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Abstract— In this paper we present a methodology for
designing embedded controller with a variable accuracy. The
adopted paradigm is the so called any-time control, which
derives from the computing paradigm known as “imprecise
computation”. The most relevant contributions of the paper
are a procedure for designing an incremental control law,
whose different pieces cater for increasingly aggressive control
requirements, and a modeling technique for the execution
platform that allows us to design provably correct switching
policies for the controllers. The methodology is validated by
both simulations and experimental results.

I. INTRODUCTION

In recent years, the presence of embedded controllers has
become one of the most important drivers of innovation for
a large class of industrial applications. As an example, in
the automotive industry the electronic component is known
to take the lion’s share in the development efforts for new
products, and it “sneaks” even in low-price product lines.
In this scenario, system engineers are confronted with a
task of challenging complexity: how to make this pervasive
introduction of controllers cost effective, preserving the
levels of safety and reliability required by increasingly tough
regulations.

One of the most popular ways for achieving this goal
is by an aggressive sharing of hardware resources amongst
different control functions. The paradigm one application-
one system is dead and buried. Each computing unit (ECU)
is required to sustain several applications (either independent
or interacting), and this workload can increase throughout the
different re-design iterations to introduce bug fixes or to meet
new demands collected from the customers. The price to pay
for resource sharing is a reduced predictability of the timing
behaviour. An application can receive a different availability
of resources and suffer time-varying delays depending on the
“interference” suffered from other applications.

This new scenario is not the typical one addressed by clas-
sical digital control design methodologies. Indeed, typical
digital control approaches consider null or fixed delays inside
the control loop. The subsequent development flows are
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based on a kind of interface between the control applications
and the hardware/software platform. Control algorithms are
designed assuming fixed delays. Such delays are regarded as
real-time “deadlines” for the tasks implementing the control
loop and the real-time operating systems parameters are
tweaked in such a way as to guarantee that all deadlines
will be met. Although perfectly reasonable, this approach
bears a considerable drawback: designing the system for the
worst case prevents the control designer from capitalizing
on the additional availability of resources when the system
workload is low. As an example, suppose, in an automotive
application, that an ECU is both used for spark ignition
control and for other control applications. The spark ignition
task is activated by an “angular” event (i.e., the piston
reaching the deadend). Therefore, it generates a workload
increasing with the rotation per minute (RPM) of the engine.
Designing the remaining applications for the worst case,
is in this case tantamount to assuming that the engine
always rotates at the maximum speed, which is evidently an
infrequent occurrence. On the other hand, empirical solutions
can be found and tuned through extensive simulation and
prototyping activities but the outcome hardly meets the
robustness and portability requirements posed by the modern
industry. A more appropriate way can be found working
in two convergent directions: revising the interface between
platform and applications and adopting a different control
design methodology that leverages the time-varying “extra”
availability of resources.

This is the direction taken by this paper. The fundamental
conceptual tool that we rely on is the notion of “anytime”
control. The computation of the control law can be split into
a sequence of segments. Each segment refines the result of
the previous one catering for increasingly aggressive control
goals. The first segment has always to be executed, while the
remaining ones are executed only when there is a sufficient
availability of computation. This idea has been introduced in
our previous work [11], [9], where we also discussed such
important aspect as the stability of the resulting controller.
In this work we deal with the issue of how to make it
applicable in an effective development methodology. To this
end, we first provide a systematic way to design a set of
controllers with increasing closed loop performance, which
are executed in subsequent code segments. Each controller
satisfies a well established control goal, provided as a share
of the design. How to efficiently combine the given platform
and the controllers is the second main issue addressed in
the paper, which is related to the model derived for the
run-time mechanism. The main contribution of this paper



is then a design methodology based on anytime control.
The most critical phases (i.e., the production of the anytime
control law) of the methodology are supported by a prototype
software tool.

II. RELATED WORK

The idea of anytime algorithms is borrowed from the
field of imprecise computation ([19], [20]). The characteristic
of anytime algorithms is to always return an answer on
demand; however, the longer they are allowed to compute,
the better (e.g. more precise) an answer they will return.
The periodic task is split in a mandatory part and one or
more optional parts. The criticality of hard RT tasks is
preserved ensuring only that the mandatory parts satisfy
the time constraints ([19]). In this paper, we propose a
particular application of this paradigm to the case of control
application. The theoretical foundations of controllers have
been described in [11], where the design of a probabilistic
switching policy ensuring the “Almost Sure” stability of the
closed loop system is proposed ([8], [2]). The results in [11]
and the controllers’ design constraints in [9] build upon the
assumption of a probabilistic description of the preemptive
scheme, derived in this paper for a realistic framework. As
pointed out in the introduction, in this paper we display a
methodology of practical interest based on these theoretical
achievements.

The problem of control/scheduling co-design has raised
a remarkable interest in the past few years. A remarkable
thread of research [6], [21] has focused on optimal parameter
selection (w.r.t. a control theoretical performance metric) for
set of periodic tasks implementing digital control loops. In
all of these pieces of work, the classical model of digital
control (i.e., a discrete–time controller) activated with a
fixed frequency is assumed. This work presents a significant
departure from this assumption opening to the possibility
of multiple incremental implementation for the feedback
controller.

Remarkable proposals to overcome the limitation of the
classical, although on a different conceptual line than the
one presented in this paper, have been presented in [4],
where the authors remodulate the periods in response to an
overload condition, and in [25], where the authors present
event-triggered task models as opposed to the classical time-
triggered alternative.

The thread of work closest to ours is probably that related
to Firm Real Time Systems (FRTSs) [22], [1]. Since in
FRTSs occasional deadline misses are allowed, the task
instances that miss their deadlines are considered valueless
and they are dropped. In a series of papers [14], [15],
[17], [18], Lemmon and co-workers consider performance of
Networked Control Systems (NCSs) in a FRTS framework,
introduce a Markov Chain model to describe the task dropout
process, and provide a general QoS constraint. Our model
differs from the one used in the FRTSs literature as we define
our probabilities on the space of execution times rather than
on deadline misses. More substantial differences, are that
we regard the scheduler characteristics to be a given in our

problem, rather than a design objective, while the design
methodology is related to control law implementation to be
implemented in the embedded system.

III. PROBLEM DESCRIPTION

A. The real-time task model

We consider a set S = {s1, . . . ,sm} of real-time tasks.
Each task si is a stream of jobs Ji,k with k ∈ N. Job Ji,k is
activated at time ai,k and is associated with a duration ci,k

and a deadline di,k. Tasks use a shared CPU that is managed
according to a scheduling policy, i.e., an algorithm whereby
a task is selected amongst the ones eligible for execution.
The job remains active until it receives a CPU assignment
equal to ci,k. This instant is called finishing time and will
be denoted by fi,k. Job Ji,k is said to meet the deadline if
fi,k ≤ di,k and to miss it otherwise.

A task is periodic if the activation time ai,k is given by
ai,k = φi + kTi, where Ti is said activation period (or simply
period), and φi is said initial offset.

In this work we will consider preemptive scheduling
algorithms, i.e., algorithms that can suspend (resume) the
execution of a job when a higher priority job become active
(terminates). We denote by Ωi,k the time that in the interval[
ai,k, di,k

]
is reserved to tasks receiving a higher scheduling

priority than si. Clearly, the job Ji,k meets its deadline if
Ωi,k + ci,k ≤ di,k −ai,k.

B. The control problem

In the set S , the element s j , with j ∈ {1, 2, . . . , n}, is used
to control a plant whose “nominal” transfer function is G(s).
The plant is affected by an external disturbance term d(t) and
by internal additive uncertainties Δ(s). In plain terms, if u(t)
is the input function (U(s) being its Laplace transform) the
output of the plant is given by Y (s) = (G(s)+ Δ(s))U(s)+
D(S).

The controller is activated with period Tj. At time a j,k =
φ j + kTj, the hardware takes a sample of the plant’s output
and computes the control value. The deadline is chosen as
di,k = ai,k +Di, with the relative deadline Di ≤ Ti. Between
two subsequent releases of the control output, a hardware
device holds the last computed value (ZoH).

It is then possible to compute a discrete time equivalent
of the plant G(z) using the standard conceptual tools of
digital control [10]. Likewise we will use the discrete time
counterparts for the the disturbance (D(z)) and for the plant
uncertainties (Δ(z)). The Z-transform of the sampled output
of the system is given by:

Y (z) = (G(z)+ Δ(z))U(z)+D(z). (1)

The control output is released (with a high accuracy) at
time di,k and is held until time di,k+1. This computation
model (commonly called time-triggered model of compu-
tation [24]) requires the use of a specialized hardware (e.g.,
an output compare block) and allows us to deal with fixed
computation delays, i.e., the effect of output jitter is null.
For the purposes of control design, this delay can be treated
as additional memory elements (one memory element if the



delay is shorter than a period) inside G(z). The closed loop
evolution of the system is given by:

Y (z) =
C(z)G̃(z)

1+C(z)G̃(z)
R(z)+

D(z)
1+C(z)G̃(z)

, (2)

where G̃(z) = G(z)+ Δ(z).
The control problem is now described with a list of control

goals ordered with respect to control relevance and, hence,
suitable for the anytime control approach:

1) Closed loop asymptotic stability of the nominal system,
2) Rejection of the disturbance term D(z),
3) Minimization of an appropriate H∞ norm.
It is worthwhile to note that each of the control goals here

proposed is customary in the control literature ([10], [7])
and represents only a possible choice among all the existing
techniques. Nevertheless, it allows to define a systematic way
to design each compounding controller of the sequence.

The rationale behind this choice is readily explained.
Asymptotic stability (Goal 1), instrumental to any other goal
in control engineering, means that the closed loop system,
starting from an equilibrium, is able to react to possible per-
turbations remaining in a neighbourhood of the equilibrium
point and eventually restoring the equilibrium condition. The
rejection of the disturbance term D(z) (Goal 2) means that we
can attenuate the effect of the term D(z)

1+C(z)G̃(z) in Equation (2).
The minimization of H∞ norm (Goal 3) allows us to consider
all the previous requirements at once and to tolerate the
parametric variations (modelled in the additive uncertainties
Δ(z)).

The price to pay for increasingly aggressive goals is
computing power. Indeed, as detailed below, the computation
power required to achieve Goal 2 is greater than the one
required to achieve Goal 1, and the computation power
required to achieve Goal 3 is (far) greater than the one
required to achieve Goal 1 and Goal 2.

C. Problem Formulation

In the setting described above, the time available for the
computation of the control value is, for the k− th job, given
by D j −Ω j,k. The classical (worst case) way of designing
the controller is to choose such a control law C(z) as can be
accommodated in the time interval D j−maxk Ω j,k. This way,
the number of deadline misses is limited ([16]). Nevertheless,
in the case of control tasks on fixed computational power
budget platforms, the algorithms are drastically simplified to
be computable within the allotted time.

In this paper, we take a different approach. Assuming that,
for all tasks, ci,k is a stochastic process with known distribu-
tion, Ω j,k and the available time D j −Ω j,k are stochastic
processes in their turn. Assuming the presence of kernel
mechanism that notifies the task when its available time has
been exhausted, we can build a mechanism according to the
following lines: 1) the execution of a controller ensuring the
attainment of Goal 1 has to be guaranteed in the worst case,
2) in case the available time is sufficient we can execute
additional pieces of computation that attain Goal 2 and
Goal 3.

Fig. 1. Our methodology to produce the real-time code for anytime
controllers.

In order to make this approach viable we propose a
development process organized as shown in Figure 1. The
process is organized in the following steps:

• Provide a characterization for the execution environment
of s j, i.e., a mathematical description of the process
Dj −Ω j,k,

• Design a controller such that the three goals introduced
above are incrementally obtained by executing different
“subroutines” in the control algorithm,

• Choose a switching policy for the three controllers such
that, given the process D j − Ω j,k, some systemwide
properties are achieved for the closed loop system (first
and foremost stability).

The last point deserves some attention. Since we switch
between different controllers, the resulting closed loop sys-
tem is a linear switching system ([12]). It is well known that
arbitrary switching between linear asymptotically stable can
very well produce unstable dynamics (see [13]). Therefore,
we need a systematic way to avoid the switching sequences
that could determine this anomaly. In the rest of the paper, we
will separately show how each of these steps is performed.

IV. A MARKOV DESCRIPTION OF STOCHASTIC

EXECUTION TIME

In this section, we show how to come up with a stochastic
model for the behaviour of the execution platform (see
Figure 1).

Throughout the section, we will assume that the task
executes on a CPU managed by a RTOS implementing a
fixed priority scheduler [16], [3]. Tasks are ordered according
to their scheduling priority (i < h means that si has a higher
priority than sh).

a) Preliminaries: As we said above, we focus on a
control task s j coded as a sequence of n different subrou-
tines. The execution of the sequence can be interrupted, if
necessary, at “any time” by all tasks si having a priority
greater than s j. Each of the n subroutines is the software
implementation of a discrete–time dynamic controller, whose
state space representation is generically referred to as Γ p

for p = 1, . . . ,n. The objective of this section is to model
the time c̄ j,k = Dj −Ω j,k available for the k-th job of s j in
an interval of length D j. Since the relative deadline D j is



constant, the time dependence of c̄ j,k is only related to Ω j,k,
i.e. the workload generated by tasks si with i < j.

Let c̄ j,k ∈ [tmin, tmax]. By definition, we have τmax ≤ Dj.
Moreover, if WCETp is the worst case execution time of the
first p subroutines of the task s j, we require WCET1 ≤ tmin

and WCETn ≤ tmax.
Define an event set Lτ � {τ1, · · · ,τn}, and a map

T : [τmin,τmax] → Lτ
c̄ j,k �→ τ(k)

where

τ(k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ1, if c̄ j,k ∈ [τmin,WCET2)
τ2, if c̄ j,k ∈ [WCET2,WCET3)
... if

...
τn, if c̄ j,k ∈ [WCETn,τmax]

Intuitively, each symbol τh is associated with a range of
available computation times and it expresses the subroutines
that can be invoked at the considered job (for instance the
τ2 symbol means that the controller can execute the first two
subroutines).

Therefore, the stochastic description of the platform is in
fact the description of a discrete valued stochastic process
τ(k) taking values in L.

The distribution of this process is directly inherited from
the probability distribution of c̄ j,k The simplest situation
is one where c̄ j,k is independent and identically distributed
(i.i.d.). In this case, the τ(k) is i.i.d. in its turn.

b) Markov based model for workload generation:
In this paper, instead, a slightly more complex, but more
general, model allowing for non-stationary probability dis-
tributions is provided. The considered situation is one where
the higher priority tasks si, interfering on the execution of s j,
are periodic and can have different execution modes, i.e. the
duration ci,k and the associated period Ti,k will vary between
different jobs taking a discrete set of values. More precisely,
let the set of possible modes for si be described by the set of
feasible choices Wi = {(cp

i ,T p
i )} with msi = #Wi finite and

p = 1, . . . ,msi . For example, if the process associated to the
task si may be not active, it follows that (0,0) ∈ W i. The
mode changes are due to asynchronous events but, if they
take place during a job of si, their execution is deferred to
the end of the job, i.e., ci,k+1 �= ci,k and Ti,k+1 �= Ti,k will be
the new time duration and the new execution period after the
deadline di,k has expired.

The mode switches are triggered by a discrete–time
Markov process, associated to a an irreducible and aperiodic
Markov chain, whose states represent the different modes.
For the sake of simplicity, in our context, we assume that
mode switches are synchronized at the end of the current
job of s j . This behaviour is very simple to implement (e.g.,
by using a semaphore), but it clearly corresponds to a delay
in executing the mode switch. Simplifications like this are not
infrequent in the literature of real-time systems with multiple
modes. They do not significantly affect the behaviour of the
system as far as the sampling periods of the task are very
close to each other and the time scale of the triggering event

is much longer than that the sampling periods (e.g., this is
not unrealistic if the triggering events are determined by the
choices of a human operator). Hence, for the p–th mode
the number of activations of si that cause interference are
given by: l̂i, p =

⌈
Dj
Ti

⌉
. Since the number of possible different

duration for si is exactly msi , we can construct a Markov
chain χi expressing the interference of si on task s j which
is exactly coincident with the Markov chain governing the
mode switches. The p–th state of χ i is tagged with a total
duration of l̂i pci.

If we have multiple tasks with higher priority than s j,
we can generalize this construction approach by computing
the composition. The stochastic description of the overall
chain χ is given by the Kronecker products of the j − 1
transition probability matrices of χ i, and hence χ preserves
the property and the steady state probabilities of the chains
χi ([11]). Again, each state is tagged with the sum of the
durations of each of the j−1 compounding states. Therefore,
a finite state discrete-time homogeneous irreducible aperiodic
Markov chain for the available time c̄ j,k is thus derived,
referred in the rest of the paper as the scheduler chain.
In this case, more flexible and general than the model
that can be obtained using i.i.d. processes, Pr{τ(k) = τ i} =
πτi(k) is time-dependent, while transition probabilities pi j �
Pr

{
τ(k + 1) = τ j | τ(k) = τi

}
are time-independent.

c) A motivational example: The choice described above
has pretty strong industrial motivations. Consider the follow-
ing example taken from the automotive domain. In this case,
a higher priority task si can be, for instance, related to the
spark ignition controller that changes (ci,k,Ti,k) with respect
to the drive shaft angular event. Therefore, it is directly
dependent from the number of drive shaft revolutions per
minute (RPM). Therefore, different driving conditions for
the vehicle generate different workloads. Other high priority
automotive tasks may be the active suspensions controller,
the Electronic Stability Program (EPS) or the Traction Con-
trol System (TCS), all related to the driving style. Since
it is customary that the driver behavioral model related to
the vehicle accelerations and decelerations is obtained using
hidden Markov model estimators, the task modes are in
their turn modelled as finite states of a Markov chain. In
this paper, we assume that all the descriptive chains are
finite state discrete-time homogeneous irreducible aperiodic
Markov chains. Less important than the previously presented
safety systems, is the gaseous emission controller. To gain
the best as possible pollution reduction, such a control
task cannot be completely removed but, instead, it can be
implemented using a lower priority anytime task s j.

V. ANYTIME CONTROLLERS’ DESIGN

In this section we present the relevant implementation
aspects of the methodology. In particular we focus on the
automatic generation of control laws suitable for the Anytime
paradigm and then we briefly summarize the control theo-
retical issues, like stability and performance, of the resulting
switching scheme.



Fig. 2. Anytime control closed loop scheme

A. Bottom-up design technique

The first step towards the implementation of Anytime
control on a true RTOS is the development of an automatic
procedure to design controllers suitable to Anytime approach.

The main conceptual problem in designing controllers
for the anytime paradigm is that the controllers interact in
feedback with dynamic systems, which fact entails issues
such as:

• Hierarchical Design: controllers must be ordered in a
hierarchy of increasing performance;

• Practicality: implementation of both control and
scheduling algorithms must be simple (limited re-
sources);

• Composability: computation of higher controllers
should exploit computations of lower controllers (rec-
ommended);

• Switched System Performance: stability and perfor-
mance of the switched system must be addressed.

We propose here an automatic tool implementing a sim-
ple bottom-up design technique based on classical cascade
design [9]. This method addresses the issues of hierarchical
design, practicality, and composability.

The closed loop structure adopted for implementing this
procedure is described in Figure 2 for a three-levels hierar-
chy.

Looking at the scheme in Figure 2 it is apparent that the
composability requirement is addressed since any controller
Γi inherits the whole structure of the lower controllers.

We define Σi = G(z) + Γi, i ∈ I � {1, . . . ,n}, the closed
loop between the system and (at least asymptotically sta-
bilizing) controller Γi. The procedure starts designing Γ2

according to its performance index, then try to produce C 1 as
a proper (or strictly proper) transfer function (t.f.) extracted
from Γ2. In others words, the whole set of stabilizing sub-
controllers obtained taking poles and zeros from the t.f. of
Γ2 is produced and a suitable C1 is chosen according to one
or more of the following criteria: rising time, settling time,
steady state error, minimum complexity (hence minimum
WCET), etc.

C1 is designed in this way in order to reduce the complex-
ity of the first controller (practicality requirement). Once C1

is chosen, C2 is simply given by the difference Γ2 −C1.
If no stabilizing sub-controllers can be produced, the prob-

lem of designing C1 is directly addressed by an optimization
problem that has the numerator and denominator coefficients

of the controller’s t.f. as optimization variables. A possible
objective function to be minimized is given by the spectral
radius of the closed loop max(abs(eig(Σ1))).

Since keeping low the controller complexity is a main
concern (practicality requirement), the procedure starts with
a proportional controller and increases its complexity by
adding poles and zeros until a stabilizing controller is found.
Any candidate controller is described by a proper or strictly
proper transfer function. It is worth noting that stability is
only one of the possible objective function this optimization
problem can use to find a controller.

After C1 is found, the design of C2 is performed on the
closed loop system Σ1 according to Σ2 desired specifications
and C3 on Σ2 according to Σ3 desired specifications.

We implemented a software tool that, given the discrete
transfer function of the system G(z), is able to provide three
controllers ensuring that the related closed loop systems Σ i

have the following performance:

• Σ1 is asymptotically stable (Goal 1);
• Σ2 minimizes a quadratic index cost (LQG) (Goal 2);
• Σ3 minimizes the H∞ norm of the transfer function

between reference and error, i.e. minimizes ‖Tre(z)‖∞
(ê = y− r) (Goal 3).

B. Stability and Performance Under Stochastic Switchings

The stochastic switching policy in Figure 1 is now defined
with respect to important control aspects, such as stability
and performance. Let the closed-loop system Σ i be described
by a linear discrete–time dynamic xk+1 = Âixk, where the
process governing the switchings among different controllers
is the Markov chain modelled in Section IV. The stochastic
closed loop system is a Markov Jump Linear System (MJLS).
Since switching among asymptotically stable controllers may
result in an overall unstable behaviour ([12]), in order to actu-
ally execute an anytime controller it is necessary to determine
a switching policy that prevent harmful switches between the
controllers. Such a policy selects which controller (among the
available ones) will be executed in the next period in the task
s j. Clearly, by no means is it guaranteed that the execution
will be permitted since, due to the stochastic interference
of higher priority tasks, the available time in the job could
not be sufficient. Therefore, the switching policy should
ensure stability in a stochastic meaning, named “Almost Sure
Stability” in [8]. In [11] a design procedure that based on
a the solution of a linear program produces a Markov chain
conditioning the evolution of the scheduler in the desired way
has been proposed. The switching policy is then a Markov
chain σ(k), with the same number of states as τ(k) and
with the same properties. Picking a realization of the Markov
chain, it is then possible to stochastically select the controller
to be executed in the next period.

VI. SIMULATION EXAMPLES

In this section, we present some simulation results that
show the application of the design methodology. The simu-
lation has been carried out using the true-time tool, which
allowed us to model both the anytime controller and the
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execution environment [5]. To the purpose of evaluating
performance we used an extension of the bounded real
lemma [23] to switching systems that allows us to compute
the H∞ norm and use it as a performance index.

A. Controllers design

In order to test the effectiveness of the design technique
presented in the previous section we used a set of randomly
generated discrete-time unstable t.f. G(z) of different orders.
The tool succeeded in finding the three controllers for each
system.

For the sake of completeness, we report one of these
systems and the related controllers. The open loop system
is described by the following t.f.:

G(z) =
−1.84(z+ 3.58)(z+ 1.24)(z−1.51)
(z2 + 1.26z+ 0.64)(z2−2.4z+ 1.87)

, (3)

with sample time of 0.1 sec. The algorithm firstly finds
an LQG controller (Γ2), from which four stabilizing sub–
controller C1 are derived by decomposition in this case. If
no particular criterion is specified, the algorithm selects by
default the lower order controller. In this example the lower
order C1 component controller is C1(z) =−0.11 (z−0.91)

(z−0.88) ; and

C2, given by Γ2 −C1, is C2(z) = 0.11 (z+0.53)(z2−0.44z+0.38)
(z+0.92)(z2+1.16z+1.6) .

For the third controller we use a classical H∞ control
synthesis. A stabilizing H∞ optimal controller is designed
minimizing the H∞ norm of the t.f. Tre(z) between the
reference r and the error e of Σ2. This control synthesis
provides the following controller:

C3(z) = −0.044
(z−0.63)(z+ 1.09)(z−0.14)
(z−0.88)(z+ 1.01)(z+ 0.92)

×
(z2 + 0.87z+ 0.28)(z2 + 1.40z+ 0.71)
(z2 + 1.91z+ 1.02)(z2 + 0.87z+ 1.16)

.

The closed loop output to a square wave reference with
variable amplitude is reported in Figure 3.

As the controllers are available, we consider the perfor-
mance of the switching system generated by the Anytime
control paradigm.

B. Bounded Real Lemma for Performance Index

To use the Bounded Real Lemma index in [23] for the
Anytime control systems we have to pay attention to some
particular aspects, related to the switching nature of our
system. To this end, the index is modified using weighting
terms that are strictly related to the entries of the transition
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probability matrix of the conditioned Markov chain, i.e., the
Markov chain of the scheduler τ conditioned by the Markov
chain of the switching policy σ .

Assuming in the present example that πτ =
[0.05 0.25 0.7] is the invariant probability distribution of
the scheduler, a solution to the switching policy problem
for the system and controllers presented in section VI-A
is given by πσ = [0.0462 0.9014 0.0524], the invariant
probability distribution of the switching policy.

The resulting value of the H∞ of the t.f. between “r”
and “e” for the three systems (‖Tre(z)‖∞) was 8.64 for
Σ1, 8.22 for Σ2 and 3.92 for Σ3 and 8.23 for the anytime
MJLS. As expected the three controllers provide increasing
performance, while the anytime controller (as expected from
the probability πσ ) performs very closely to Σ2.

C. TrueTime

Using Matlab/Simulink TrueTime toolbox, we simulated
a task set composed of two tasks: the Anytime control task
and a task, given a higher priority, that generates scheduling
interference. The latter task executes randomly in three
different modes, named Load1, Load2 and Load3, with fixed
execution times. The computational time of Load1 is such
that the time available in the period after its execution is
sufficient to compute only C1. The time available after the
execution of Load2, instead, allows for the computation
of controllers up to the second one, etc. We recall that
the probability of execution of every controller reflects the
one assigned by the πτ of the scheduler, while the actual
execution of the Anytime controllers is conditioned by the
chain σ used to define the switching policy.

In Figure 4 we compare of the Root Mean Square (RMS)
of the MJLS induced by the Anytime control with the RMSs
of Σ1, Σ2 and Σ3. The reference signal is the same we used
in section VI-A.
The performance of the MJLS is very similar to the one Σ 2.
Hence, the Markov policy behaves almost like computing
always the second controller, which is not a feasible policy
(from a hard real-time perspective) since when the interfering
tasks executes Load1, Σ2 is not schedulable.

VII. EXPERIMENTAL RESULTS

In this section we show the application of our methodology
to a real-system. (See Figure 5). The system is a 2 DOF
helicopter model, consisting of a rotating base linked to a
rod having length 2l. Two fan actuators, producing forces F1

and F2, are installed at the two ends of the rod. We name



(A)

(B)

Fig. 5. 2 DOF helicopter model. A) schematic diagram , B) picture of the
system

Name Description Value
m1 mass 0.110 kg
m2 mass 0.090 kg
l rod half length 0.2 m

cα friction coefficient on α 0.01 kg s−1

cβ friction coefficient on β 0.01 kg s−1

J1 complete moment of inertia on x 0.00463 kg m2

Jy moment of inertia on y 0.00023 kg m2

Jz moment of inertia on z 0.00364 kg m2

Ib base axial moment of inertia 0.00023 kg m2

TABLE I

NUMERIC VALUES OF THE HELICOPTER CONSTANTS

the pitch angle α and the yaw angle β .
The system can be described by the following equations:

α̈ = −J2

J1
β̇ 2 sinα cosα − cα

J1
α̇ − l

J1
F1 +

(m2 −m1)lg
J1

cosα

β̈ = − 2J2

J3(α)
α̇β̇ sinα cosα − cβ

J3(α)
β̇ +

l cosα
J3(α)

F2,

where J1 = Jx + (m1 + m2)l2, J2 = Jy − Jz − (m1 + m2)l2,
J3(α) = Jy sin2 α +

(
Jz +(m1 +m2)l2

)
cos2 α + Iβ .

The description and the numeric value of the helicopter
constants are reported in Table I. Linearizing the sys-
tem around the operating point ᾱ = β̄ = 0 with F̄1 =
(m2 − m1)g and discretizing the continuous-time model
with a sample time of 1 millisecond, we obtain a di-
agonal discrete-time transfer function matrix G(z). There-
fore, unlike the non linear model, the dynamics of α
and β are decoupled in the linearised system, hence the
Multiple Input Multiple Output (MIMO) system can be
regarded as two independent Single Input Single output
(SISO) systems. G(z)(1,1) = −2.16×10−5(z+0.999)

(z−1)(z−0.998) represents
the t.f. between F1 and α . In this case, the developed tool
gives C1(z) = −0.499, C2(z) = −3196.71 (z−0.56)

(z2+0.28z+0.62) and

C3(z) = −19352.47 (z−0.81)(z+0.38)(z2+0.15z+0.63)
(z2+0.6z+0.143)(z2+0.29z+0.61) . G(z)(2,2)

represents the t.f. between F2 and β . For space limits, the

Closed Loop systems ‖Tre11(z)‖∞ ‖Tre22(z)‖∞
Σ1 4.8741 9.631
Σ2 1.0914 1.045
Σ3 1.0003 1

Anytime MJLS 1.1327 1.7847

TABLE II

H∞ NORM OF T.F. BETWEEN “R” AND “E” FOR EACH Σi AND FOR MJLS.
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Fig. 6. Pitch and yaw angle of the Anytime controlled helicopter.

G(z)(2,2) and the associated controller are not exlicitly
reported.

Assuming πτ = [0.05 0.25 0.7] is the invariant proba-
bility distribution of the scheduler, a solution to the linear
programming problem for the system is given by π σ =
[0.1042 0.8103 0.0855].
In Table II the H∞ norm of the closed loop systems Σ i and
of the Anytime MJLS for each SISO system is reported. The
norm value of the Anytime controlled system is very close
to that of Σ2, as expected by the values of πσ .

For the platform, we used one of large industrial employ-
ment, having an on-board RTOS and providing an intuitive
visual programming language: the PXI (PCI eXtensions
for Instrumentation) modular instrumentation platform from
National Instruments and its on-board proprietary RTOS.
To monitor and to program the PXI platform, we used
LabVIEW (Laboratory Virtual Instrumentation Engineering
Workbench). In particular we used LabVIEW to implement
our three level Anytime control scheme.

We applied the resulting architecture to some test regula-
tion tasks. Let us illustrate one of them. The helicopter starts
from the initial position α = 33.84◦ and β = 0◦ and reaches
the horizontal position α = β = 0◦, i.e. the operating point.
The system is perturbed by external forces in order to test
its robustness.

Figure 6 depicts the measured outputs (α and β ). Starting
from the initial position, the helicopter reaches the horizontal
position in about 40 seconds. At T = 53 sec an external
impulsive force is applied to the system in order to destabi-
lize the yaw posture. The dynamics of α turns out to be
perturbed as well. The system returns to the equilibrium
point at T = 80 and after a few seconds another impulse
is applied, in order to destabilize the pitch posture. Another
impulse perturbing mainly β is applied at T = 107. The plots
in Figure 6 show how the Anytime control stabilises the



Fig. 7. Excerpt of the task set scheduling

system even in presence of strong external disturbances and
the anytime regulation task fulfil the control objective in the
presence of noise in the input and output channels and of
model uncertainties (e.g., resulting from the linearisation).

Using a LabVIEW toolkit (Real-Time execution Trace
toolkit), the task scheduling of the RTOS has been traced and
then partially depicted in figure Figure 7 for the helicopter
experiment shown in this section. In the few sample periods
reported, all the typical behaviours of the anytime control
are depicted.

For the implementation of the paradigm, we split the
Anytime task into three different tasks, each implementing
one of the three subroutines, while another dummy task
generates the workload with stochastic Markovian execution
time. For completeness, the ETS Null Thread is added as
the dummy process of the RTOS. For each of the previously
introduced tasks, we report in Figure 7, left, the priority value
(higher value, lower priority, except for the ETS Null Thread)
in square brackets. The computation time of the tasks were
as follows: load task 200÷ 900μs, C1 10 + 23μs (23 μs is
the input acquisition), C2 185μs and C3 190+ 26μs (26 μs
writing activities, included in the mandatory part).

VIII. CONCLUSIONS

The main contributions of this paper are in the direction
of providing a methodology for an automatic control de-
sign complying with the Anytime control paradigm, and in
formalizing a stochastic model for a particular, practically
motivated, scheduler for the interaction with the control
design.

The effectiveness of the proposed approach has been
proved by both simulating the designed control tasks and
the stochastic scheduling policy in TrueTime, and by a real
experimental setup. The good adherence with the theoretical
expectations, as well as the evident improvement with respect
to the hard real-time setting, is suggesting of interesting fu-
ture development in terms of achieving the best exploitation
of computational resources for embedded systems.
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