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Introduction

Epithelial barriers regulate the passage from one domain to 
another, and are the body’s natural defense against external 
substances.1 Lung epithelium is one of the most permeable 
epithelial barriers of the human body2 and it is the object of 
different investigations regarding drug and nanoparticle 
(NP) delivery and toxicology. Recent developments in 
delivering drugs to the lung are driving the need for studies 
to evaluate the fate of inhaled medicines.3 In particular, 
inhalation of aerosolized drugs is a promising route for non-
invasive targeted drug delivery to the lung.4 Additionally, 
researchers are focusing their attention on the adverse 
effects caused by inhaled nanoparticles and chemical com-
pounds (which depend on their hazard), and on exposure.2 
To understand what can and cannot cross the lung barrier 
and their effects on the human tissues, models have emerged 
to rigorously study and investigate these questions.

Both in vivo and in vitro models are used for lung pathol-
ogy (such as infection, inflammation, cancer, small-airway 
pulmonary diseases), drug delivery, and toxicology studies. 

Indeed, animal models provide a means for testing hypoth-
eses, such as the therapeutic efficacy of a drug candidate, in 
complex biological systems. In vivo models are important 
for the evaluation of drug deposition efficiency, or to study 
the effects of nanomaterials and inhaled chemicals on lungs 
and peripheral tissue.2,5–8 However, although they can reca-
pitulate key pathological changes in some lung diseases, 
they are still limited in reiterating all features observed in 
humans due to fundamental differences in anatomy and 
physiology between humans and animals. The combination 
of differences in host immune responses to epithelial injury, 
pathology biomarkers, the extent of respiratory bronchioles, 
interdigitation of conducting airways, acinar size, and air-
blood barrier thickness contribute to the varied sensitivity to 
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inhaled toxicants between species.9 In addition to differ-
ences in lung physiology and responses to compounds, ani-
mal testing is also a sensitive topic from an ethical point of 
view and a transition to non-animal technologies is encour-
aged through national legislation.

In vitro models offer tightly controlled cellular environ-
ments that can be evaluated in real time, easily scaled and 
replicated, allowing the evaluation of the effects of drugs, 
chemical compounds, exhausts or NPs on lung tissues, and 
reducing the use of animal models and clinical studies. 
Leveraging these models could aid the discovery of novel 
therapeutic targets, may provide powerful, scalable screen-
ing platforms to test the effects of pharmaceuticals, and 
can act as an important preclinical step to bridge the gap 
between drug testing in animal models - which are expen-
sive and have a high failure rate - and human clinical tri-
als.10 In fact, several advanced in vitro systems have been 
recently used to model pathological conditions,11 revealing 
that, in some cases, they are able to perform a match com-
parison between the responses from normal cells and dis-
ease-exposed cells from the same patient, which is an 
important step toward personalized medical therapy.12

The term “physiologically relevant” is often used in the 
context of in vitro models and is referred to the likeness of 
the model with respect to the in vivo counterpart. 
Considering the microenvironment of the alveolus, which 
is the functional unit of the lung where gas exchange and 
particles absorption take place, the specifications for an 
ideal “physiologically relevant” engineered human in vitro 
model are:

•	 Human-derived cells that compose the native alveo-
lar barrier (thickness ≈ 0.6 µm,13 alveolar surface 
area ≈ 130 m2),14 consisting ideally of: an epithelial 
layer of simple squamous epithelium (i.e. pneumo-
cytes and macrophages); a layer of endothelial cells 
of the capillary wall; and the basement membrane 
between the two. Lung cells must be cultured using 
defined protocols, without losing their phenotypic 
characteristics;

•	 A fluidic system that reproduces the blood flow 
through the alveolar capillaries (mean veloc-
ity ≈ 1 mm/s, flow rate 2–5 mL/min in an adult)15,16 
and provides adequate oxygenation and nutrients to 
the cell, as well as physiological shear stress to 
endothelial cells (around 1.5 Pa)17;

•	 An air-liquid interface (ALI) that mimics in vivo 
microenvironment where the epithelial lung cells 
are in contact with humid air on one side (which 
may contain particulate matter in the form of drop-
lets or aerosols) and blood on the other;

•	 A substrate for growing cells with properties similar 
to native tissue in terms of chemical composition 
and biomechanical behavior. Moreover, to repro-
duce alveolar barrier motion during breathing, this 

substrate must be subjected to mechanical cyclic 
stretching (around 5%–12% strains at 0.2 Hz in 
physiological conditions, and up to 20% strain in 
some pathological conditions).18

To be physiologically relevant, an in vitro model should 
replicate as many as possible of the essential features of the 
tissue or organ it is intended to represent, and which are 
fundamental for the experimental endpoints that must be 
evaluated. Thus, alveolar models can be designed with 
some or all of these requirements (summarized in Figure 1) 
according to the type of study under consideration and the 
specific questions being addressed (e.g. a model used to 
study differentiation or inflammation will have different 
requirements for physiological relevance than a model used 
for toxicology or safety applications).

The most important determinant of any in vitro model 
is the biological component, that is, the cells. Cells for in 
vitro models of the lung have been amply discussed in 
some excellent reviews and the reader is encouraged to 
refer to these for more in depth biological information 
and comparisons.19,20 Generally, they can be obtained 
from donors, primary cells, cell lines, or human pluripo-
tent stem cells (hPSCs). Commonly employed human 
epithelial cell lines are the A549 and NCI-H441, for the 
assessment of the alveolar barrier, and the Calu-3, 
BEAS-2B, and 16HBE for the assessment of the bron-
chial barrier.2 A promising alternative to cell lines are the 
hPSCs, which open the possibility to develop patient-
specific models.19 hPSCs could indeed win the debate 
over the ideal cell source, but currently the need for pro-
tocol optimization and standardization is still an obstacle. 
Additionally, lung epithelial cells can be co-cultured with 
vascular, neural, or immune cells such as macrophages, 
dendritic cells, and mast cells.1,2,19–23 The co-cultures 
enhance the reliability of the in vitro lung model, making 
them more similar to the complex in vivo microenviron-
ment. Regardless of the type of cells, there seems to be an 
agreement among the scientific community: models in 
which cells are cultured at the air-liquid interface (ALI) 
better represent the physiological environment of the 
lung. Indeed, a wide variety of studies have been per-
formed comparing the culture of lung cells in ALI and in 
submerged conditions, revealing that cells displayed phe-
notypic differences.20

Besides the cells, the choice of the most appropriate 
experimental setup is crucial for the design of an ad hoc in 
vitro model. A variety of models have been proposed using 
different engineering solutions that we will discuss in the 
next sections of this review. To facilitate the analysis of the 
devices, we have grouped them in:

•	 Fluidic systems that provide adequate oxygenation 
and nutrients to the cells, as well as physiological 
shear stress.
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•	 Systems that combine ALI culture with direct and 
quantitative aerosol/smoke exposure, for toxicolog-
ical studies and drug testing.

•	 Devices that mimic mechanical stretch of lung tis-
sues during breathing.

•	 Lungs-on-chips, which mimic biological and/or 
biochemical processes at the micro-scale.

In each section we analyze the biological role of the 
mechanical stimuli and exposure on lung tissues and then 
critically assess the approaches that have been employed 
to recreate such dynamic conditions.

Dynamic lung models: Fluidic systems

Shear stress is the frictional force per unit surface area exerted 
at a fluid-solid interface when they are in relative motion. The 
vascular system of the lung is continuously exposed to shear 
stress from blood flow. Furthermore, shear stress is also gen-
erated on the gas side from the airflow exerted on the air-
ways.2 It has been demonstrated that shear stress modulates 
different cellular phenomena such as morphology, prolifera-
tion, differentiation, metabolism, and communication.24

Several research groups have therefore developed 
dynamic systems that are able to provide shear stress while 
enhancing oxygen and nutrient diffusion at the same time. 
A variety of solutions have been adopted to generate cell 
cultures with medium flow using bioreactors with differ-
ent configurations, as schematized in Figure 2.

Hollow fiber bioreactors, for example, are common tools 
for performing dynamic cultures of many tissues25 and the 
lung is no exception.26 Here, air and cell culture media flow 
through the system through appropriate connectors providing 
the ability to modulate the environment both in the lumen of 
and surrounding the semipermeable fibers. An interesting fea-
ture of this type of system while comparing with other solu-
tions, is that the cell culture can experience a nearly 
physiological air and fluid flow environment. Unlike cells 
grown in conventional 2D static culture systems, cells grown 
in these bioreactors show typical characteristics of differenti-
ation.26 Another way of providing both ALI and adequate 
shear stress to the cells is by culturing them in rolling bioreac-
tors.27 As the system rolls, the cells spend an equal amount of 
time in air and liquid, rendering this bioreactor a suitable tool 
to study the impact of ALI on the cell differentiation process. 
However, unlike hollow fiber-based systems, it does not 
faithfully represent the in vivo configuration. Finally, a preva-
lent choice for the provision of medium flow is through the 
use of bioreactors with a tubing system and pumps.28–34 In 
these models, well inserts are typically cultured with epithe-
lial and endothelial cells, on the apical and basal sides, respec-
tively. The endothelial compartment is connected to the 
tubing system and thus sustained by media flow, which can be 
controlled to regulate the level of shear stress on the cells. 
Exploring this approach, dynamic in vitro models of invasive 
pulmonary aspergillosis were set up to study the pharmacody-
namics of voriconazole32 and isavuconazole.31 Toxicology 
studies have also been performed to evaluate the effects of 

Figure 1.  Toward physiological relevance—main elements of the lung microenvironment that are desirable in an in vitro model.
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NPs (e.g. gold NPs),34 or other airborne materials such as pol-
len.33 These examples illustrate that the use of flow systems is 
relevant for studies, where the role of shear stress on cell 
responses is assessed, and for absorption studies, where more 
complex kinetics and dynamics are considered. The charac-
teristics of the systems employed to perform these studies are 
summarized in Table 1.

Since the culture of cells in dynamic conditions became 
popular, optimized commercial solutions have been devel-
oped based on the operating principles represented in Figure 
2. Among the commercial devices, lung models using 
Synthecon (Synthecon® Incorporated, Houston, Texas, 
USA) and Cultex LTC-C (Cultex® Technology, Hannover, 
Germany) have been widely reported. Synthecon systems 
are perfusion bioreactors that comprise a cylindrically 
shaped rotating vessel with a central gas transfer core, while 
the Cultex LTC-C system presents a hydraulic circuit with 
media flow facilitated by peristaltic pumps. The main appli-
cation of the latter is the generation of comparable cultures 
for mechanistic and toxicological studies.41 On the other 
hand, Synthecon bioreactors are better tailored for cell/tis-
sue engineering approaches. They have mainly been used to 
produce whole acellular lung as a matrix to support the 
development of engineered lung tissue,37,38 to evaluate anti-
microbial efficacy against biofilm formation in 3D lung epi-
thelial models,40 and for the generation of self-assembled 
human lung tissue (organoids)39 employed for disease mod-
eling and drug discovery. The employment of more sophis-
ticated fluidic devices is analyzed in the following section 
and they are an option for researchers looking for further 
complex systems compatible with exposure studies.

From Table 1, it is clear that the protocols are not univer-
sal for all the lung models cultured in dynamic conditions. 
Besides varying in their working principle, they also vary in 
scale: the “in-house” fluidic circuits go from micro to milli-
scale and even commercial devices, such as the ones from 
Synthecon, can work with a wide range of volumes (from 1 
to 50 mL for one of the available configurations, according 
to their website). Regarding the biological components, 
both cell density and cell medium flow rate vary greatly. For 
the models with cells cultured in 2D, the epithelial cell den-
sities range from 8000 to 500,000 cells/cm2, but this range 
expands as the cellular complexity of the model increases 
(both in composition and in arrangement). When it comes to 
the flow rate, the data is not always available and in a num-
ber of cases it was derived from descriptions of the fluidic 
circuit set-ups. Remarkably, the flow rates are considerably 
higher than the pulmonary capillary flow rate of ≈2–
5 10−6 mL/min in a human.15 Only the device developed by 
Blume et  al.33 applied a medium flow (5 × 10−4 mL/min) 
that was relatively close to the physiological range. The 
shear stress provided by all these systems is often referred to 
as “low-shear stress” but the values are not estimated/pre-
sented. Clearly there is a need to harmonize reporting to 
enable more precise identification and implementation of 
the flow-related parameters in the studies. Only then can 
different approaches be compared, and meaningful correla-
tions be identified between cellular response and a certain 
stimulus or type/magnitude of stimulus. Nonetheless, these 
bioreactor systems are a step forward in the design of 
advanced in vitro models, when compared with more tradi-
tional systems.

Figure 2.  Different configurations of bioreactors designed to operate with millifluidics. Representations are not at scale. The 
photograph in panel C shows the MALI chamber with nebulizer.158
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Knowing what we breathe: 
Combining ALI culture and aerosol/
smoke exposure

Inhalation is an important route of exposure to particu-
lates, both in the form of drugs if considering pharmaceuti-
cal therapies, and environmental particles.42 The goal of 
pharmaceutical therapies is to allow drug delivery into the 
lung with maximum efficiency, while the effect of envi-
ronmental particles must be investigated to evaluate their 
potential toxicity on lung tissues. Therefore, several stud-
ies are focused on assessing the biopharmaceutics and 
toxicology following particulate exposure, and several 
models have been developed to investigate these aspects. 
Progress in this direction is represented by complex in 
vitro models that combine ALI culture and aerosol/smoke 
exposure making them suitable for studies on inhalation 
toxicology and pharmacology. The following subsections 
present both laboratory-made and commercial systems 
that belong to this category.

Laboratory-made systems for aerosol exposure

Over the years, several authors have focused on the design 
and characterization of innovative systems in terms of 
deposition efficiency and homogeneity, to maximize 
experimental reliability and throughput. Indeed, one of the 
essential requirements for exposure systems is the ability 
to present compounds or materials directly and reproduci-
bly to cells in culture so as to allow dose-response analyses 
of airborne molecules or materials. They have been used 
principally to investigate the inflammatory and toxic 
effects of aerosolized compounds on lung tissue, combin-
ing ALI culture with direct exposure of gaseous contami-
nants (i.e. NO2 and O3),

43,44 volatile organic compounds,45 
brake powder,46 diesel exhaust particles,47–50 or micro/
nanoparticles.51–53 The exposure is performed using differ-
ent approaches: with gas generators,43,44 commercial 
microsprayers,51 flame spray synthesis,54 or specifically 
designed solutions. For example, Riediker et al. worked on 
a device that consisted in an exposure-box mounted around 
a car’s braking system to collect, purify, and nebulize 
brake powders;46 Cooney,47 Holder,48,49 and Oosting50 
designed custom exposure systems and deposition cham-
bers to evaluate the effect of diesel exhaust particles on 
lung cells cultured on Transwell inserts; another even sim-
pler approach was proposed by Bakand et al., who placed 
cells cultured at ALI in a glass chamber at 37°C, together 
with filter paper soaked with volatile compounds (i.e. 
Toluene and Xylene).45

Other studies focused on the quantitative characteriza-
tion of therapeutic aerosols in vitro, using modified phar-
maceutical impactors and impingers, which operate on the 
principle of inertial impaction. These devices consist in a 
series of stages with a single or multiple nozzles or jets 

through which the aerosol flow is driven. If particles have 
sufficient inertia, they will impact on that particular stage 
collection plate; if not, they will remain entrained in the air 
stream and pass to the next stage where the process is 
repeated. This allows characterizing the particle size distri-
bution of aerosols. The term “impactor” is generally used 
when the particles impact on a dry impaction plate or cup, 
while “impinger” refers to a liquid collection surface.55 
For the aerodynamic assessment of fine particles, the 
European Pharmacopoeia recommends: the twin stage 
impinger (TSI), multi stage liquid impinger (MSLI), next 
generation impactor (NGI), and Andersen cascade impac-
tor (ACI).55 Even though these tools are useful for evaluat-
ing the aerodynamic performance of aerosol formulations, 
they do not give information relating to drug dissolution 
and transport at the epithelia. Therefore, in order to study 
the deposition and transport of inhaled drugs across the 
epithelial barrier, several researchers modified these 
impactors inhouse incorporating in vitro cell based meth-
ods into classical impactors to provide a better understand-
ing of the fate of microparticles after deposition in the 
respiratory tract.56–59

Another approach used to design predictive lung in vitro 
models consists in the introduction of media flow combined 
with exposure at ALI. This setup better reproduces the alve-
olar microenvironment, where the blood flow through the 
capillaries is reproduced by the media flowing through the 
“liquid side” of the ALI interface. The media flow also 
enhances oxygen and nutrient diffusion and provides shear 
stress to the cell surface. In this context, Tippe et al. modi-
fied the commercially available perfusion Minucell device 
(MINUCELL, D-93077 Bad Abbach, Germany) to evaluate 
the quantitative dosimetry of fine and ultrafine aerosol par-
ticles during in vitro exposure and permit an aerosol expo-
sure by stagnation point flow.60 Successively, other authors 
used this approach to allow a dose-controlled exposure of 
ultrafine- and nano-particles.61,62

Finally, several studies show that applying an electric 
field during exposure leads to better control of particle pre-
cipitation, enhancing the deposition efficiency, reproduci-
bility, and uniformity of particles on the cell culture surface. 
Therefore, electrode-assisted systems were used to evalu-
ate the deposition and electrical discharge on cell layers 
during aerosolization, analyzing the toxicity of nebulized 
micro-63 and nano-particles,42,52,53,64 diesel exhaust,63,65,66 or 
air pollutants.67

Commercial aerosol and smoke exposure 
devices

The most commonly used commercial systems for the 
direct and quantitative exposure to aerosols are the Cultex® 
RFS system, the Vitrocell® exposure chambers, and the 
PreciseInhale. In these systems the aerosol generator is 
connected to an exposure chamber in which the well 
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inserts (or Petri dishes) are placed, and the cell culture 
media is supplied individually to each well compartment, 
ensuring the ALI. Although Vitrocell systems are designed 
to perform ALI culture, they have been used to test both 
submerged and ALI experimental conditions, investigating 
the effects of each exposure scenario.68–71

The successful application of these commercial sys-
tems is demonstrated by the high number of toxicological 
testing studies to which they are applied. They can also 
be used to evaluate the therapeutic potential of new for-
mulations. For instance, Lenz et al. investigated the effect 
of a commercial FDA-approved proteasome inhibitor 
(Bortezomib).72 Another example is Schmid et als.’ study 
of the biokinetic behavior of the immunosuppressive 
drug Cyclosporin A encapsulated in liposomes at the lung 
epithelial barrier.4 Still in the field of drug testing, Gerde  
et al. and Malmlöf et al. used the PreciseInhale to evalu-
ate dissolution and adsorption in the lungs of drugs such  
as Fluticasone propionate,73,74 Budesonide,73,74 and 
Salmetrol.74 Tables 2 and 3 summarize the classes of sub-
stances and testing conditions using these systems, split-
ting them respectively into chemical/biological 
compounds and nanomaterials.

In addition to the systems for direct aerosol exposure, 
several commercial smoking machines combined with 
exposure chambers have been designed particularly for 
smoke inhalation simulation: examples are the Vitrocell 
VC smoking machine (Vitrocell® systems, Waldkirch, 
Germany) and the Borgwaldt systems (Borgwaldt KC, 
Hamburg, Germany), the latter usually paired with the 
British American Tobacco (BAT) exposure chamber.118

Several studies illustrate the value of these systems, 
which can be found in the papers by Thorne who provided 
a comprehensive review of the major tobacco smoke expo-
sure systems available to 2013,118 and a comparison of in 

vitro data across multiple smoke exposure studies using 
reference cigarettes and considering three different smok-
ing machines.119 In the latter review, Thorne demonstrated 
that in vitro dosimetry techniques can align data between 
contrasting setups and experimental protocols, resulting in 
a link between in vitro, in vivo, and human dosimetry 
studies.

Although smoking machines have been used princi-
pally to investigate the effects of cigarette smoke on lung 
tissues,120–129 in the last few years, several research groups 
have focused their efforts on studying the effects of next 
generation tobacco and nicotine products, namely e-ciga-
rette aerosols and heated tobacco products.130–140

Table 4 shows all the commercial technologies men-
tioned here, which can be considered a good choice for 
advanced in vitro models if exposure conditions related 
with inhalation are a crucial aspect of the study.

To summarize, all the technologies mentioned above 
have somehow increased the complexity of lung models 
compared to traditional static culture. In these studies, the 
goal was to investigate the effect of aerosol/smoke deposi-
tion on lung tissues; fundamental to this scope is culturing 
cells at the ALI, to reproduce the in vivo deposition of the 
inhaled particulate. Some researchers devised very simple 
but functional solutions for their purposes (i.e. Bakand 
et al.),45 while others increased the model complexity by 
introducing culture medium flow, or performing electrical 
deposition. Finally, some authors modified pharmaceutical 
impactors, already used to characterize the particle size 
distribution of pharmaceutical aerosols, to obtain ad hoc in 
vitro models and study the deposition and transport of 
inhaled drugs. In addition to these laboratory-made 
devices, a large number of investigations are conducted 
using commercial systems, which at least allows some 
comparisons to be made between data from different 

Table 4.  Commercial systems for aerosol and smoke exposure, highlighting their similarities and differences.

Aerosol Exposure Smoke exposure

System Cultex RFS Vitrocell PreciseInhale Vitrocell VC Borgwaldt 
systems

Exposure 
chambers

Powder 
chamber

Cloud 
system

Configuration Stand alone Combined 
with aerosols 
generators or gas 
supply systems

Stand 
alone

Stand 
alone

Combined 
with XposeALI 
cell exposure 
unit

Combined 
with 
DissolvIt 
module

Combined 
with the 
Vitrocell 
exposure 
chambers

Combined 
with the 
BAT 
chamber

Aerosolized 
substances

Airborne 
substances 
(gases, NPs, 
complex 
mixtures, fibers)

Airborne 
substances 
(gases, NPs, 
complex 
mixtures, fibers)

Specific 
for dry 
powders

Specific 
for liquid 
aerosols

Airborne 
particles

Specific 
for dry 
powders

Smoke 
generation

Smoke 
generation

Media flow Yes Yes Yes Yes Yes Yes Yes Yes

QCM No Yes Yes Yes No No No No
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studies. However, we should underline that although there 
are many reports on exposure systems, very little attention 
is paid to precise measures of dosimetry, which greatly 
reduces the strength of comparative analyses. (Source 
PubMed—from 2010 to 2020: 55 documents on inhalation 
exposure and dosimetry in vitro and 1076 on inhalation 
exposure in vitro). In general, commercial systems are 
always the best choice for obtaining comparable results 
within the scientific community. This is the reason why 
Cultex and Vitrocell systems have become so diffuse in 
aerosol deposition studies over the last years. On the other 
hand, for the quantitative characterization of therapeutic 
aerosols in vitro, modified pharmaceutical impactors and 
impingers can be a good alternative. Indeed, these devices 
recommended by the European Pharmacopoeia are spe-
cifically designed for evaluating the aerodynamic perfor-
mance of aerosol formulations, and, when modified 
incorporating in vitro cell based methods, also give infor-
mation relating to drug dissolution and transport at the epi-
thelia. However, there are studies in which commercial 
systems or modified commercial systems are not appropri-
ate, since they do not allow to reproduce/evaluate some 
elements. For example, in order to control particle precipi-
tation and enhance the deposition efficiency, electrode-
assisted systems are the best option. However, to our 
knowledge there are no commercial in vitro lung models 
able to apply an electric field during exposure, and for this 
reason several authors designed ad hoc devices to be used 
only with charged or chargeable particles. Finally, it should 
be noted that none of these devices (commercial or not) are 
able to reproduce the effect of the deformation of lung tis-
sue which occurs during breathing, which may be a crucial 
modulator of the interaction between the alveoli and 
inhaled materials as discussed in the following section.

There is more to breathing than air 
exchange: Mimicking mechanical 
stretching

Over the last two decades it has become clear that mechani-
cal stress and deformation influence the biological function 
and signaling of alveolar epithelial cells.141,142 For example, 
mechanical stretch of cultured alveolar type II cells leads to 
changes in surfactant secretion,143–145 cell injury or 
death,143,146–148 permeability,149–152 and cell migration.153 
However, there are still many unanswered questions regard-
ing the micromechanics of the alveoli and the way in which 
it affects the mechanisms involved in lung physiology.141,154 
To better understand the effects of mechanical stimuli on 
lung epithelia by reproducing breathing motions, several 
research groups have developed systems able to apply 
cyclic stretch to cell culture supports.

Most of the currently available in vitro cell-stretching 
devices are covered in an excellent and systematic review 
by Doryab et  al. that elucidates the relevance of cyclic 
mechanical forces in lung biology.155

In this section, we first discuss and analyze the motion 
and resulting strains in the alveolus and lung. We then 
describe milli and micrometer-sized stretching devices, 
outlining the combined effect of device dimensions, defor-
mation mechanism and stretching directions, and their 
physiological relevance.

A brief description of the motion

During spontaneous breathing or mechanical ventilation, 
pulmonary tissues are permanently subjected to cyclic 
stretch with varying breathing frequency and volume 
amplitude in order to pair up with the metabolic state of the 
subject. In the resting state, the lungs expand and recoil 
with a frequency of about 0.2 Hz (12 cycles/min) and a 
tidal volume of around 10% of total lung capacity.18

At the macroscale, breathing movements are mainly 
related to the transpulmonary pressure (i.e. the difference 
between air pressure in the airways and the pressure at the 
pleural surface), elastic recoil (related to the high elastin 
content), and to muscular movements caused by the dia-
phragm and intercostal muscles. These forces are transmit-
ted at the microscale thanks to the extracellular matrix 
network, causing linear strain (defined as the variation in 
alveolar radius with respect to the initial radius) between 
4% and 12%.18 However, strain levels can increase or 
decrease in an injured or damaged lung, due to changes in 
the structure and mechanical properties.

Ex-vivo and computational studies have shown that differ-
ent deformation mechanisms occur as a function of pressure-
volume variations including: (i) recruitment/derecruitment of 
alveolar units; (ii) folding/unfolding of alveolar walls; (iii) 
change in alveolar shape (dodecahedral/spherical); (iv) iso-
tropic stretching/destretching.154,156

Ideally (i.e. without considering tissue anisotropy), the 
alveolus can be considered spherically symmetric, thus 
each plane passing from its center can be considered a 
plane of symmetry. Representing the alveolus as an iso-
tropic thin walled sphere (Figure 3(a)), in conditions of 
small deformation the tangential strain (εtangential) can be 
defined as:

ε
θ θ
θ
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L L

L

r r

r

r r

r
=

−
=

−
=

−
=

′ ′ ′
;

where L′ and L are the lengths of the arc under the angle θ in 
stretched and resting conditions respectively. Analogously, 
r′ and r are the radii of the alveolus in stretch and resting 
conditions. Thus, in conditions of isotropic stretching and 
relaxation, typical of resting state tidal breathing in 
vivo,154,156 the measured linear strain εlinear can be consid-
ered the same as that experienced by the epithelial barrier.

Similarly, in vitro systems with 2D circular or semi-
spherical shapes as in Figure 3(b) and (c) are symmetric 
with respect to any plane perpendicular to the membrane 
rest plane and passing through the center.
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The types of deformation applied to the substrate varies 
greatly but in general can be classified either as out-of-
plane or in-plane. The first consists of a deformation char-
acterized by the bulging in/upwards of the substrate 
(Figure 3(a) and (c)), whereas the second-one is the result 
of a lateral expansion of the substrate maintaining its origi-
nal flat position/plane (Figure 3(b)). Furthermore, accord-
ing to the direction of stress applied and the substrate’s 
relative displacement due to applied constraints the strains 
can be uniaxial, biaxial, multiaxial, or radial. This concept 
is often generalized, or even represented erroneously in the 
literature, so we provide a basic definition here. In 
Cartesian coordinates, uniaxial, biaxial, and multiaxial 
strains respectively occur in the case of a stretching along 
one, two, or more axial directions, while, in circular con-
figurations, uniform stretching in all the directions along 
the radius results in a strain which is defined as radial. 
Tangential or circumferential strains have been also 
defined in spherical or semispherical out-of-plane defor-
mations, referring to the uniform strains along the surface, 
perpendicular to the radius. Note that the alveolar barrier 
undergoes an out-of-plane deformation although linear 
and tangential strains are equal.

In most devices, the membrane radius ranges from 0.5 
up to 30 mm,157 while the radius of curvature (R) of the 
membrane can be calculated as follows:

R a R h R
a

h

h2 2 2
2

2 2
= + −( ) → = + ;

where a is the membrane radius and h is membrane dis-
placement (Figure 3(c)). For example, for a 12-mm radius 
membrane, a 5% linear strain is equivalent to vertical dis-
placement of 3.8 mm158 and R is equal to 20.7 mm. On the 
other hand, the dimensions of the cell and the radius of 
curvature of the alveolus are comparable (respectively 
≈10 and ≈50 to 100 μm). Therefore, as shown in Figure 3, 

despite the fact that in vitro models are able to apply linear 
strains which recapitulate those observed in an alveolus, at 
the cell scale they generally fail in reproducing out-of-
plane deformations. In fact, as demonstrated by recent 
studies, cells are able to respond to curvatures up to 
1000 μm, a phenomenon defined as “curvotaxis,” which 
may result in cell re-orientation and different gene expres-
sion.159–162 On typical cell culture systems subject to out-
of-plane deformation the effective radius of curvature of 
the membrane is out of the cell “curvature” sensing range 
and, consequently, they are likely to “feel” an in-plane 
deformation. Reproducing the in vivo curvature is impor-
tant to mimic the cell native environment and the out-of-
plane deformations at the cell scale. As the technology 
hardware for in vitro models improves, it should be possi-
ble to investigate this aspect with due attention to assess its 
importance in modulating cell responses to inhaled sub-
stances and therefore include it in the design criteria for 
physiological relevance.

We should also point out that in vivo and in vitro defor-
mation mechanisms are generally different: in the alveo-
lus, forces generated by the muscles are transmitted 
through the ECM; while, in vitro, membranes are stretched 
via pressurized air, vacuum or motor-driven systems, as 
described further in this section. The stress and strain dis-
tributions experienced by the cells may be affected by the 
deformation mechanism as stress concentrations may 
appear in correspondence of mechanical constraints, 
indenters, and membrane fixation points. Additionally, the 
stress on the alveolar is known to be related to the alveolar 
pressure level, which varies between −1 and +1 mmHg 
(101.3 ± 0.1 kPa) during normal breathing. On the con-
trary, pneumatic pressure devices typically apply pressures 
up to 7 kPa with respect to atmospheric pressure.158 Since 
it is known that high pressures may damage lung tissues in 
vivo (e.g. during mechanical ventilation), non-physiologi-
cal pressure and stress levels are likely to alter cell behav-
ior in vitro.163,164

Figure 3.  Schematic representation of the: (a) alveolar, (b) in vitro in-plane, and (c) in vitro out-of-plane stretching. Black arrows 
represent the deformation directions, while red arrows the corresponding strain on the cells.
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Pneumatic and motor-driven devices

Figure 4 schematizes the most common methods for driv-
ing stretching motion in in vitro models of the lung. They 
are based either on the use of pneumatic actuation through 
the application of air over- or under-pressure or mechani-
cal actuation with indenters.

As shown in Figure 4(a), pneumatic-driven devices 
deform the culture support using controlled air inflow (i.e. 
overpressure) or vacuum (i.e. underpressure). The over-
pressurization of a chamber upon or underneath a flexible 
cell culture support is generally achieved thanks to pressure 
regulators (i.e. electro-valves), which allow the control of 
air pressure and of the stretching level. These devices 
appeared from 1989 and were based on precision-cut lung 
slices165 or non-permeable membranes, enabling the appli-
cation of overpressure under the cells.166–168 A more com-
plex device was developed to model bronchiole stretching.169 
It was able to provide cyclic mechanical strain in combina-
tion with ALI. The cylindrical-shaped bronchioles con-
structed from human lung primary cells were vertically 
supported by a thin-walled silicone rubber tubing. The 
device applied mechanical stimulation by pulsing air 
through the silicone tubing, exerting dilatory forces on the 

engineered bronchiole. Finally, Cei et al.158,170 were the first 
to combine media flow, ALI, aerosol exposure, and cyclic 
mechanical strain in a single device to study drug and nano-
particle deposition and passage. Their system, known as 
MALI (Moving Air Liquid Interface bioreactor), consists of 
a two-compartment bioreactor with a moving membrane 
placed between an air-liquid interface, and a nebulizer for 
quantitative aerosol exposure experiments. In the MALI, an 
external electro-pneumatic regulator induces an increase of 
pressure in the apical chamber, while culture medium flows 
through the basal one; the difference between air pressure 
and hydrodynamic pressure results in an out-of-plane defor-
mation of the membrane. Notably, MALI and its successor 
DALI are the first in vitro lung devices to be available as 
open source technologies.171

The second pneumatic-driven approach consists in 
deforming the cell substrate by applying vacuum under-
neath a non-porous elastic support (Figure 4(b)), thus they 
are neither able to model the air-liquid interface, nor to 
modulate the stretching level. Trepat et al. were among the 
first to design a cell-stretching system based on this work-
ing principle.172 Their device consisted in a well with a 
flexible-bottom a cylindrical loading post located under-
neath. When a negative pressure was applied under the 

Figure 4.  Scheme of the most common principles of actuation for stretching elastic cell culture supports in lung in vitro models. In 
pneumatic actuation, the support can be deformed either by inflowing air at controlled over pressure (a), or by applying a negative 
pressure (b), and (c) motor-driven convex surfaces or indenters cyclically deform the support.
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annular outer region of the substrate, the central area was 
uniformly stretched, resulting in an in-plane deformation, 
only in two axes. This type of stretching does not recapitu-
late the multidirectional out-of-plane deformation that 
occurs in the alveolar wall. Nevertheless, the stimuli pro-
vided allowed the authors to understand how it could  
modify viscoelastic properties, structural integrity, and 
micromechanics of human alveolar epithelial cells.172,173 
Peñuelas et al. used this device to evaluate the antioxidant 
role of human adult adipose tissue-derived stromal cells 
when human alveolar epithelial cells were subjected to 
injurious cyclic overstretching.174 Finally, a commercial 
pneumatic-driven device, is the Flexcell Tension System 
(Flexcell® International Corporation, Burlington, NC, 
USA). It allows cell culture on the top of a silicone mem-
brane that is stretched in-plane thanks to a vacuum driven 
mechanism. Models of lung injury, lung inflammation, or 
lung tissue repair, as well as changes in cell sensitivity and 
permeability to compounds and cytokine have been stud-
ied with the Flexcell device.164,175

As schematized in Figure 4(c), motor-driven systems 
have been used to deform the cell supports by means of 
convex surfaces or indenters,148,176–183 leaving only one 
compartment for cell culture. In such systems, stretching 
level can be tuned by controlling motor displacement. For 
example, Tschumperlin and Margulies,148 Tsuda et  al.,176 
and Cavanaugh and Margulies177 used the cyclic move-
ment of a motor-driven annular indenter to deform an elas-
tomeric support (silicone membrane), evaluating the 
effects of the stretching on alveolar epithelial cells. In 
detail, the annular indenter contacted the bottom of the 
silicone membrane near the periphery of the cell culture 
surface, leading to the sliding of the membrane over the 
indenter. As result, the membrane stretches transversally 
with respect to the direction of the indenter motion,148 
resulting in an in-plane deformation. Tschumperlin and 
Margulies used this device to study cell vulnerability to 
different stretching ranges;148 Cavanaugh and Margulies 
showed that applying cyclic stretch with higher amplitudes 
than the physiological ones led to a decrease of intracellu-
lar alveolar epithelial tight junction protein content and to 
an increase of the permeability.177 Finally, Tsuda et al.176 
showed that the physical stress exerted on the alveolar epi-
thelium by deposited fibrous particulate was greatly 
enhanced by the tidal cyclic motion of the epithelial cells. 
A commercial motor-driven device, the Strex cell stretch-
ing system (Strex Inc., San Diego, USA), was also devel-
oped. Here, cells are cultured within ad hoc designed 
chambers that are clamped both to a fixed frame and to a 
movable frame, which moves by connection to a stepping 
motor, leading to a uniaxial in-plane deformation of the 
seeding support. This system was used by Ito et al.184,185 to 
investigate the effects of mechanical stretch in pulmonary 
endothelial cells or airway smooth muscle cells.

Finally, Choe et al.186 designed a bioreactor system able 
to apply a mechanical cyclic stretch combined with ALI to 

characterize the effects of dynamic compression in ECM 
remodeling in a physiologically relevant 3D environment. 
The stretching device presented individual wells with 
movable inner walls designed to introduce lateral com-
pressive strain, leading to an in-plane deformation of the 
substrate where cells were seeded. Cyclic compressive 
strain was imposed via a motor-driven mechanical arm. 
This device was also used by Tomei et al. to evaluate the 
effects of dynamic compression on lentiviral transduction 
in an in vitro airway wall model.187

Some alternatives to pneumatic- and motor-driven 
approaches have been also used for lung cell stretch-
ing.144,188–194 For instance, Skinner et  al.144,192–194 used a 
solenoid unit to stretch a substrate seeded with cells. The 
substrate was fixed to a dish at one end and to a moving 
iron bar at the other end; the alternating electromagnetic 
field generated caused the iron bar to move back and forth, 
deforming the support on which cells were cultured.

In summary, the integration of membrane actuation sys-
tems in bioreactors has enabled cyclic movements remi-
niscent of breathing in vitro. Although the majority of 
these systems are capable of mimicking physiologically 
relevant (linear and tangential) strain levels, they fail in 
reproducing the actuation mechanism and the cyclic 
change in curvature at cell scales.

Lung-on-chips: Breathing at the 
microscale

The dimensions of engineered systems described in the pre-
vious section were comparable to those of traditional culture 
plates (multiwells, transwells, etc.), facilitating the transfer 
of cell culture protocols. But a big step in downscaling has 
taken place in recent years, since the design of complex 
microscaled fluidic devices, known as organ-on-chips, took 
off.195 Polydimethylsiloxane (PDMS),196 a well-known 
transparent, biocompatible, and easily moldable silicone, is 
commonly used to fabricate these devices by soft-lithogra-
phy. These small chips possess microfabricated microchan-
nels that can be continuously perfused and lined with living 
cells.197,198 Lung-on-chips have been thus proposed for drug 
testing, toxicology studies, and disease modeling.

Nalayanda et  al.199 were the first to report a lung-on-
chip platform in 2009 in the form of a miniaturized ALI set 
up. Media flow on the basal side guaranteed the nourish-
ment of cells, while an open system on the apical side 
exposed the cells to air. Using this chip, they assessed the 
integrity and functionality of A549 monolayers. Some 
years later, Long et al.200 presented a similar device: the 
authors designed a two-chamber system to accommodate 
commercially available cell culture membrane supports. In 
this case, computational simulations were run to optimize 
the chip design and maximize gas transport on the liquid 
side of the alveolus.

Aiming at integrating more than one cell type in a chip, 
in 2015 Benam et al. described a microscaled system that 
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hosted the co-culture of differentiated, mucociliary bron-
chiolar epithelium on the air side, and an underlying 
microvascular endothelium exposed to fluid flow.201 It was 
used to model complex and dynamic inflammatory 
responses of healthy and diseased lungs in vitro. A similar 
model was proposed by Jain et al.,202 with the difference 
that cells of the endothelial side experienced whole blood 
flow instead of cell culture media flow, allowing a quanti-
tative analysis of inflammation-induced thrombosis. Still 
co-culturing epithelial with endothelial cells, this time 
together with pulmonary fibroblasts, Barkal et al.203 devel-
oped a microscale organotypic model of the human bron-
chiole for studying aspergillosis.

Showing that chips can also be used for exposure stud-
ies in the field of inhalation toxicology, Benam and co-
workers reported a system that integrated a lung-on-chip 
microfluidic with a smoke generator and a micro-respira-
tor that recapitulates human smoking behavior.204 This 
chip permitted the analysis of the effects of whole smoke, 
from both conventional tobacco and electronic cigarettes, 
delivered under physiologically relevant flow conditions.

With a completely different application, Li et al. used a 
lung-on-chip for studying long-term electrotaxis,205 evalu-
ating cancer cell re-orientation and migration directionally 
under a physiological electric field. Their device did not 

present an ALI, but a simple cell culture channel divided 
into three segments of different widths, in order to allow 
the investigation of electrotactic migration.

Stretching lung-on-chips

Despite being fairly complete and versatile devices, none 
of the chips mentioned above reported a mechanical stimu-
lation of the cells able to reproduce breathing movements. 
Such functionality first appeared in 2008, in a device 
described by Kamotani et al.,206 and took a turning point in 
2010 with the widely publicized chip developed by Huh 
et al.207 Kamotani et al’s. device was an array of miniature 
cell stretching chambers that enabled the study of the 
effects of mechanical strain in a parallel manner amenable 
to higher throughput screening.208 The system used micro-
wells with flexible bottom membranes that were placed 
over piezoelectrically actuated pins that pushed against a 
membrane seeded with cells, applying an out-of-plane 
deformation of the seeded support. Huh et al. developed a 
lung-on-chip device able to apply a cyclic mechanical 
stretch to the cells.196,207–210 This microfabricated two-
channel system employs the vacuum actuation method 
used in the FlexCell (see section on pneumatic devices 
above), but with a different configuration: the membrane 

Figure 5.  Schematic representation of two different working principles of breathing chips: (a) Huh et al.207 working principle: 
the microfabricated device uses compartmentalized PDMS microchannels to mimic the lung breathing sequence, and (b) Stucki 
et al.213,214 working principle: a micro-diaphragm actuated by an electro-pneumatic set-up leads to the cyclic motion of the cells.
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is attached to a flexible frame placed between two cham-
bers, the upper one for the airflow, and the bottom one for 
the media flow. The vacuum channels are located on the 
side and when vacuum is applied the frame moves leading 
to an in-plane uniaxial deformation of the membrane 
(Figure 5(a)). The device has been used for a number of 
applications: as an alveolar-capillary mimic to simulate 
bacteria and inflammatory cytokine responses207; in the 
nanotoxicology field to evaluate how cyclic mechanical 
stretching affects toxic and inflammatory response to sil-
ica nanoparticles207; in disease modeling and therapeutic 
substances studies, predicting the activity of a drug for 
pulmonary edema210 and recapitulating lung cancer 
growth, tumor dormancy, and responses to tyrosine kinase 
inhibitor therapy.211

Some microchips have been designed to couple differ-
ent compartments that represent different organs, to study 
how they communicate. For instance, Liu et  al. studied 
brain metastasis,212 by connecting an upstream “lung” with 
a downstream “brain,” characterized by a functional 
blood–brain barrier structure. The lung part of this micro-
device was actuated like Huh’s chip.209 The concept of 
stretching lung-on-chips has been taken up by several 
teams, exploring other ways of actuating flexible sub-
strates. An interesting device known as the breathing lung-
on-chip device with a new design was fabricated by Stucki 
et  al. in 2015.213,214 This chip was able to reproduce the 
cyclic out-of-plane motions that occur during breathing 
thanks to a micro-diaphragm that was actuated by an electro-
pneumatic set-up. The fluidic part of the chip consisted of 
cell culture wells with porous and flexible membranes, 
while the micro-diaphragms were integrated into the pneu-
matic part and connected to pneumatic microchannels. 
Applying vacuum underneath the diaphragm led to its dis-
placement and membrane motion, as shown in Figure 5(b). 
Given the dimensions of the device, it is the only system 
which reproduces a relevant out-of-plane deformation at 
cell scales. This chip was used to evaluate permeability 
properties of epithelial cell layers and to demonstrate that 
cell strain influences the metabolic activity and the 
cytokine secretion of primary human pulmonary alveolar 
epithelial cells obtained from patients. Felder et al. used a 
chip with the same diaphragm-like actuation to examine 
the influence of mechanical strain on alveolar epithelial 
wound healing in idiopathic pulmonary fibrosis.215 Another 
chip design for an out-of-plane deformation of the cell 
substrate by means of pneumatic actuations was that of 
Campillo et al.216 One of the main differences of this sys-
tem, compared with Stucki’s chip, is that the flexible mem-
brane deflects upwards by cyclically increasing gas 
pressure beneath it. Interestingly, Campillo’s device was 
used for a novel application: to study the effects of inter-
mittent hypoxia, a hallmark of obstructive sleep apnea.

To sum up, the chips designed by Kamotani and 
Campillo are able to apply a cyclic deformation to the sub-
strate, even though they do not present ALI and media 
flow. These features are instead present in both Huh’s and 

Stucki’s chips.207,213 Nevertheless, none of the mentioned 
devices presents a system to directly expose cells to com-
pounds or NPs for allowing quantitative aerosol exposure 
experiments.

Discussion

In this paper we overview existing lung in vitro models 
starting from the simplest static models up to more elabo-
rate engineered systems that better reproduce the mechan-
ophysical stimuli present in vivo.

Although they have proven useful, the traditional static 
models whether cultured at ALI, and/or in co-culture, or 
even arranged in 3D, are not fully representative of the com-
plexity of the dynamic lung environment. One side of this 
aspect has been addressed through the use of fluidic systems, 
such as bioreactors or microfluidic chips in combination 
with ALI culture (Table 5). Interestingly, most of the studies 
reported in Table 5 concern two main applications: inhala-
tion toxicology and aerosol drug delivery testing. In this con-
text, the ability to aerosolize particles is a must for 
investigating the interactions between cells and inhaled par-
ticles, as is the ability to accurately dose the amount of mate-
rial coming in contact with the cells.217 As discussed in the 
section on exposure systems, there are commercial devices 
that meet such characteristics and are becoming standards 
for toxicology, including the testing of cigarette and tobacco 
products, since in these cases a high level of reproducibility 
is demanded. Moreover, the requirement for reproducibility 
reflects the favored use of commercial 3D cell models in sev-
eral of the studies reported in the section on exposure sys-
tems and summarized in Table 4. Nevertheless, although 
there is a choice of commercial platforms to perform expo-
sure studies, the effects of external aerosolized compounds 
are also mediated by factors that these systems cannot repro-
duce, such as the rhythmic contraction during the breathing. 
Hence the development of engineered systems that apply 
mechanical stimuli to cells is still a growing research field. 
Table 6 summarizes the systems that provide mechanical 
stretching. Pneumatic and motor-driven actuation are the 
main methods to stretch cell culture substrates, although 
microfluidic systems are also becoming widespread. Indeed, 
the first microchips posed a lurking “competition” to the 
milli-scaled devices present at the time, since these micro-
platforms are a versatile solution for different applications, 
as shown in Tables 5 and 6. However, despite the advantage 
of requiring a low amount of material and space, which may 
allow the integration of multicompartmental models in a sin-
gle chip, microscaled devices present several drawbacks. As 
reported by Mattei et al.218 these systems provide high wall 
shear stress, due to the high surface to volume ratio, and are 
subjected to edge-effects, since a large portion of cells lie at 
the periphery of the system and do not interact properly with 
other cells. They are also known to be tricky to handle, 
requiring a great deal of patience and expertise.219

Clearly, the literature from the past 20 years in engineer-
ing lung in vitro models describes remarkable progresses, 
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Table 5.  Systems that apply a media flow (dynamic systems) or combine ALI with aerosol/smoke exposure.

Scale Type of product Medium 
flow

ALI Aerosolization Applications Examples

Macro Commercial No exposure Yes Yes No Organoids for 
personalized disease 
modeling, tissue 
engineering, evaluation 
of biofilm formation

Synthecon bioreactor

Toxicology Cultex LTC-C

ALI+exposure Yes Yes Yes Toxicology, evaluation 
of drugs and cancer 
mechanism

Cultex RFS

Vitrocell exposure chamber

PreciseInhale

Smoke exposure—
toxicology

Vitrocell Smoking machine

Borgwaldt Smoking machine

Laboratory-made systems No Yes Yes Toxicology Bakand et al.,45 Blank et al.,51 
Riediker et al.,46 Switalla 
et al.,44 Cooney et al.,47 Holder 
et al.,48,49 Oosting et al.,50 
Rothen-Rutishauser et al.,54

Study the deposition 
and transport of inhaled 
drugs

Fiegel et al.,57 Cooney et al.,58 
Haghi et al.,56 Grainger et al.,59

Toxicology, 
electrostatic 
precipitation 
mechanisms

Savi et al.,52 Stevens et al.,53 
Volckens et al.,67 De Bruijne 
et al.,63 Stoehr et al.,65 Holder 
et al.,64 Frijns et al.,42 Hawley 
et al.,66

Yes No No Cell-NP interaction Breitner et al.34

Yes No Patho-physiological 
stretching models, stem 
cell differentiation

Grek et al.,26 Jeans et al.,32 
Ghaedi et al.,27 Blume et al.,33 
Box et al.31

Yes Toxicology Tarkington et al.,43 Tippe 
et al.,60 Bitterle et al.,61, Lenz 
et al.62

Micro Lungs-on-chips Yes Yes No Evaluation of chip 
efficiency, design 
optimization of liquid-
phase flow patterns, 
long-term electrotaxis 
study, disease models

Nalayanda et al.,199 Long 
et al.,200 Benam et al.,201,204 Li 
et al.,205 Jain et al.202

Lung inflammation 
mechanisms

Barkal et al.203

Yes Analysis of the effects of 
whole smoke

Benam et al.204

but as yet these advanced systems fail in fully recapitulating 
the in vivo environment. To date, the main issues are related 
to mimicking: (i) the alveolar architecture (dimension, spher-
ical structure, and interconnection with adjacent alveoli in 
the acinus and with the capillaries that surround the alveo-
lus), which may affect aerosol deposition, transport, and cell 
stretching; (ii) mechanical properties (e.g. membrane elastic 

and viscoelastic properties), which may influence cell behav-
ior; (iii) biochemical properties related to the presence of a 
surfactant layer that, besides avoiding alveolar collapse or 
hyperextension, is likely to interfere with the passage of sub-
stances (and pathogens) across the cell barrier.220

It is well known that micro-scale extracellular matrix 
properties strongly influence cellular growth, migration, 
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and differentiation, as well as cellular response to mechan-
ical and biochemical signals.221–226 This aspect is true for 
every organ type, but there are tissues whose function 
hinges on their intricate structures, and this is the case of 
the alveoli. Addressing the issue of alveolar architecture, 
several authors are focusing their efforts in building mate-
rials for generating complex 3D structures able to recreate 
these biophysically and biochemically entangled net-
works. In this direction, Grigoryan et  al.227 used stereo-
lithography to build soft hydrogels containing such 
biomimetic and multivascular architectures. They man-
aged to print a bioinspired alveolar model with an ensheath-
ing vasculature, which was also able to sustain a cyclic 
ventilation with humified oxygen gas, maintain the viabil-
ity of mammalian cell lines, and support the normal func-
tion and differentiation of primary human stem cells. This 
work represents an important step forward in combining 
an alveolar-like architecture with the cyclic stretching 
movement that mimics breathing. However, work still 
needs to be performed in order to have a coherent approxi-
mation of scalable lung-specific design. With the goal of 
obtaining in vivo-like structures, also Erben et al.228 used 
stereolithography to print mm-sized high precision 3D 
scaffolds at micrometer resolution.

As far as mechanical properties are concerned, as demon-
strated in the section describing alveolar motion, despite the 
fact that stretching devices are able to apply (patho)physio-
logical strain levels, they are not able to fully replicate the 
three-dimensional nature and scales of alveolar stretching. 
Indeed, in most of the cases the systems provide an in-plane 
stretch and, also in the case of out-of-plane stretching, mem-
brane fixation, constraints, and indenter contact points likely 
result in non-uniform (and hence difficult to characterize and 
control) strain distributions. However, it should be noted that 
the assumption of isotropic breathing may be an oversimpli-
fication of the in vivo dynamics, which is probably affected 
by intrinsic tissue anisotropy. Another crucial mechanical 
aspect which is often overlooked is the elastic modulus of the 
cell culture substrate compared with the lung, which is a 
highly stretchable soft tissue with an elastic modulus of the 
order of 3 kPa. Most of the materials used as flexing sub-
strates, such as PDMS, are very stiff with elastic moduli of 
the order of megapascals. Thus, the forces or pressures 
required to deform the substrates are much higher than expe-
rienced in the alveoli.

As a result, devices with mechanical stimuli comply at 
different levels with the engineering requirements men-
tioned in the Introduction. They therefore dictate distinct 

Table 6.  Systems that apply mechanical stretching.

Scale Actuation 
method

Flow ALI Co-culture 3D Authors/commercial 
system

Strain type Strain range

Macro Pneumatic No No No No Winston et al.167, Gorfien 
et al.166, Pugin et al.168

Multiaxial, out-of-plane 0%–15%

Trepat et al.172,173 Biaxial, in-plane 0%–20%

Yes Dassow et al.165 Multiaxial, out-of-plane 10%–25%

Yes No Peñuelas et al.174 Biaxial, in-plane 15%

Yes No Yes Miller et al.169 Multiaxial, out-of-plane 2%

Yes Yes No No Cei et al.158 Multiaxial, out-of-plane 5%–17%

NA NA FlexCell (commercial)163 Biaxial, in-plane 8%–22%

Motor-
driven

No No No No Tschumperlin et al.148, Tsuda 
et al.176, Cavanaugh et al.177

Multiaxial, in-plane 0%–25%

StrexCell (commercial) Uniaxial, in-plane 0%–30%

Yes Yes Yes Choe et al.186, Tomei et al.187 Uniaxial, in-plane 0%–30%

Micro 
(lungs-
on-chips)

Pneumatic No No No No Campillo et al.216 Multiaxial, out-of-plane 0%–20%

Yes Yes No No Felder et al.215 Multiaxial, out-of-plane 0%–20%

Yes No Stucki et al.213,214 Multiaxial, out-of-plane 10%

Huh et al.207,209,210, Hassel 
et al.211, Liu et al.212

Uniaxial, in-plane 10%

Motor-
driven

No No No No Kamotani et al.206 Multiaxial, out-of-plane 0%–25%

NA: not applicable.
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applications (or restrictions on the application, if we may 
say). In fact, most of the stretching devices presented in 
Table 6 do not provide media flow, and even in the cases 
where technical solutions were adopted to culture cells at 
ALI, aerosol exposure was not contemplated. The con-
comitant presence of cell stretching, flow, and a reproduc-
ible aerosol exposure system definitely poses an 
engineering challenge. Up to date such achievement has 
been reached in only one device at the “milliscale.”158 The 
present challenge of engineered lung models is the design 
of the “all-in-one device,” which combines all the features 
existing in the lung (i.e. lung architecture, stretching move-
ment, and aerosol exposure). This is the direction in which 
many research efforts are pointed, with the prospect of 
replacing, at least partially, animal models with in vitro 
models. However, not all studies need a holistic approach. 
When engineering an in vitro model, its application should 
set the requirements of the design. For example, when 
modeling lung tissues (e.g. bronchi) that differ from the 
alveolus—which is the functional unit that deforms during 
the breathing—it is not necessary to mimic cyclic mechan-
ical stretch; while in applications that do not foresee toxi-
cological studies or testing the impact of inhaled 
substances, an exposure chamber will not enhance the reli-
ability of the model. Therefore, when developing a lung 
model, the key is to identify which relevant physiological 
parameters should be reproduced according to the research 
question being addressed and the context of the future 
experiments. Similarly, lung device-users need to define 
the application and then choose the device accordingly.

Another important point which needs to be addressed is 
the possibility to monitor or interrogate the cells during cul-
ture, performing the measurement necessary for the study. 
While media collection for different cell assays is usually 
enabled by the presence of valves in the fluidic circuits or in 
the culture chambers, other measurements can be a chal-
lenge. For example, evaluating barrier integrity is fundamen-
tal for passage studies. However, although the presence of an 
intact barrier can be visually monitored in a qualitative man-
ner, not all the devices are optically transparent and compat-
ible with microscopes. Quantitative information can be 
obtained using transepithelial electrical resistance/imped-
ance (TEER/TEEI) measurements, but they are not easily 
integrated at ALI. Therefore, further efforts are also needed 
to develop efficient and non-invasive monitoring systems for 
the evermore sophisticated devices we engineer.28

After overcoming the technical challenges of developing 
advanced cell culture tissues, there are still other hurdles to 
face. Naturally, the acceptance of these devices for the day-
to-day use in common laboratories might not be easy. To 
overcome a possible resistance two approaches are crucial: 
engineers should work in close collaboration with the final 
users (biologists, toxicologists, among others) of the device 
in its development phase; make the device compatible as 
much as possible with common lab instruments and assays. 
In this way, the validation of the system becomes a similar 

process to that of testing any other new practice/assay. 
Positive and negative controls, as well as multiple replicates, 
are essential for the verification of the results. In the context 
of testing a bioreactor, for instance, it would consist of first 
testing individually each of the dynamic cues (taken then as 
variables) the system can provide. On the same line of 
thought, it is advisable to start using the devices in simple 
context and for small experiments, rather than adding too 
many variables to the set-up. From a biological point of view, 
researchers might want to consider starting by culturing 
more robust and reliable cell sources, such as cell lines, to 
perform the proof of concept of the device. Once this is 
accomplished, other cell types and more complex cellular 
arrangements can be included in the protocol. Ideally, in a 
further step, different labs and research groups would have 
the opportunity to test their protocols on the new system.

On a final note, the future direction of lung in vitro mod-
els will depend greatly not only on the upcoming technolo-
gies in the engineering field, but also on the ever-changing 
motivations to use them. This aspect appears even more 
clear nowadays when the COVID-19 pandemic highlights 
the importance of having ad hoc reliable and predictive in 
vitro models for a systematic study of respiratory diseases. 
Interestingly, the pandemic has also brought home the 
impact of open-source technologies for rapid and effica-
cious solutions to biomedical emergencies.229 Although 
many of the in vitro devices described in this review are 
commercial systems, there is still plenty of scope for new 
developments based on open-source collaborative design 
which may help address some of the issues such as mimick-
ing lung complexity in a simple to use system, handling, and 
non-destructive intermediate and end point analysis.
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