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State of the art of hand prosthetics is divided between
merely aesthetic or extremely simple and reliable gripper-like
systems and sophisticate hi-tech poly-articular hands which
are still too costly, fragile, and unintuitive to be widely used.
From the data of medical records is evident that the most
used upper limb prosthetic aid is constituted by cosmetic
prostheses (CPs). CPs are merely aesthetic devices, designed
to maximize social and self acceptance by the patient in
terms of body image. Unfortunately they offer a very limited
level of function. Another category of prostheses consist of
body-powered prostheses (BPPs) that use an elastic grasping
mechanism activated by the patient through a tendon, usually
attached to a harness worn on the shoulders or some other
body part. BPPs are widely used for their robustness, ease
of use and low cost. Both these category of prostheses are
totally passive, whereas motion is either totally absent or
generated by the user. The active prostheses, instead, do no
need a physical effort from the patient in order to generate
motion, but use one or more motors for their activation.

In the category of active prostheses, the myo-electric
prostheses (MEPs) reached a good diffusion. They have
usually one motorized DOF, controlled by the patient thanks
to signals fetched from the activation of two muscles on
the surface of the residual limb. Unfortunately, a cognitive
component of fatigue is now present, due to the concentration
needed to operate the device. Finally, in the state of art of
modern hand the poly-articular prostheses (PAPs) are very
prominent. They are characterized by a large number of artic-
ulated joints controlled by 4 or 5 motors, in order to achieve
a higher degree of dexterity and several different postures.
Despite their high active dexterity most of these devices are
often deficient in terms of functionality, durability, adequate
cosmetic appearance, and affordability [1]. Furthermore, to
control such a high number of motors require more than two
surface EMG electrodes.

This problem is often solved by the adoption of switching
strategies, which usually tend to be rather complex to use
for the patient.
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Fig. 1. The prototype of dynamic synergies prosthesis being tested. The
two EMG electrodes are visible on the arm of a subject.

Another consistent amount of research revolves around
increasing the performance of EMG prostheses control.
Two very successful recent approaches are those based on
Targeted Muscular Re-Innervation [5] and Intra-Muscular
Wireless EMG transceivers [8]. Both techniques substantially
increase the reading precision achieved in recording the elec-
trical muscle activation signal and have been demonstrated
able to successfully control a multi-DOF prosthesis. Unfor-
tunately, both these approaches are invasive techniques (they
require a surgery) and need a large number of electrodes.

In this work we propose an approach that tries to exploit
the frequency content of EMG in an innovative and natural
way. Rather than using the sort of frequency modulation
that commercial EMG decoders adopt, we aim at shaping
the posture of a PAP by using the velocity reference itself.
This method, that we call of the dynamic synergies, builds
on the theory of linear descriptor systems, and is based on
the division of the hand movement in a slow and a fast
components. In particular, different speeds are associated
with different movements.

This approach comes from the observation (e.g. [6]) that
precision tasks are usually performed slowly, because they
require higher attention, while power task can be execute
more quickly. In particular, Vainio et al. [10], [9] demon-
strated that precision grip tasks on small objects require
statistically longer times to be performed than power grip
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Fig. 2. The prototype moving along the fast synergy (top row) and along the slow synergy (bottom row), the two plots (leftmost panels) show the reference
value and the effective position of the motor. The snapshots show the hand closing. It is possible to see that the fast synergy closes the hand in a fist (the
primitive synergy of the power grasp) while the slow motion closes the hand in a pinch grasp. Note that the snapshots are extracted at different instants
of time for the two sequences; this is in accordance with the fact that the slow synergy takes longer to close than the fast synergy. Note also that in order
to maximize the decoupling, the speed of the slow synergy is very low, resulting in a rather long closure time. The closure time to obtain a pinch grasp
needs not to be so slow, as it is show in Fig. 3.
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Fig. 3. Shortest time needed to obtain a pinch grasp, reference and actual motor position (a) and snapshots of the hand closing (other panels). By
optimizing the reference, it is possible to seamlessly shift from the fast to the slow synergy, and thus minimize the time to closure while still obtaining a
pinch grasp closure.

tasks on bigger objects. So we assume to have slower
controls associated with movements that are usually slow
and faster signals associated with movements that are usually
fast, in order to obtain a more intuitive control. We call this
idea natural encoding of user intentions. This idea can be
implemented on PAPs with many independent motors, by
the appropriate control of the different motors, or it can be
passively embodied in the hardware of a prosthesis by using
passive mechanical components as springs and dampers.

We consider here a generic adaptive hand under-actuated
by means of a differential mechanism with transmission
ration R. We also consider a generic linear elastic force
field E q and a set of dampers with damping factor C and
transmission ratio T . Writing the equilibrium of the joint

torques, we obtain the dynamic system:

T TCT q̇+Eq = RT u+w , (1)

Where w is a generic external torque. We consider here the
hand behavior for two extremal conditions: fast and slow
closure. We call slow closure an hand closure such that q̇' 0,
i.e. where the damping force effect is negligible, giving (see
[3]): [

−E RT

R /0

][
q
u

]
=

[
w
σ

]
. (2)

Solving it we obtain q = R+
E−1σ +P⊥R E−1w, where R+

E−1 is
the pseudo-inverse of R weighed on E−1, and P⊥R E−1 is the
projector in the correspondent null-space. Hence by proper
choice of E and R we can design any slow closure.
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Fig. 4. Some example of grasps of different objects using SoftHand Pro-D: pinch grasps (a-e) and power grasps (f-j). In this experiment the hand was
controlled using a mechanical interface.

We then call a fast closure the period of the hand closure
in which the force u is sufficiently fast to approximate
T TCT q̇ ' 0 and q̇ 6= 0. In this hypothesis we obtain (see
[7]): [

−T⊥ET T
⊥ T⊥RT

RT T
⊥ /0

][
ẏ
u̇

]
=

[
ẇ
σ̇

]
. (3)

Hence Ey = T⊥ET T
⊥ assumes the role of an equivalent

stiffness matrix, and R= RT T
⊥ the role of an equivalent ratio

matrix. Solving w.r.t. ẏ we obtain:

ẏ =R+

E−1
y

σ̇ (4)

where R+

E−1
y

is the pseudo-inverse of R weighted on Ey.
Integrating, it gives:

y = y0 +R+

E−1
y

σ ⇒ q = q0 +T T
⊥R

+
Ey

σ . (5)

Thus we call fast dynamic synergy matrix:

S f = T T
⊥R

+

E−1
y
, (6)

which identifies the obtainable hand closures when the hand
is closed fast. Again the hand closure can be designed by
proper choice of damping and elastic factors and pulley radii.

Relying upon these considerations, a prototype of a dy-
namic synergies hand was designed, called SoftHand Pro-D
[7]. In particular, the SoftHand Pro-D is an evolution of the
Pisa/IIT SoftHand [2] in a prototype prosthesis which, while
still having 19 degrees of freedom and just one motor, can
move along two different synergistic directions of motion, to
perform either a pinch or a power grasp. The effectiveness of
the proposed design was demonstrated in some preliminary
experiments. Fig. 2 shows the hand prototype moving along
the fast synergy (b-e) and along the slow synergy (g-j),
controlled through a Matlab/Simulink interface. The fast
ramp lead the hand toward the power grasp (the closed
fist), while the slow ramp toward the pinch (thumb-index

opposition). It is also possible to obtain a pinch grasp with
a shift from the fast to the slow synergy during the closure
movement of the hand.

This allow to minimize the time to closure to reach a pinch
grasp, as is possible to see in Fig. 3.

The SoftHand Pro-D was also tested by using commercial
EMGs electrodes (see Fig. 1) and, in particular, a slow
muscle contraction was associated with a slow synergy while
the fast synergy came from a fast muscle contraction.

Some examples of grasps of different objects are shown
in Fig. 4, where the hand was controlled using a mechanical
interface. Pinch grasps (a-e) and power grasps (f-j) were per-
formed depending on the object. Future works will address
proper validation of our approach with amputees patient
studies.
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