already said, this softness display can replicate a desired
force/area behavior with good accuracy but when used as a stand
alone device, it does not allow to implement arbitrary force-area and
force-displacement curves independently. This is true also for the fab-
ric yielding display previously introduced [A1]. The relation between
the resultant force P and contact area A in the softness display can
be obtained (neglecting losses in the system) by equating the work
done by the external force and pressures as

P∆δ = −p∆V ⇒ P = −pdV
dδ
. (5.6)

The volume of the inner chamber can be computed geometrically as

V = π
R2H

3
− πδ

3R2

3H2
, (5.7)

in which H is the cone height, and R is the external radius at the basis
(H = 10 mm and R = 6.5 mm for the prototype at hand). Hence it
can be obtained

P = pπ
δ2R2

H2
= pA. (5.8)

It should be noted here that the tip displacement δ corresponds to
the overall contact displacement, if the softness display is used alone.
Hence, to any given P/A, the display associates a unique P/δ profile.
This can be changed by coupling the softness display with a purely
kinaesthetic display, such as the DHD. The analytical model of the
softness display were experimentally assessed following the character-
ization procedure described in Section 2.4.4.

5.2.1 Control of the Integrated Display

In the integrated device, the softness display is connected in series
with the DHD. If the axial displacement of the former under load is
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5.2 The Integrated Haptic System

Figure 5.4: Geometry (left) and appearance (right) of the softness
display. The prototype has a max. height of 33 mm and a diameter
of 13 mm.

denoted by δs, and δd is that of the DHD, the overall displacement
felt by the probing finger is

δ = δs + δd. (5.9)

To replicate two arbitrary kinaesthetic and cutaneous curves of a given
object marked with the subscript m, as given e.g. by{

P = αm(Am)

P = βm(δm)
(5.10)

the integrated device offers two independent control inputs, the cham-
ber pressure p and the DHD force Pd. I choose to control the softness
display pressure so as to match the force-area curve, i.e. by imposing
A = Am in( 5.8) and regulate the air pressure as

p =
αm(A)

A
. (5.11)

According to the softness display model, a displacement is correspond-
ingly obtained as

δs =
H

R

√
A

π
(5.12)
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The DHD displacement δd is therefore controlled so as to obtain δ =
δs+δd = δm. The desired δm can be obtained by inversion of the given
curve (it is assumed here that the inverse exists, which in practical
cases is guaranteed by the monotonicity of the curve), i.e. δm =
β−1m (P ). Hence,

δd = β−1m (P )− H

R

√
P

pπ
(5.13)

This value of δd is actually used as a reference for a PID control loop
for the DHD device, which is fast and stiff enough as to guarantee
negligible errors in tracking. The effectiveness of this control scheme
for the integrated display was experimentally verified by tracking the
characteristic curves of different materials. Typical results are re-
ported in figure 5.5, showing good tracking performance for a spher-
ical foam object of radius R = 11mm for which the characteristic
curves had been experimentally obtained [138] as

P = 42δm + 0.64 [N]

P = 1.4A2
m + 0.33Am + 0.554 [N]

(5.14)

To assess the actual quality of the integrated display as a haptic
display, however, it is necessary to evaluate how good the haptic ren-
dering of softness is for human subjects interacting with the interface.
In the next sections, I describe a series of psychophysical experiments
and compare the subjective perception of softness rendered by the
display, with that obtained by direct touch of real objects.

5.3 Materials and methods

5.3.1 Subjects

After written consensus, 15 healthy volunteers participated in the
study. Their age ranged from 23 to 30. None had a history of nerve
injury or finger trauma and their finger pads were free of calluses.
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Figure 5.5: Experimental results obtained with the integrated display
with the independent control of force-displacement (above) and force-
area (below) characteristics. Continuous lines represent the response
of the reference object to an externally applied force, while dashed
lines describe the display outputs.

5 volunteers participated only in the experiments with silicone spec-
imens; 5 volunteers participated only in the experiments with the
haptic display; 5 volunteers participated in both the experiments.
Their handedness was evaluated by the Edinburgh Handedness In-
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ventory (EHI) [66] and they were allowed to use the dominant hand
to perform the task. They always performed the tests comfortably
sat, blindfolded and with plugged up ears, to prevent the possible use
of any other sensory cues and eliminate any diversion from the task.
The chosen arm was locked to the table and the subject was able to
move the wrist and fingers only.

5.3.2 Physical Specimens

A set of silicone cylinders was used through one experimental session.
Cylinders were made of material obtained by mixing a given quan-
tity of a commercial bi-component, room temperature–curing silicone
(BJB TC-5005A/B), with a variable percentage of plasticizer (BJB
TC-5005C), acting as a softener. These components are produced by
BJB Enterprises Inc.(Tustin,California-USA). Varying the amount of
softener in the mixture from 0% to 45%, the Young’s modulus de-
creases as shown in figure 5.6. Each cylinder is 0.7 cm tall with a
radius of 1.85 cm. A set of rigid cylinders having the same radius
and height as the previous ones, made of polymethyl methacrylate,
was also used. By suitably combining these cylinders, three classes of
specimens were realized, which are described as follows.

CL1) Five specimens consisting of two silicone cylinders realized with
the same amount of softener, stacked along their axial direction.
The used softener percentages were 0%, 10%, 20%, 35%, 45%, re-
spectively;

CL2) Five specimens consisting of a rigid cylinder placed on the top
of a silicone cylinder with the same percentages of softener as
in class 1.

CL3) Five specimens consisting of two silicone cylinders stacked along
their axial direction. The softener percentages of each pair were
(0%−45%), (10%−35%), (20%−20%), (35%−10%), (45%−0%).
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The second softener percentage of each pair refers to the sili-
cone cylinder placed at the bottom of the stacks. These com-
binations were carefully chosen to have the same overall force-
displacement characteristic.

Figure 5.6: Relationship between the percentage of softener used in
the silicone samples and the Young modulus produced. Measure-
ments used the instrumented indenter used to characterize the “dis-
crete CASR display” as described in Section 2.4.6.

5.3.3 Rendered Specimens

Artificial softness specimens were used through the second experi-
mental session, rendering different force-displacement and force-area
curves through the haptic display described in previous sections. The
display was controlled in three different modes:

CM1) the integrated display control method of Section 5.2.1 is used
so as to mimic both the P/A and P/δ curves of physical speci-
mens in class CL1;

CM2) the kinaesthetic display (DHD) is controlled to mimic the P/δ
curve of specimens in class CL2, while the softness display is
replaced by a rigid surface;
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CM3) the softness display is controlled to mimic the P/A curve of
specimens in class CL3, while the DHD display is used only
to compensate for the displacement introduced by the softness
display (i.e., to have δd = −δs in (5.9)).

5.3.4 Design and Procedure

Experiments were designed to test the ability of subjects to tactually
discriminate softness both in normal conditions and through a haptic
interface. The first group of experiments, which hereinafter will be
refer to as “direct touch”, involved touching physical specimens as
described above. The second group, or “rendered touch”, involved
interaction with artificial specimens rendered through the control of
the haptic display. Both groups of experiments included pairwise
discrimination and ranking tasks. Each group of experiments was
performed in three different configurations, which were designed to
approach three ideal conditions:

I) integrated (kinaesthetic and cutaneous) tactile information is avail-
able to the subject;

K) subjects can rely only on kinaesthetic information to discriminate
the specimens, i.e. cutaneous information is kept unchanged
through the experiments;

C) subjects can rely only on cutaneous information to discriminate
the specimens, i.e. kinaesthetic information is kept unchanged
through the experiments;.

In all tests, subjects had no time limitations and were allowed to
check each specimen or haptic stimulus as many times as they wished
going back and forth between them at will.

The experiments described in this work should be compared with
the experiments reported in [37] and described in Chapter 2, which
were also used to investigate the role and relative weight of cuta-
neous and kinaesthetic cues in haptics. Firstly, in [37] no actively
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controlled haptic interfaces are involved in experiments. Here, “di-
rect touch” experiments also differ substantially from those in [37].
Indeed, anaesthesia is not used to suppress cutaneous cues, rather
I constructed suitable specimens which equalize the cue itself. Sym-
metrically, by constructing other specimens which equalize the kinaes-
thetic cue, I avoided the use of “passive” exploration procedures used
in [37], whereby the fingertip was rigidly fixed to the tabletop, and
specimens were pressed against it. Overall, these techniques are less
invasive and allow comparison of human exploration of physical and
rendered objects.

5.3.5 Experiments on Direct touch

Ten subjects participating in this experiment were presented with
physical specimens and were asked to judge their softness by touch.
They were instructed to do so by pressing vertically or tapping the
index or middle finger of their dominant hand against the specimen.
Subjects were recommended not to perform movements of the fin-
ger across the surface and not to apply lateral forces (see figure 5.7).
In this way, according to the literature [54], any anisotropic effect
or distortion in softness perception due to the radial/tangential dis-
crepancy in touch is eliminated, only focusing on normal indentation
of the specimens. Experiments in the integrated condition (I) used
specimens in class CL1. Specimens in class CL2 provided for the
kinaesthetic-only conditions of experiments (K). Indeed, as described
above (see figure 5.2), these specimens are expected to produce very
similar cutaneous cues. Finally, specimens in class CL3 were used for
the cutaneous-only experimental conditions (C) (see figure 5.1).

5.3.5.1 Pairwise discrimination

For each condition (I, K, C), five specimens (denoted by SS1 to SS5)
in the relative class were used (see figure 5.8).

In each trial, a standard (SS3) and a comparison specimen were
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Figure 5.7: A subject’s hand palpating one of the silicone specimens
used in the tests.

presented to the subjects in random order. After probing the speci-
mens, subjects were asked to report which of the two was softer. Each
task was performed three times for each condition (I, K, C).

5.3.5.2 Ranking

In the ranking experiment subjects were asked to probe and sort in
terms of softness the set of 5 specimens SS1 to SS5, presented in
random order. The specimens in the ranking experiments, for the
three different conditions, are as described above (figure 5.8). Ranking
tasks were repeated three times for every condition (I, K, C).

5.3.6 Experiments on Rendered Touch

Ten subjects were presented with the integrated haptic display, con-
trolled as to render the softness of different materials, and were asked
to judge softness by touch. Subjects were allowed probing and tap-
ping in the vertical direction (corresponding to the axis of the haptic
display) and were instructed to avoid exerting lateral forces. A pic-
ture of a subject’s hand performing the test is shown in figure 5.9.
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Figure 5.8: Naming convention for specimens in different experiments

Figure 5.9: A subject interacting with the integrated haptic display
used in the experiments.

5.3.6.1 Pairwise discrimination

In pairwise discrimination tests, five specimens, denoted as SH1-SH5
with SH3 as reference, were produced on the haptic system. In the
integrated condition (I), specimens were rendered using the control
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mode CM1; the control mode CM2 was used for condition (K), and
mode CM3 for condition (C).

5.3.6.2 Ranking

The same set of five stimuli use in the pairwise discrimination ex-
periment was employed in the ranking experiment. Subjects were
presented with new stimuli in less than a second. Subjects were asked
to rank these specimens in the three conditions (I, K, C).

5.4 Experimental Results and Discussion

5.4.1 Pairwise Discrimination with Physical Spec-
imens

Results of pairwise discrimination experiments on silicone specimens
are reported in figure 5.10. Answers are classified as X = 1 if the
subject correctly identifies the softer specimen, or X = 0 otherwise.
The average number of correct answersmn is represented by the height
of the histogram bars in figure 5.10. The statistics of this binary
experiment are described by its Bernoulli distribution. Confidence
intervals for expected values E(X) with statistical significance (1−α)
are also reported in figure 5.10. The intervals are computed as

E(X) ∈

[
mn − zα

2

√
mn(1−mn)

N
,mn + zα

2

√
mn(1−mn)

N

]
(5.15)

with α = 5%, sample size N = 30, and critical value of the normalized
standard distribution zα

2
= 1.96 (from standard statistical tables).

It is worthwhile noting that when subjects can rely on their full
tactual ability of manipulation, i.e. in the integrated condition (I),
the percentage of correct recognition of the softer specimen in the
pair is 100% with total confidence for all specimens compared with
the standard.
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A chi-squared binary test was performed to test the hypothesis of
sample independence between the three conditions, using chi2bintest
function for Matlab (Peder Axensten, c© 2007). In this case, p-value
expresses the error risk to claim that the samples are independent. A
significant level of α = 0.05 is assumed.

Results obtained when only cutaneous or kinaesthetic informa-
tion were available to subjects ((C) and (K), respectively) are clearly
weaker than those obtained in integrated conditions, and more so for
specimens that are closer to the standard. Indeed, p-values resulting
from the comparison of the outcomes between (I) and (K) are less
than 0.05 for all probed pairs except for SS3-SS5. An analogous
result is found for (I) and (C), in which p < 0.05 for all the pairs
except for the specimens further away from the standard (SS1 and
SS2). When stimuli are close to the standard, cutaneous and kinaes-
thetic information are almost equivalent (p > 0.3). For SS1 − SS3,
cutaneous cues appear to provide more information than kinaesthetic
ones, with an error risk of about 0.07 to claim that the samples are
independent.

5.4.2 Ranking of Physical Specimens

Results from ranking experiments are shown in table 5.1, where sub-
jective softness is reported versus objective compliance in a confu-
sion matrix structure for the five specimens, under the three different
conditions. Values on the diagonal express the amount of correct
answers. The percentage of total accuracy is calculated considering
the sum of all correct answers. The integrated modality (I) exhibits
a percentage of total accuracy very close to 100%, with a diagonal
structure. The relative weakness of unimodal cues is apparent also in
these experiments. A departure from the perfect ranking is observed
in the cutaneous-only condition (C), in terms of both departure from
diagonal structure and total accuracy (66%). In kinaesthetic-only
conditions (K), the discrepancy is even more pronounced (58%).
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Table 5.1: Confusion matrices of ranking experiment results with
physical specimens.

5.4.3 Pairwise Discrimination with Rendered Spec-
imens

Figure 5.11 reports results from pairwise discrimination experiments
with the haptic display under three different conditions. When the
display is controlled to replicate both the kinaesthetic and cutaneous
cues (integrated mode I), the correct discrimination rate is 100% for
distant pairs (i.e., SH1 − SH3 and SH5 − SH3). As it could be
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Table 5.2: Confusion matrices of ranking experiment results with ren-
dered specimens.

expected, however, for the closer pair SH2 − SH3 (p = 0.005) ar-
tificially rendered specimens are discriminated in a considerably sig-
nificant poorer way than their physical counterparts, while no differ-
ence is found for the pair SH4− SH3 and their physical counterpart
(p = 0.31).

The performance of subjects in discriminating softness is further
lowered if only one cue is rendered. This degradation is more pro-
nounced for rendered kinaesthetic cues than for rendered cutaneous
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Figure 5.10: Results of pairwise discrimination experiments with sil-
icone specimens under three different experimental conditions. Each
bar represents the percentage of correct answers for each pair of spec-
imens presented.

Figure 5.11: Results of pairwise discrimination experiments with ar-
tificially rendered specimens. Each bar represents the percentage of
correct answers for each pair of specimens presented.

cues, as it results also from the p-values in table 5.3. In case of
SH2 − SH3 discrimination, performance of subjects is comparable
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SH1-SH3 SH2-SH3 SH4-SH3 SH5-SH3

I vs. K 0.01 0.75 0.003 0.04

I vs. C 0.31 0.52 1 0.31

C vs. K 0.04 0.74 0.003 0.16

Table 5.3: p-values for the comparison between I, K and C for pairwise
discrimination.

under the three conditions (I,K,C) (p > 0.9), with a percentage of
correct recognition close to 80% (mean values are 0.75, 0.82 and 0.79
for (I), (C) and (K) conditions with a confidence interval 0.3, 0.27 and
0.29, respectively). The results support the conclusion that purely ki-
naesthetic haptic displays are inferior in softness discrimination with
respect to cutaneous displays used in the experiments, and that inte-
grated displays obtain the best performance, though this is still not
quite as good as that of direct touch.

5.4.4 Ranking of Rendered Specimens

Experimental results on ranking experiments of artificially rendered
specimens are shown in table 5.2. Total accuracy of softness per-
ception using integrated haptic displays is weaker than with physical
specimens, yet still strongly correlated to the commanded stimulus
(87.35%). Results in terms of total accuracy and matrix structure
for unimodal cues are very close to the ones observed in ranking ex-
periments with physical specimens. Cutaneous-only stimuli reduce
the softness ranking capability to 63.34%, while purely kinaesthetic
rendering further reduces it to 56.67%, which is consistent with the
results for silicone specimens. What can be concluded is that the in-
tegrated haptic device provides results similar to physical specimens
in ranking experiments (in terms of both total accuracy and matrix
structure), and the integrated modality exhibits the highest perfor-
mance. Indeed, integrating cutaneous cues with kinaesthetic cues
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in artificially rendering haptic softness information increases perfor-
mance also in tasks such as ranking, which require multiple compar-
isons and involve haptic memory.

5.4.5 Comparison of Direct and Rendered Touch

The above experimental results of pairwise discrimination and ranking
also provide some interesting insight in the evaluation of the perfor-
mance of the here proposed haptic interface through a comparison
with direct exploration of physical specimens. Results from the artifi-
cial display of kinaesthetic cues for softness are comparable with those
obtained with real specimens (p > 0.05). The effects of naturally and
artificially rendered cutaneous cues show that the haptic display pro-
vides comparable results than the real case (p > 0.05), except for the
corresponding pair SH4−SH3 and SS4−SS3 (p = 0.02). The com-
parison of results for integrated haptic information between real and
artificial stimuli is very satisfactory at both ends of the softness scale.
As previously said, for finer discrimination tasks, i.e. materials that
are closer in softness, even the integrated haptic display has obvious
limitations. However, it is noteworthy that the total accuracy of rank-
ing experiments for the three conditions I, K, and C are comparable
for direct and indirect touch.

In summary, results further validate the technology of Contact
Area Spread Rate (CASR) cutaneous softness rendering utilized in
the here described haptic interface and in the fabric-based display
described in Chapter 2, and encourage its use in connection with
more traditional haptic interfaces.

5.5 Conclusions

In this work of thesis I have considered the role of kinaesthetic and cu-
taneous information in the discrimination of softness, both in direct
and rendered touch. The results for both cases provide indications
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consistent with those in [37] described for direct touch using differ-
ent methods. Relying only on a touch modality limits the possibility
for subjects to discriminate softness, while integrating kinaesthetic
and cutaneous information certainly improves discrimination perfor-
mance. This result can be interpreted in a synergy-inspired sense in
terms of enhancement of the quality of the tactual perception with the
increasing number of the elements of the perceptual basis employed
in rendering.

What can be noticed is that subjects interacting with this new
integrated haptic display actually seem to perceive different degrees of
softness in a more realistic way. These results are encouraging towards
the realization of convincing integrated kinaesthetic and cutaneous
displays.
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