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Abstract— In this paper we present a novel geometric ap-
proach to motion planning for constrained robot systems.
This problem is notoriously hard, as classical sampling-based
methods do not easily apply when motion is constrained in
a zero-measure submanifold of the configuration space. Based
on results on the functional controllability theory of dynamical
systems, we obtain a description of the complementary spaces
where rigid body motions can occur, and where interaction
forces can be generated, respectively. Once this geometric set-
ting is established, the motion planning problem can be greatly
simplified. Indeed, we can relax the geometric constraint, i.e.,
replace the lower–dimensional constraint manifold with a full-
dimensional boundary layer. This in turn allows us to plan
motion using state-of-the-art methods, such as RRT*, on points
within the boundary layer, which can be efficiently sampled. On
the other hand, the same geometric approach enables the design
of a completely decoupled control scheme for interaction forces,
so that they can be regulated to zero (or any other desired
value) without interacting with the motion plan execution.
A distinguishing feature of our method is that it does not
use projection of sampled points on the constraint manifold,
thus largely saving in computational time, and guaranteeing
accurate execution of the motion plan. An explanatory example
is presented, along with an experimental implementation of the
method on a bimanual manipulation workstation.

I. INTRODUCTION

Motion planning and control algorithms for robots in-
teracting with the environment have been mostly studied
separately. This separation of concerns typically sees first
a motion planning phase for the constrained system, usu-
ally dealing with geometry and kinematics, followed by an
execution phase, dealing with dynamics, where the planned
trajectory is accurately executed possibly with some type
of force control. This approach works well in cases where
the robot-environment model is good enough, but it requires
an extremely accurate (and time-consuming) planning phase.
Also, there is no guarantee that errors in the constrained
motion model will not generate unacceptable errors in the
force interaction with the environment, nor that the force con-
trol execution will not interfere with the planned trajectory,
causing violation of constraints and their consequences (e.g.
bumping into obstacles, or loosing the grip on a manipulated
object). This fact makes robot interactions dangerous and
motivates the use of compliance in robot mechanisms.

Indeed, it should be noticed that an ever increasing number
of robotic systems designed for interaction use compliant
actuation. There are many examples including – but not
limited to – Variable Stiffness Actuators (VSA) [1], robotic
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Fig. 1. VITO robot from research center “E Piaggio” at University of
Pisa. This system is composed by two KUKA LWR arms controlled with
compliance control. A PISA/IIT soft hand is mounted on each arm.

hands like the PISA/IIT soft hand [2], robotic arms like
the DLR Hand-Arm system [3] and humanoid robots like
COMAN [4] and the ones recently presented in the DARPA
Robotics Challenge, see Fig. 1 for an example. These new
robot structures have been recently addressed as soft robots.
Their design are inspired by observing how human body
use its compliance (mainly in muscles) to be robust to
environment interactions.

While most of the attention has been focused in embedding
compliance in the robot structure [4] or include it via the
motor controllers [5], methods to plan motions for robots
are still being developed for rigid structures [6], [7], [8],
[9]. The main reason is that planning and control for robots
in interactions is harder because the space describing robot
interactions combines force and position spaces, which are
objects from different physical meaning and geometric na-
tures [10].

A. Integrating planning and control

There are many alternatives to integrate motion planning
and control, recently these two problems have been combined
in a unified optimization problem [11], [12], however, these
approaches are local solutions and depend on an initial guess
which is not easy to define. To deal with this problem
randomized techniques [13] have been used, they rely on
the use of reduced and linearized model of the system to
connect any pair of sampled configurations. Such techniques
have been mainly used for mobile robots like quadrotors.

In this paper we present new approach to generate motions
for constrained mechanical systems. It is based on results
coming from geometric control which suggest an organiza-
tion of the output vector to be functionally controllable [14].
Such organization allows to find basis for the subspaces



describing the allowable rigid body motions and interaction
forces that the system can execute [15]. Based on this result,
it is possible to decouple the motion planning problem from
the control of interaction forces in two separate aspects.

As the main contribution of this work we first present a
geometric control scheme to achieve noninteracting control
of force and position subspaces. This property allows us to
regulate interaction forces that may be generated by displace-
ments in the perpendicular direction to the tangent space of
the constraint manifold. It means that errors generated in
the motion planning phase are irrelevant to the control of
interaction forces and vice versa. This simplify the motion
planning problem so we may deal with it by relaxing the
geometric constraint, i.e., replacing the lower–dimensional
constrained manifold with a narrow but full-dimensional
boundary layer [16].

This allows us to plan motion using state-of-the-art meth-
ods, such as RRT* to find global solutions, on points within
the boundary layer, which can be efficiently sampled [17].
Such plan however will not necessarily satisfy the task
constraint, as it generates displacements with respect to the
constraint manifold. If used on a real compliant robot, this
plan would generate motions that may drive the mechanism
to generate undesired internal forces which will be regulated
by the controller.

The rest of the paper is organized as follows. Section II
presents the mathematical model of compliant systems under
interactions. In section III, as the main contribution of this
paper, we show that it is possible to decouple, and control
independently, rigid motions in the constraint manifold and
internal (vincular) forces in the complementary direction.
Section IV recall a motion planning algorithm for closed
kinematic chains presented in [16]. Section V presents the
setup to integrate motion planning and control while VI
provides two examples. Finally section VII presents the
conclusions and future work of this research.

II. MODELING COMPLIANT MANIPULATION SYSTEMS

For the sake of simplicity, in this section we recall the
theory presented in [14] to describe a manipulation system
with general kinematics, specifically Theorem 1 can be
rephrased as follows. Consider a mechanism with n actuated
joint variables q, and c constraints Cc(q) = 0. Let m
denote the residual mobility of the system (i.e. the number
of dofs compatible with the constraints). Now consider the
constraints as elastic elements, i.e., remove the constraint
and allow for violations Cc(q) ≤ ε and associate internal
forces f = Kε. K can be interpreted as a suitable stiffness
matrix resulted from contacts and joints stiffness. Looking
at the space of internal forces that can be actively controlled
by joint torques, let p be the dimension of self-balanced
(internal) forces, i.e., those which do not affect the overall
position of the mechanism, a linearized model, with no
disturbances, of the lumped–parameter compliant model for
the multiple robot–object dynamics is,

ẋ = Ax+Bττ
′ +Bωω, (1)

defined around the equilibrium configuration

x =
[
qTeq u

T
eq 0T 0T

]T
τ ′ = τ − JT teq
ω = Gteq.

Where qeq and ueq stand for the equilibrium joint positions
and object position respectively, J is the Jacobian of the
contact points and G is known as grasp matrix. Under
the assumptions reported in the previously mentioned work,
the dynamics matrix A, joint torque input matrix Bτ , and
external disturbance matrix Bω have the form

A =

[
0 I
−Lk −Lb

]
, Bτ =


0
0

M−1h
0

 ;Bω =


0
0
0

M−1o

 ,
where

Lk = M−1Pk; Lb = M−1Pb,

M =

[
Mh 0
0 Mo

]
Pk =

[
JT

−G

]
K
[
J −GT

]
Pb =

[
JT

−G

]
B
[
J −GT

]
,

Mh and Mo are the multiple-arm and object dynamic matri-
ces. K and Bq are the stiffness and damping matrices at the
contact points.

We are interested in the combinations of states giving
object positions and internal forces as outputs, which can
be respectively selected by matrices Cu = [0 I 0 0] and
Ct =

[
KJ −KGT BJ −BGT

]
. The output matrix is

hence
C =

[
Γ+
uCu
E+Ct

]
.

Image space of matrices Γu consists of rigid body motions
of the object being manipulated while E is a base matrix for
internal forces which are asymptotically reproducible from
joint torques τ .

For non-redundant mechanism, Theorem 1 in [14] states
that m+ p = n. This means that the input-output represen-
tation of the minimal A-invariant functionally controllable
subspace of states is square. This implies that it is possible
to devise a linear controller that uses the n inputs to decouple
and to control independently rigid motions in the constraint
manifold and internal forces in the complementary direction.

III. NONINTERACTING CONTROL

The control objective is to regulate interaction forces
in a manipulation system generated by displacements, that
may appear during the planning phase, in the perpendicular
direction of the constraint. In practice it is useful to control
each of the outputs independently, in this way we are able to
regulate each output without affecting the others. Finding a
control law where the input i affects just the corresponding



output i is known as noninteracting control. The procedure
is to differentiate the output vector y = Cx until the control
appears. In case of the output corresponding to E+Ct =
E+[KJ − KGT BJ − BGT ], the control τ∗t appears in
the first derivate

ẏ = CtAx+ CtBττ
∗
t

= CtAx+ E+BqJM
−1
h τ∗t .

For the output τ∗u corresponding to the object motions
Γ+
uCt = Γ+

u [0 I 0 0] it is necessary to compute up to the
third derivate. Indeed,

ẏ = CuAx+ CuBττ
∗
u

= CuAx+ 0τ∗u
ÿ = CuA

2x+ CuABττ
∗
u

= CuA
2x+ 0τ∗u...

y = CuA
3x+ CuA

2Bττ
∗
u

= CuA
2x+ Γ+

uM
−1
o GBqJM

−1
h τ∗u .

Thus the corresponding output vector can be rewritten as

ŷ = Px+QBττ
∗

where ŷ = [
...
y u ẏt]

T and τ∗ = [τ∗u τ
∗
t ]T ,

P =

[
CuA

3

CtA

]
and Q =

[
CuA

2

Ct

]
.

Concluding, for the system (1) , the control law

τ∗ = −Q−1(Px+ τn),

provides the output vector

ŷ = τn.

In other words the proposed control law is noninteracting
since the rejection of position errors does not influence the
force control and vice versa. The next step is to design a
stable controller in τn designed in the planning phase as
described in the following Section.

IV. MOTION PLANNING

Once we have a closed loop system that guarantees the
correct robot environment interaction, and advantages of the
fact that position errors have no influence in force regula-
tion, we study the motion planning problem for constrained
mechanisms where it is well known that interactions limit
the valid motions of the mechanisms. Valid motions are
represented by constraints Cc(q) = 0 which describe a
non linear submanifold (CSs) in the configurations space
(CS) of the system. The main characteristics of CSs is that
it has lower dimension than CS and that there is not an
explicit parameterization of it. This is a problem in motion
planning since it is not easy to generate configurations for
the mechanism that can eventually describe a path to go from
one point to another while always being on CSs.

To solve this problem we adopt the algorithm presented in
our previous work in [16]. In that work we started from the
consideration that for a interacting system the constraint can
be replaced to Cc(q) ≤ ε. This approach consists in relaxing

q2

q3

q1

Fig. 2. Motion planning problem under relaxed constraints (boundary
layer). Initial position qinit in blue. Final position qfinal in red. Planned
path in green. Constraint C(q) in light blue.

(a) Undesired forces arising
from planning on the relaxed
constraint

(b) The task of the controller is
to project the undesired forces
back to the manifold

Fig. 3. Lateral view of the relaxed constraint. In green are the pushing and
pulling forces against the constraint. The black dots are the nodes extracted
from the tree generated by the soft-RRT*.

the constraint in the planning phase, effectively replacing
the lower–dimensional constraint manifold with a narrow but
full–dimensional boundary layer. Motion is planned using
RRT* based on points which can be sampled in the boundary
layer in an efficient manner using an adaptive k-d tree. This
approach is represented in Fig. 2. The resulting plan does not
satisfy the constraint, see Fig. 3, and generates displacements
which, with the model of compliance in the system, can
be regarded as interaction forces acting outside the tangent
space to the constraint manifold.

The state-of-the-art in path planning under constraints
deals with projecting a sampled point onto the constraint
manifold. Essentially none of these methods try to achieve
“perfect projection”, actually for computational considera-
tions they use a threshold to check if they are or not in
the manifold. Even though this threshold can be interpreted
as a relaxation there is not a formal analysis about how
small or big it should be. In this paper we give to this
threshold a different meaning which actually comes from
physics. Depending on the compliance on the system and
the maximum forces fmax to which the system can resist,
we can compute the threshold using the compliance in the
system ε = K−1fmax.

V. INTEGRATING PLANNING AND EXECUTION FOR SOFT
ROBOTS

In order to implement the control and motion planning
algorithms presented in previous sections we use them in
the pipeline explained in Fig. 4. It consists in first finding
a free obstacle path, within the boundary layer, using the



Fig. 4. Pipeline of the constrained motion planning approach proposed in this paper. First the kinematic planning is performed in fully dimensional
boundary layer obtained from the ε relaxed constraint. Then using the noninteracting control the trajectory is projected to the constraint and the interaction
forces are regulated to zero.

random sample-based planning approach presented in sec-
tion IV, a graphical interpretation is depicted in Fig. 3(a).
It is important to note that if only the relaxed constraint
is verified, the interactions with the environment can be
dangerous. For example, if we implement the relaxed path
in a system of multiple robots manipulating an object, it can
either fall or be damaged by possible high squeezing forces.
On the other hand, whenever the nominal closed kinematic
constraint is verified this problem does not occur. In order
to guarantee a correct execution of the plan, and at the
same time guarantee a correct interaction, we use the filter
presented in section III. It is applied to the path to project
any position errors back to the constraint manifold and at
the same time regulate the interaction forces, see Fig. 3(b).
While these two approaches seem to be decoupled, they are
joined by the common consideration of the compliance in
the system.

VI. EXAMPLES AND EXPERIMENTAL RESULTS

This section presents a simple but explanatory example to
show the validity of the proposed approach. It also includes
experimental validation in a bimanual manipulation system.

A. Explanatory Example

As a first example, consider a robotic hand composed by
two fingers (each one with one degree of freedom) holding
an object, see Fig. 5. All valid configurations are described
by the following constraint manifold

C(q) = F1(q1)− F2(q2) = 0, (2)

where F1(q1) and F2(q2) stand for the forward kinematics
of the fingers until the contact points.

The dimension of the CS for this example is 2 while the
dimension of the state space for the linear system used in
the second stage is 10. The parameter defining the relaxation
limits was ε = 0.5. For this example just stiffness at the
contact points was considered. The outcome of the first stage
is depicted in Fig. 6 where the k-d tree approximation of the
boundary layer is shown together with the path generated by
the soft-RRT* algorithm.

For the second stage of the algorithm, we linearized the
dynamic model of the hand on the configuration qinit = [0 0]
which is the same starting position for the first stage. The
output trajectory resulting from the first and second stage
are compared in Fig. 7. The maximum constraint violation

Fig. 5. Robotic hand used as an explanatory example. Initial position is
represented in green, final position in red and an intermediate position in
blue.

(0,0)

q1

q2

(2π,0)

(0,2π)

(π,0)

Fig. 6. This figure shows reconstructed boundary layer obtained using the
adaptive k-d tree, the sampling procedure converges to a uniform distribution
in the relaxed constraint.

in the first phase was 0.1486 while in the second part was
reduced to 0.00864.

B. Bimanual Manipulation Example

The second example is meant to evaluate the performance
of the presented approach when working in high dimensional
spaces. The systems is depicted in Fig. 1, it is composed by
two 7 degrees of freedom arms equipped with a PISA/IIT
hand each. The theory presented in this paper, specifically the
non interacting controller, was developed for non redundant
manipulators so we are using just 6 degrees of freedom of
each arm. The interaction forces were estimated by the joint
torque sensors included in the arms.

The dimension of the relaxed CSs in this example is 12,
while the dimension of the state space for the filter is 36.

The experiments were performed using a laptop computer
with 8 Gb of Memory and a i7-4558U CPU @ 2.80GHz × 4
processor. All codes were developed in C++ under Ubuntu



Fig. 7. Comparison of forces resulting from the planned path in the first
stage (blue) and forces filtered in the control phase (green)

(a) (b)

Fig. 8. Initial (a) and final (b) configurations for the example 2.

14.04. Fig. 8 shows the initial and final configurations of the
experiment. The first path generated by the planner was at
4.32s of execution and was stopped at 10s. The filter took
2.33s to smooth each of the paths. The results are illustrated
in Fig. 9. In the same Figure the trajectories resulting from
different planning times are shown, it is evident that the
trajectory becomes smoother as the planning time increases.
In the same way the interaction forces generated during the
planning phase approaches zero. It can be observed also in
the Fig. 10 that forces are filtered and regulated to a desired
reference with the non interacting controller. A video of the
experiment is attached to this paper.

VII. DISCUSSIONS AND CONCLUSIONS

In this paper we presented an integrated approach for
motion planning and control of robots when they are interact-
ing with the environment or with the mechanism itself. The
approach was developed first by designing a noninteracting
controller to regulate independently the subspaces describing
position, consistent with the constraint, and forces, acting in
the normal direction. This allowed us to address the motion
planning an control problems separately since they does not
affect to each other.

Thanks to the noninteracting property of the controller we
were able to relax the motion planning problem by replacing
the lower-dimensional constraint manifold with a narrow but
full-dimensional boundary layer. The planner generates a
path that satisfy the constraint with a ε violation but that are
then regulated by the controller. Experimental results have
been reported.

Even though theoretically there is not a limitation in the
constraint relaxation, in practice it exists. Thus, there is a
probability of sampling points in the boundary layer but
the probability is still small which is more evident in high
dimensional spaces. In practice we observed that introducing
in the planner average configurations reduce dramatically the
planning time. It suggests the use of motion primitives such

as synergies to reduce the search space of the planners and
to help to convergence.

Future work is directed to use the approach presented in
this paper for anytime control.

Fig. 10. Comparison of forces resulting from the execution of the planned
path extracted from the planner in different times t. Fist column shows the
forces in x (blue), y (green) and z (red) axis. Second column shows the
torques in x (blue), y (green) and z (red) axis. The reference interaction
forces for the noninteracting controller are force and torques equal to 0.
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