
Motion Primitive Based Random Planning for
Loco–Manipulation Tasks

Alessandro Settimi1,2, Danilo Caporale1, Przemyslaw Kryczka2, Mirko Ferrati1, Lucia Pallottino1

Abstract— Several advanced control laws are available for
complex robotic systems such as humanoid robots and mobile
manipulators. Controls are usually developed for locomotion or
for manipulation purposes. Resulting motions are usually exe-
cuted sequentially and the potentiality of the robotic platform
is not fully exploited.
In this work we consider the problem of loco–manipulation
planning for a robot with given parametrized control laws
known as primitives. Such primitives, may have not been
designed to be executed simultaneously and by composing
them instability may easily arise. With the proposed approach,
primitives combination that guarantee stability of the system
are obtained resulting in complex whole–body behavior.
A formal definition of motion primitives is provided and a
random sampling approach on a manifold with limited dimen-
sion is investigated. Probabilistic completeness and asymptotic
optimality are also proved. The proposed approach is tested
both on a mobile manipulator and on the humanoid robot
Walk-Man, performing loco–manipulation tasks.

I. INTRODUCTION

One of the main problems when planning motion of
complex robotics systems is the curse of dimensionality.
In case of robots able to move in and interact with the
environment, such as humanoid robots (see Fig. 1 for an
example) and mobile manipulators, the problem is even
worse. For loco–manipulation tasks several approaches have
been proposed in the literature with the goal of reducing such
complexity.

The majority of reduction techniques may be classified as
whole–body ([1]–[6]) and primitive based planning ([8],[9]).

It is well known that whole–body planning considers
the whole dynamical system resulting in high dimensional,
numerically intractable problems. Sample based approaches
that usually perform better than other classical approaches
(such as potential fields, exact and approximated decompo-
sition methods, see e.g., [1]) in higher dimensional spaces
are, however, prohibitive. The main idea behind whole–
body approaches is the limitation of the solution search
space based on system and tasks constraints. For example,
in [2], [3] the sampling procedure is biased on constrained
submanifolds of the configuration space of lower dimension.

A whole–body contact sampling algorithm has been pro-
posed in [4], where the transitions between contacts are
planned to switch from a stance (a robot configuration in
space) to another, hence reducing the complexity of the
problem. In [5] the whole–body jacobian based method Stack

1Centro di Ricerca “E. Piaggio”, Università di Pisa, 56122 Pisa, Italy.
2Dep. of Advanced Robotics, Istituto Italiano di Tecnologia, via Morego,

30, 16163 Genova, Italy
Corr. auth.: alessandro.settimi@for.unipi.it

Fig. 1: The Walk-Man robot walking and manipulating an
object in the Gazebo simulation environment.

of Tasks is used to tackle the problem of grasping an object
while walking using visual servoing. Once the priorities of
the tasks (i.e., balancing, locomotion, manipulation) are de-
fined, the developed controller tries to execute lower priority
tasks while guaranteeing execution of higher priority ones.
This is done by trying to execute lower priority tasks in
the nullspace of the higher priority tasks. Similarly, in [6], a
jacobian based approach is used to decouple the manipulation
from the locomotion tasks.

A completely different approach is to develop control laws
for particular tasks that do not fully exploit the potentiality of
the robot. For example, advanced control laws are available
to perform objects manipulation or to walk on rough terrains.
Indeed, a variety of not integrated different behaviors is
available while there is still a lack of complex whole–
body controls. A remarkable approach is hence to exploit
and integrate such available control laws to create complex
behaviors. In this way such manipulation, locomotion, bal-
ancing, and other control laws can be combined without
dramatically increasing the complexity of the problem. Such
techniques are known as primitive based approaches. In [7],
high-quality motion primitives are exploited in order to avoid
sampling in the whole configuration space. Contact planners,
such as those proposed in [4], [7] can be seen as particular
whole–body primitives that can be used with other control
laws in the herein proposed approach.

In [8] the problem of pushing an object on a flat surface is



Fig. 2: The P-Search∗ basic idea. The task is to go from the start position to the goal one loading an object placed on a table.
In subfigures 1(a-b-c-d) a humanoid robot approaches an object, stops, loads it, and then starts moving again. Subfigures
2(a-b-c-d) show the same task executed without stopping but just slowing down near the object.

faced. The possible actions (walking, reaching and pushing)
are considered separately and executed in a sequential way,
i.e., each action is performed only after the previous one is
terminated.
Similarly to the Stack of Tasks proposed in [5], methods
in [9] exploit motion primitives in a hierarchical framework
where the priority of the various primitive has to be chosen
in order to execute a certain task. System stability and safety
depend on these priorities whose choice is hence critical and
task dependent.

In this paper we propose a primitive-based approach
to combine primitives. The implementation shown here is
derived from RRT∗ [10]. With respect to RRT [11] and
other random graph based algorithms, such as Informed
RRT [12], we do not change the sampling space with
heuristics but we use the information available from the
primitives design to structure a sampling space with desirable
properties. Differently from other similar methods, given a
set of primitives we provide a technique to combine them
in parallel, thus we aim at finding plans that use more
than one primitive simultaneously, without jeopardizing the
stability of the system. Our method is able to jointly use
different primitives that were not, in principle, designed to
be combined. With respect to the literature, the proposed
approach is independent on how primitives are designed and
executed. Only basic assumptions on the stability and robust-
ness of the considered control laws are required. Requested
properties on the primitives make the proposed approach,
named P-Search∗ in the following, independent from the
robotic platform it is applied to (such as humanoids, mobile
manipulators, mobile wheeled robots). Motion primitives for
humanoid robots may involve manipulation or locomotion,
and may use different control approaches. Some examples
of manipulation primitives are: turn a valve, open a door,
grasp an object, bi-manually manipulate an object; while
locomotion primitives can represent dynamic walking, static

walking, crawling gaits, stairs climbing.
The P-Search∗ algorithm samples on the union of the

primitives image spaces that correspond to submanifolds of
the configuration space. P-Search∗ will be proved to be able
to provide complex plans in which primitives are combined.
For example, let’s consider a humanoid robot on which
two primitives have been developed: a locomotion primitive
to move in the environment, and a manipulation primitive
to grasp objects with the hand. In Fig. 2(1a–1e) the two
primitives are used sequentially, the robot stops in front
of the object, grasps it and then moves away. An idea of
the P-Search∗ outcome is reported in Fig. 2(2a–2e), where
the robot slows down without stopping its motion to safely
catch the object while guaranteeing stability. The obtained
behaviour is not possible with a sequential combination of
the primitives nor with a direct parallel combination of the
primitives that can easily provide unstable behaviours. Hence
a whole–body control approach (a single complex primitive)
or a P-Search∗-like algorithm should be used.

In Section II the class of considered systems is character-
ized and primitives and primitives image space are formally
defined. In Section III the P-Search∗ algorithm is described
and proved to be probabilistic complete and asymptotic opti-
mal in Section IV. Finally, experimental results are reported
in Section V to show the validity of the approach.

II. FORMALIZATION

Consider the dynamical system Σ expressed by equations{
ẋ(t) = f (x(t), u(t))
y(t) = h (x(t)) ,

(1)

where x ∈ X ⊆ Rn is the state of the system, u ∈ U ⊆
Rm is the control vector, y ∈ χ ⊆ Rp is the output vector,
f : Rn × Rm → X and h : Rn → χ are respectively
the dynamics and the output transformations of the system.
We address the problem of finding a trajectory between two



given states minimizing a given cost function, such as time
of execution or energy efficiency. Control inputs associated
to the obtained trajectory must also be determined.

Definition 1: We define a generic motion primitive π as a
6-tuple π(q, χ, σ, T, ξ, C) with
• q ∈ Q: the parameters that characterize the primitive;
• χ: the image space of the primitive that corresponds to

the image space of the output function of the dynamical
system;

• σ : X × Q → χ: the steering function of the
primitive that is a set–valued function based on the
system dynamics from the primitive space to the image
space; it can be a map on (0, 1)d, with d ≥ 2;

• T ∈ R≥0: the duration of the execution of the primitive;
• ξ = ρ(t, y), ρ : R≥0 × χ → Ξ = {0, 1}: a trigger that

enables the execution of the primitive, where t is the
time variable;

• C : R≥0 × X × Q → R: the cost function associated
with the primitive.

Let P be the finite set of the generic primitives. The parame-
ters q, C, χ and σ characterize the control law u associated
to the motion primitive. A similar definition of a simpler
control entity can be found in [13] where an atom (u, ξ, t)
is characterized by a control law, a trigger and an execution
time.

In case of complex robotics systems such as humanoids
or mobile manipulators two approaches can be used to
determine a motion primitive for the whole system: a highly
complex (whole–body) primitive based approach or a con-
catenation of simpler primitives defined on decoupled sub-
systems of lower dimension. The first approach suffers from
the curse of dimensionality, hence several simplifications
are usually made to tackle the problem obtaining motion
primitives that do not fully exploit the system potentiality.
In the latter case, for example, a decoupled locomotion
and manipulation approach does not take advantage of the
whole–body capabilities of the robotic platform.

For this reason, in this paper we consider systems that
can be partitioned in N coupled subsystems as: x =
[x′1 x

′
2 . . . x

′
N ], u = [u′1 u

′
2 . . . u

′
N ] and y = [y′1 y

′
2 . . . y

′
N ],

where the dynamics can be expressed as:

ẋ1 = f1(x, u1)
y1 = h1(x) ∈ χ1

ẋ2 = f2(x, u2)
y2 = h2(x) ∈ χ2

...
ẋN = fN (x, uN )
yN = hN (x) ∈ χN .

(2)

It is worth noting that, even if each sub-system Σi = {ẋi =
fi(x, ui), yi = hi(x) ∈ χi} depends on a different control
variable it also depends on the whole state variable x ∈ Rn.
A motion primitive πi is defined for each subsystem Σi

since it has direct effects on Σi and undirected effects on all
other the subsystems Σj with j 6= i, through the evolution
of the state variable x. Another important aspect of this

formalization is that the primitives set associated to a system
can also involve only a subset of its degrees of freedom.

The main idea of the proposed approach is to use motion
primitives πi for the N subsystems Σi as local steering
functions in classical sample based planning algorithms to
obtain a plan for the whole system Σ. One of the basic
assumption on the motion primitive πi is that the associated
control law ui is a stabilizing policy for system Σi while all
other N−1 controls uj are null (null controls generate steady
motions or trim trajectories, see [14]). Moreover, feasibility
conditions on the primitives concurrency must be carefully
checked (e.g., in the case of humanoid robots, a check on
the ZMP-condition [15] can be used for this purpose).

One of the main strengths of our approach is that we do
not sample in the whole state space X of Σ, as in RRT,
RRT∗, PRM [16], but only in each primitive image space,
thus reducing dimensionality.

A tree T , whose vertices are points z ∈ χ, will iteratively
grow on the union of the primitive image spaces that must
hence be connected. Indeed, in order to connect samples on
an image space χj to the growing tree, χj must intersect at
least one of the image spaces on which the tree lays. In other
words, given the set {zi}k1 ∈ T of samples in the tree, it is
possible to sample in the image space χj only if there exists
zh ∈ T laying on the image space χh with χj ∩ χh 6= ∅.

At each iteration i, there exist a non-empty set of active
primitives (whose trigger conditions ξi are verified), denoted
as PA, and sampling is done in the union of the image
spaces, denoted as χA. Sampling in each image space is
allowed after a trigger condition ξi has been activated, which
corresponds to connect a sample in χi∩χA to the tree T . For
example, a grasp primitive is not activated until the object
to be grasped is sufficiently close.

Remark 1: Let P = (V,E) be the graph whose nodes
in V are associated to motion primitives πi. An edge in
E between nodes πi and πj exists if χi ∩ χj 6= ∅. A
motion planning problem can be solved with the primitive-
based sampling algorithm P-Search∗ only if the graph P is
connected. Indeed a tree T connecting any start and goal
configurations can be constructed based on samples only if
the union of the primitive image spaces is connected. This
condition corresponds to a connected graph P .

III. THE P-SEARCH* ALGORITHM

In this Section, we describe the P-Search∗ planning algo-
rithm to connect initial and goal states zI and zG respectively,
which lie in the obstacle-free region of two possibly different
image spaces. For example from a standing robot in a
position to a pose in which the robot has an object in its
hands.

As in many other planning algorithms, alternative versions
could be obtained to grow the tree T starting from the
goal and back–chaining the primitives to the initial state or,
alternatively, starting two branches from the beginning and
the end state and trying to connect them (see [17]). In this
paper, only the forward growth is described.



Let χi,obs be the obstacle region in the primitive image
space, such that χi \ χi,obs is an open set. In the following,
for notation convenience, we refer to the generic obstacle
free image space χi,free as χi.

The initial state zI is assumed to be in a feasible condition,
which means that it exists an active primitive πi ∈ V with
an associated image space χI and zI ∈ χI .

A. P-Search*

Algorithm 1: T ← P-Search∗(zI , zG)

Data: P = (V,E), zI , zG
Result: T a tree whose vertices are points z ∈ χ.

Given two vertices zi, zj ∈ χk an edge (zi, zj)
is an instantiation of the primitive πk ∈ V that
steers zi toward zj in χk.

1 T ← InsertNode(∅, zI , T );
2 znew = zI ;
3 for i = 1 to N do
4 PA ← ActivePrimitives(znew);
5 χi ← SamplePrimitive(PA);
6 zrand ← Sample(χi);
7 (znew, T )← LocalRRT∗(χi, zrand, T );

8 return T ;

The P-Search∗ algorithm, given initial and goal states
zI , zG, provides a tree T whose vertices are points z ∈ χ.
Given two vertices zi, zj ∈ χk an edge (zi, zj) is an
instantiation of the primitive πk ∈ V that steers zi toward
zj in χk.

Line 1: An empty tree T is created and populated with
the initial point.

ActivePrimitives: Given the newly added point znew, the
ActivePrimitives function computes all the primitives
πj such that znew ∈ χj and such that znew satisfies πj
trigger conditions ξj . The set of such primitives is returned
and stored in PA.

Primitive Sampling: The SamplePrimitive function
return a random primitive from the set PA.

Sampling: The Sample function takes as argument the
obstacle free image space χk from where the random sample
z ∈ χk is extracted.

LocalRRT*: Given an image space χk, a sample z ∈ χk

and the tree T , the LocalRRT∗ algorithm tries to add the
sample z to the tree. A detailed description of the procedure
is reported in Section III-B. The outcome of this function is
a node znew and an updated tree T where znew has been
added if a collision–free path in χk from an existing node
in T to znew is found. Moreover, the path is inserted in the
tree set of edges with its associated cost.

B. LocalRRT*
The procedure LocalRRT∗ is now described in detail.
Nearest: Given an image space χk a sample z ∈ χk

and the tree T , the Nearest function returns the vertex
znearest ∈ χk of the tree, which is the nearest to the random

Algorithm 2: (znew, T )← LocalRRT∗(χk, z, T )

1 znearest ← Nearest(χk, z, T );
2 (znew, xnew)← Steer(znearest, z);
3 if Unfeasible(xnew) then
4 return (−, T );

5 if ObstacleFree(xnew) then
6 Znear ← Near(znew, T );
7 zmin ← ChooseParent(T , Znear, znearest, znew);
8 T ← InsertNode(zmin, znew, T );
9 T ← Rewire(T , Znear, zmin, znew);

10 return (znew, T );
11 else
12 return (−, T );

point z. By construction, for each point in χk there exists at
least a vertex of T inside the same image space.

Steer: Given the sample node z and the nearest vertex
znearest ∈ T the Steer function first computes a point znew
between znearest and z. Moreover, it attempts to connect
znearest with znew. Note that the function is image space–
dependent, hence it attempts to connect two points inside
the same image space χk. If any, the path between points
znearest and znew is returned. The Steer function is the
implementation of the steering function σ of the primitive
πk in Definition 1.

Unfeasible: the function Unfeasible checks whether
the trajectory xnew computed by function Steer violates
additional conditions such as kinematic or dynamics con-
straints (e.g., ZMP stability conditions). Such function guar-
antees that the parallel primitives composition does not lead
to unstable behaviours.

ObstacleFree: a check on the trajectory returned by
the Steer function is performed by the function
ObstacleFree. In case of failure the sample znew is
discarded, otherwise the Near routine is called.

Near: the Near function returns the set Znear of the tree
nodes that are in a ball centered in the current sample znew
of radius dependent on the current cardinality of the nodes
of the tree (see. [10] for details). Such nodes must lay in one
of the image spaces where znew lays on.

ChooseParent: the set Znear is used to choose the node in
T that will become the parent node of znew (named zmin).
This is done by applying the Steer function from any
node in Znear toward znew. zmin is the starting point of
the minimum cost path.

Rewire: this function performs in the same manner as in
[10], considering all the possible primitives for rewiring. The
rewiring procedure allows to add and remove arcs in the tree
to obtain lower cost paths from the start point zI to existing
nodes in Znear through znew.



IV. PROBABILISTIC COMPLETENESS
AND ASYMPTOTIC OPTIMALITY

Here we investigate on the properties of asymptotic opti-
mality and probabilistic completeness, which are fundamen-
tal for sample-based algorithms to achieve optimal results.
Since our algorithm is implemented as a modified version of
RRT∗ [10] we retain many properties from previous work
and we can use them to demonstrate the aforementioned
properties.

It is well known that probabilistic completeness holds for
RRT and RRT* algorithms, [18], [19]. Here we provide
the same result for P-Search∗. In what follows, we indicate
with µ the probability measure over a sampling space χ.
Probabilistic completeness and optimality properties of RRT∗

follow from the property of robust feasibility of paths (i.e.,
obtained paths are at least at δ > 0 distance from the
obstacles). The robust feasibility property is verified also by
P-Search∗ algorithm thanks to a proper implementation of
the ObstacleFree function (if a sample or a path is closer
than δ from an obstacle it is discarded). Hence we are now
able to prove the following properties.

Theorem 1: If the primitive graph P is connected, the P-
Search∗ is probabilistically complete.

Proof: First we note that, using just one primitive, the
algorithm reduces to RRT∗ since the whole sampling space
is coincident with the image space of that primitive, χI .
Hence, given any two samples in the same image space the
probability to find a path between the samples by applying
P-Search∗ tends to 1.

Consider now a pair of samples (zi, zj) in different image
spaces, χi and χj . Since the primitive graph P is connected,
there always exists a sequence of pairwise intersecting image
spaces from χi to χj . For the probabilistic completeness on
any image space the thesis holds. �

Theorem 2: P-Search∗ is asymptotically optimal.
Proof: Asymptotic optimality of RRT∗ follows from the

choice of the radius γ used in the RRT∗ Near function. Since
the number of primitives is finite, it is sufficient to consider
the largest radius while implementing the P-Search∗ function
Near. �

V. RESULTS

Both simulation and experimental tests have been con-
ducted on a mobile manipulator (consisting of an iRobot
Create 2 mobile platform, with a 4 joints OWI-535 Robotic
Arm mounted on board) and on the simulated model of the
humanoid robot Walk-Man [20], demonstrating the capability
of our approach on different robots with their own primitives
(see Fig. 3).

P-Search∗ has been implemented in MATLAB to validate
the effectiveness of the algorithm when performing off-line
planning for the aforementioned robots.

The developed code for the P-Search∗ implementation is
available online1, together with all the open source code

1https://github.com/CentroEPiaggio/primitives

related to the Walk-Man controllers2 and the mobile ma-
nipulator ones3.

Fig. 3: The robotic platforms used in the experiments.

Consider the problem of moving a mobile robot in the
environment and to interact with an object through manip-
ulation, thanks to one or more robotic arms equipped with
hands or grippers. For this problem the full state space is
(x, y, θ, v, q1, . . . qN ), where (x, y) is the position on the
plane, θ is the heading of the robot, v is the robot walking
speed and qi, i = 1 . . . N are the arm joint coordinates.

For this purpose two primitives have been defined:
L: the locomotion primitive, to move the robot on the XY
plane, characterized by the following parameters:
• qL = ∅,
• χL 3 [x y θ v]

T ,
• σL, an optimization routine, applied on a simplified

dynamics, minimizes the time variable t subject to state
and control constraints and returns the robot desired
trajectory,

• CL = t,
• TL, is the duration of execution of the steering function
σL,

• ξL = 0 until a sample laying in χL is added to T .
M: the manipulation primitive, to move the end-effector
towards the object and manipulate it, characterized by the
following parameters:
• qM = o, where o is the object pose,
• χM 3 [x y τ ]

T ,
• σM , the inverse kinematics of the robotic arm, giving

the joints desired values corresponding to a certain value
of o and τ ,

• CM = t,
• TM , is the duration of execution of the steering function
σM ,

• ξM = 1 when ‖o−r‖ ≤ δ, with r the pose of the robot
and δ > 0, otherwise it is 0.

τ can be set as the rate of completion of the manipulation
task in terms of distance between the end–effector and the
object. For a grasping task τ = 1 means that the end–
effector is gripping the object, and τ is equal to 0 when the

2https://gitlab.robotology.eu/walkman-drc
3https://github.com/MirkoFerrati/irobotcreate2ros



end–effector is beyond the maximum distance to perform a
successful grasping. This is formalized by the M primitive
trigger condition.

Note that, with the proposed approach it is possible to
sample in a 4-dimensional space for the locomotion primitive
and in a 3-dimensional space for the manipulation one in-
stead of sampling in the full 4+N -dimensional configuration
space of the robot, as τ is used to sample only one scalar
instead of the entire joint space of the robotic arm. This is
even more convenient when dealing with a higher number of
DoFs. This is one of the advantages of our method, where the
trajectory generator computes the joint values corresponding
to the value of τ and the P-Search∗ algorithm checks for
feasible primitives composition.

In Fig. 4 the image spaces related to the proposed scenario
are depicted, note that they can represent any generic loco–
manipulation task. Let’s suppose that the problem is to reach
a location where to execute a manipulation task (e.g. grasp an
object) and come back close to the starting position. As we
can see in the figure, χL is represented both for τ = 0 and
τ = 1, and the tree connecting the starting point to the goal
is made by combination of L primitives (solid lines) and M
primitives (dotted lines). It is worth noting that dotted lines
can involve both locomotion and manipulation resulting in
a loco–manipulation behaviour. Also, note that performing
a manipulation action with the M primitive while moving
in the (x, y) plane is allowed only when a sample in χL is
connected to a sample in χM which had nonzero walking
speed v. This is coherent with the idea that the manipulation
primitive does not affect the locomotion image space directly,
but indirectly through the effect of a constant control (trim
trajectory) on the locomotion primitive.

Fig. 4: The image spaces representation of a generic loco–
manipulation task.

Although the aforementioned primitives are equivalent in
term of planning, the implemented control laws are different
and depend, of course, on the robot type. More details about
the primitives related control laws are given in the following.

Mobile Manipulator - Locomotion: Given the plan
solution’s waypoints (x, y, θ, v, τ), in case of activation of
the L primitive, x, y, θ and v are used to generate the mobile
robot trajectory, optimizing the execution time for a unicycle

model.
Mobile Manipulator - Manipulation: Given the plan

solution’s waypoints (x, y, θ, v, τ), in case of activation of
the M primitive, τ is used to generate the end–effector
desired position with respect to the target object pose, then
Inverse Kinematics is applied to obtain the joints desired
values.

Humanoid Robot - Locomotion: In this case x, y, θ and
v are used to generate the foot placement and feet trajectories
necessary to arrive at the desired position. Based on the
foot placement the ZMP reference trajectory is generated
and used by the Preview Controller [21] to compute the
COM reference trajectory. During execution we employ an
implementation of the feedback controller described in [22]
to additionally stabilize the robot around the precalculated
pattern.

Humanoid Robot - Manipulation: This primitive is
equivalent to the one of the mobile manipulator, except for
the kinematics of the arm. The Walk-Man robot arm has 7
DoF, thus redundancy can be exploited.

(a) (b)

(c) (d)

Fig. 5: Snapshots of the performed loco–manipulation exper-
iment.

In Fig. 5 an experiment for the mobile manipulator in-
volving an obstacle is reported. The robot approaches the
object using the locomotion primitive (Fig. 5a), then it
slows down and maintains this primitive active at constant
velocity while using the manipulation primitive to grab the
object (Fig. 5b,5c). At the end, the manipulation primitive
is maintained at constant (null) velocity and the locomotion
primitive is used to bring the object to the desired position
(Fig. 5d).

In Fig. 6 the corresponding image spaces seen from above
are reported. The obstacle is reported as the grey zone in the
sampling space.

In Fig. 6b the sampling space of the related experiment
and the primitives image spaces are shown. As we can see,
to perform the task, the tree grows from the locomotion
primitive image space with τ = 0 to the one at τ = 1, passing



(a) Sampling space of exper-
iment depicted in Fig.5. The
obstacle has been enlarged to
take the robot dimension into
account.

(b) 3D view of the sampling
space of experiment depicted in
Fig. 5.

Fig. 6

through the manipulation primitive image space, represented
as a cuboid. The black line represents the final plan generated
for the robot.

To further test our approach we implemented the scenario
shown in Fig. 7, to perform a complex loco–manipulation
task using the Walk-Man robot in the Gazebo simulation
environment. Here the task consists in removing an object
while the robot is walking avoiding obstacles.

(a) (b)

(c) (d)

Fig. 7: Walk-Man robot performing a loco–manipulation
experiment in the Gazebo simulation environment. The robot
first walks to the object, and then starts to manipulate it while
walking until it is removed.

The representation of the environment is reported in Fig. 8,
where the green, blue, and black dots represent respectively
the starting position, the object to manipulate and the goal
position.

In Fig. 9 the plan found by P-Search∗ is shown. The
manipulation task accomplishment is represented by the tree

Fig. 8: Sampling space of loco–manipulation experiment
reported in Fig. 7.

growing in the vertical axis, in fact, the start position is in
(0, 0, 0) while the goal position is in (1.5, 0, 1).

Fig. 9: 3D view of the sampling space of experiment depicted
in Fig. 7.

As we can see in Fig. 7, the robot executes the task
similarly to the mobile manipulator. Walk-Man walks to
reach the object, then it starts to manipulate it while walking
until the object is removed and the passage can be safely
crossed.

The same experiment has been performed successfully on
the Walk-Man robotic platform and it is reported in Fig. 10.

VI. CONCLUSIONS

In this work we proposed a novel planning approach based
on motion primitives. The parallel stable composition of
primitives potentially not designed to work simultaneously
leads to complex whole–body behaviors. Future work is
devoted to a hierarchical planning framework capable to
modifying dynamically the set of available primitives de-
pending on the surrounding environment (recognized objects,



(a) (b)

(c) (d)

Fig. 10: Walk-Man robot performing a loco–manipulation
experiment. The robot performs the experiment in the same
way as the simualated one.

type of terrain, . . . ). Further tests on the real Walk-Man robot
are being conducted, moreover current work is focused on
combining primitives with overlapping degrees of freedom.
In this case the stability condition is not enough to guarantee
the feasibility of the simultaneous execution of different
primitives. Additional properties have to be investigated to
allow the combination of such primitives.
The planner is now used to generate offline reference tra-
jectories, and robustness is provided by the single primitive
controllers. An efficient implementation of the code is being
tested in order to allow for on-line re-planning in case of
failures.

ACKNOWLEDGMENTS

This work is supported by the European commission
project Walk-Man EU FP7-ICT no. 611832 and the ECs
Horizon 2020 robotics program ICT-23-2014 under grant
agreement 644727 (CogIMon). Authors would like to thank
Salvatore Gerratana and Gaspare Santaera for their contribu-
tion for the mobile manipulator experimental setup. Authors
would like to thank Corrado Pavan for his contribution in
P-Search∗. Finally, authors would like to thank Federico
Spinelli for his help in the perception part.

REFERENCES

[1] Steven M LaValle. Planning algorithms. Cambridge university press,
2006.

[2] Felix Burget, Anja Hornung, and Maren Bennewitz. Whole-body
motion planning for manipulation of articulated objects. In Robotics
and Automation (ICRA), 2013 IEEE International Conference on,
pages 1656–1662. IEEE, 2013.

[3] Sébastien Dalibard, Antonio El Khoury, Florent Lamiraux, Alireza
Nakhaei, Michel Taı̈x, and Jean-Paul Laumond. Dynamic walking
and whole-body motion planning for humanoid robots: an integrated
approach. The International Journal of Robotics Research, page
0278364913481250, 2013.

[4] Karim Bouyarmane and Abderrahmane Kheddar. Humanoid robot
locomotion and manipulation step planning. Advanced Robotics,
26(10):1099–1126, 2012.

[5] Nicolas Mansard, Olivier Stasse, François Chaumette, and Kazuhito
Yokoi. Visually-guided grasping while walking on a humanoid robot.
In Robotics and Automation, 2007 IEEE International Conference on,
pages 3041–3047. IEEE, 2007.

[6] Marco Cognetti, Pouya Mohammadi, Giuseppe Oriolo, and Marilena
Vendittelli. Task-oriented whole-body planning for humanoids based
on hybrid motion generation. In Intelligent Robots and Systems (IROS
2014), 2014 IEEE/RSJ International Conference on, pages 4071–4076.
IEEE, 2014.

[7] Kris Hauser, Timothy Bretl, Kensuke Harada, and Jean-Claude
Latombe. Using motion primitives in probabilistic sample-based
planning for humanoid robots. In Algorithmic foundation of robotics
VII, pages 507–522. Springer, 2008.

[8] Kris Hauser, Victor Ng-Thow-Hing, and Hector Gonzalez-Baños.
Multi-modal motion planning for a humanoid robot manipulation task.
In Robotics Research, pages 307–317. Springer, 2010.

[9] Luis Sentis and Oussama Khatib. Synthesis of whole-body behaviors
through hierarchical control of behavioral primitives. International
Journal of Humanoid Robotics, 2(04):505–518, 2005.

[10] Sertac Karaman, Matthew R Walter, Alejandro Perez, Emilio Frazzoli,
and Seth Teller. Anytime motion planning using the rrt*. In Robotics
and Automation (ICRA), 2011 IEEE International Conference on, page
1478. IEEE, 2011.

[11] Steven M LaValle. Rapidly-exploring random trees: A new tool for
path planning. 1998.

[12] Jonathan D Gammell, Siddhartha S Srinivasa, and Timothy D Barfoot.
Informed rrt*: Optimal sampling-based path planning focused via
direct sampling of an admissible ellipsoidal heuristic. arXiv preprint
arXiv:1404.2334, 2014.

[13] Dimitrios Hristu-Varsakelis, Magnus Egerstedt, and Perinkulam S
Krishnaprasad. On the structural complexity of the motion description
language mdle. In Decision and Control, 2003. Proceedings. 42nd
IEEE Conference on, volume 4, pages 3360–3365. IEEE, 2003.

[14] Emilio Frazzoli, Munther Dahleh, Eric Feron, et al. Maneuver-based
motion planning for nonlinear systems with symmetries. Robotics,
IEEE Transactions on, 21(6):1077–1091, 2005.

[15] Miomir Vukobratović and Branislav Borovac. Zero-moment
point—thirty five years of its life. International Journal of Humanoid
Robotics, 1(01):157–173, 2004.

[16] Lydia E Kavraki, Petr Švestka, Jean-Claude Latombe, and Mark H
Overmars. Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. Robotics and Automation, IEEE
Transactions on, 12(4):566–580, 1996.

[17] James J Kuffner and Steven M LaValle. Rrt-connect: An efficient
approach to single-query path planning. In Robotics and Automation.
Proceedings. ICRA’00. IEEE International Conference on, volume 2,
pages 995–1001. IEEE, 2000.

[18] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms
for optimal motion planning. The International Journal of Robotics
Research, 30(7):846–894, 2011.

[19] Steven M LaValle and James J Kuffner. Randomized kinodynamic
planning. The International Journal of Robotics Research, 20(5):378–
400, 2001.

[20] F. Negrello, M. Garabini, M. G. Catalano, P. Kryczka, W. Choi, D. G.
Caldwell, A. Bicchi, and N. G. Tsagarakis. Walk-man humanoid lower
body design optimization for enhanced physical performance. In IEEE
International Conference of Robotics and Automation (ICRA2016),
pages 1817 – 1824, Stockholm, Sweden, May 16-21, 2016, 2016.
IEEE, IEEE.

[21] Shuuji Kajita, Fumio Kanehiro, Kenji Kaneko, Kiyoshi Fujiwara, and
Kensuke Harada Kazuhito Yokoi. Biped walking pattern generation
by using preview control of zero-moment point. In Robotics and
Automation (ICRA), IEEE International Conference on, pages 1620–
1626, 2003.

[22] P. Kryczka, P. Kormushev, N. G. Tsagarakis, and D. G. Caldwell.
Online regeneration of bipedal walking gait pattern optimizing footstep
placement and timing. In Intelligent Robots and Systems (IROS), 2015
IEEE/RSJ International Conference on, pages 3352–3357, Sept 2015.


	Introduction
	Formalization
	The P-Search* algorithm
	P-Search*
	LocalRRT*

	Probabilistic Completeness and Asymptotic Optimality
	Results
	Conclusions
	References

