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Abstract—This work proposes a game theoretic ap-
proach to tackle the problem of multi-robot coordi-
nation in critical scenarios where communication is
limited and the robots must accomplish different tasks
simultaneously. An important application falls in un-
derwater robotic framework where robots are used to
protect a ship against asymmetric threats guaranteeing
simultaneously the coverage of the area around the ship
and the tracking of a possible intruder. The problem is
modelled as a potential game for which novel learning
protocols are introduced. Indeed, a general extension
of pay-off based algorithms is herein proposed where
the main difference with state-of-the-art protocols is
that the trajectory optimization is considered instead
of single action optimization. Moreover, the proposed
T -algorithms, steer the robots toward Nash equilibria
that will be shown to correspond to the accomplishment
of different, possibly antagonistic, goals. Finally, per-
formances of the algorithms, under different scenarios,
have been evaluated in simulations.

I. Introduction
It is well known that the problem of detecting and

accordingly reacting to an asymmetric threat in marine
environments is still an open problem from methodolog-
ical and technological points of view [1]. Even though
the available surveillance sensors on naval platforms are
sufficient to identify and classify asymmetric threats, they
are able to give a quick alert only in nominal working
conditions. Indeed, adverse weather conditions easily lead
to degradation of sensors performance. One of the possible
consequences is the drastic reduction of the time available
for a possible reaction after the detection, identification
and classification procedures [2], [3]. This occurs also in
particular situations when, for example, there exists an
obstruction to the line of sight of the sensor system such
as in presence of an island. The short time–to–reaction
may increase the possibility of human errors especially
in stressful situations (e.g. an incorrect assessment of the
necessary reaction).

Autonomous surveillance systems can guarantee an ad-
equate supervision of the area in any working conditions
even though the entire area is not fully monitored at any
time instant. Indeed, the mobility abilities of autonomous
marine vehicles can be exploited to deploy the team of
robots to monitor the environment. For example, in case

Fig. 1: Example of an asymmetric threat detected by a team
of autonomous robots. The team of robots efficiently supervises
the area around the ship. In the bottom image an example of
antagonistic tasks are the monitoring of the area around the
main ship while detecting and tracking an intruder.

of a static environment (e.g. fixed area of interest in the
scenario) the coverage problem has been largely studied,
see e.g. [4]–[6]. Such algorithms are proven to converge to a
static configuration maximizing the number of interested
area covered by the robot sensors’ footprint. In case of
dynamic environment algorithms have been designed to
explore the entire area without selecting the sub–regions
of major interest [7] or doing it with high communication
costs [8].
In this work we focus on the particular problem of mon-

itoring an area with a set of autonomous robots based on
partial knowledge of the environment due to limited sen-
sors footprint and communication range. The coordination
of the robot must also guarantee the accomplishment of
other tasks in a framework in which communication is lim-



ited due to security issues or deteriorated communication
channels (e.g. underwater scenarios). Referring to Fig. 1,
an example of antagonistic tasks are the monitoring of the
area around the main ship while detecting and tracking an
intruder. It is worth noting that the marine scenario is only
a possible application of the proposed methodology that is
valid whenever the goal is to detect, localize and react to
any environmental changes of interest, e.g. high variation
of temperature, water pollution, terrorists attacks etc.

The main idea is to use a game theoretic approach to
tackle the considered problem. Indeed, it is well known
that the particular class of potential games solves sev-
eral cooperative control problems with a reduced amount
of communication between robots [9]. In particular, the
considered control problem is transformed into a non–
cooperative game where the goal is to reach specific equi-
libria. Moreover, in case of “payoff–based” scenarios [10],
i.e., robots get a reward in the reached regions based
on the action performed by other robots, and this helps
in capturing the coverage requirement into the problem
formulation. Learning algorithms that can steer the robots
toward to Nash equilibria are demonstrated to partially
solve the problem, see e.g., [11].

In case of dynamic environment, the Distributed Homo-
geneous Synchronous Learning (DHSL) and the Payoff-
based Homogeneous Partially Irrational Play (PHPIP)
have been presented in [12]. Such algorithms have not
been designed to deal with antagonistic goals as in case of
asymmetric threat scenarios, where intruders have to be
tracked while patrolling the area around the ship. Hence,
in this paper, we propose an extension of DHSL and PH-
PIP to cope with environments characterized by low rates
of dynamicity, i.e., low velocity of the threat or in general
of environmental changes with respect to robot speed.
More formally, we refer to a low dynamic environment
whenever the team of robots is able to reach a steady
state before a change in the environment is detected. In
such scenario, we propose two novel learning algorithms,
Trajectory DHSL (T–DHSL) and Trajectory PHPIP (T–
PHPIP) that inherits several important features from the
original ones: (i) require finite and limited memory, (ii)
are applicable to payoff–based scenario, (iii) allow syn-
chronous action, (iv) use simple rules for action selection,
(v) allow local constraints on actions. The main difference
with state-of-the-art algorithms is that the proposed T–
Algorithms are based on trajectory optimization instead
of single action optimization. It is worth mentioning that
the same extension can be applied to any pay-off based
algorithm. With T -Algorithms, teams of robots are able
to manage different goals as required by moving toward
Nash equilibria. Performances, under different scenarios,
are evaluated in Monte Carlo simulations. Moreover, T -
Algorithms have been integrated with the Robot Oper-
ating System [13] (ROS) in order to verify algorithm
robustness under different robot dynamics [14].

The remain of the paper is organized as follow: the
considered problem is formalized in Section II while the
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Fig. 2: (a) Neighboring robots, (b) Non–neighboring robots.

necessary background on the game theoretic framework is
briefly reported in Section III. The main contribution of
the paper, i.e. the T -Algorithms, is reported in Section IV
while simulation results are presented in Section V.

II. Problem Formulation

To deal with dynamic environments, a different formal-
ization of the dynamic coverage problem, e.g. from the
one in [15], is proposed. Pay–off based potential games
have been shown to efficiently represent frameworks in
which the team objective is to cover a space of interest,
see e.g., [12]. For reader convenience a brief introduction
of the topic is reported.
Consider a discretized non–convex workspace where

each element, or sub–region, is associated with its centre
position q ∈ Rp (p = 2 for terrestrial vehicles, p = 3 for
underwater or aerial vehicles). Let Q be the collection of
all the labels q in the discretization. Furthermore, consider
the graph G = (Q, E) where (q, q′) ∈ E if and only if
the sub–regions, q and q′, are adjacent in the workspace.
The graph G is assumed to be fixed and connected. N
robots are deployed in Q to measure areas of interest
that may change in time (e.g., an intruder moving in
the environment). Let V be the set of robot identifiers,
xi =

[
qTi c

T
i

]T be the state of the i-th robot which
comprehends both the position qi ∈ Q and the sensors
configuration ci ∈ C. For example, in case of robots with
an on board camera, (θ, r) ∈ C = [0, 2π] × [rmin, rmax]
corresponds to the camera orientation (θ) and the focal
length r.
Let X be the configuration space of the robots and x =

(x1, . . . , xN ) ∈ X the vector of the current configuration
of the robots. In order to avoid that more than one robot
is monitoring the same sub–region and hence to increase
the area covered we introduce the following:

Definition 1 (Robot Neighbour). Let D(xi) be the sen-
sors footprint of robot i. The set of neighbours of robot i,
is Ni(x) = {j ∈ V \{i}|D(xi) ∩ D(xj) ∩Q 6= ∅}, i.e. the
robots that monitor the same sub–region of i, see Fig. 2.

Definition 2 (Interest Function). The interest function
W : Z+ → R|Q| is the function which assigns to every
time instant the vector W (t) = (Wq1 ,Wq2 , . . . ) ∈ R|Q|
where Wqi ∈ R is the element relative to the sub–region
(with centre) qi ∈ Q.



Each robot is assumed to be able to determine the
value Wq ≥ 0 for each q inside its sensor footprint. We
assume that robots monitoring the same sub–region de-
termine the same value Wq. Values Wq can be interpreted
as the interest of monitoring the area q, such as probability
of finding intruders in the monitored sub–region. How such
value Wq is computed by robots is out of the target of this
paper and can be based on supervisor based techniques,
see e.g., [16], [17]. Larger values of Wq correspond to sub–
region of higher interest, while, when Wq = 0 the sub–
region q is of no interest or does not belong to the sensor
footprint. Hence, the vector functionW is not fully known
by the robots, due to limited sensing capabilities. Indeed
the problem is a partially observable problem, i.e., each
robot only has access to limited information regarding its
surrounding environment.

In the framework of asymmetric threats, intruders are
supposed to be able to move in the environment and such
environmental changes are encoded in a time-dependent
interest function W (t).

Definition 3 (Dynamic Coverage Problem). Given a
space graph G = (Q, E), an interest function W :
Z+ → R|Q| and a quality coverage metric φ : R|Q|×X →
R, the dynamic coverage problem is the problem to find
an evolution function π, representing the resulting closed–
loops dynamic, feasible with respect to the dynamic of
every robot (e.g. limited range of movements in one time
step), such that{
π∗ = argmin

π

∑
t ‖φ(W (t), x(t))−maxy∈X φ(W (t), y)‖2

s.t. x(t+ 1) = π(W (t), x(t)).
(1)

As a consequence, the function π∗ will be such that
the probability of the event “the sub–region q is in the
footprint of the robots” (i.e. the event {q ∈ ∪Ni=1D(xi(t))})
tends to increase when Wq grows.
The function φ, in Definition 3, measures the coverage

quality. An example of measure of quality is: φ(W,x) =∑
q∈Q

∑nq(x)
l=1

Wq

l , where nq(x) is the cardinality of the set
{k ∈ V |q ∈ D(xk) ∩Q}, i.e., the number of robots whose
position and configuration of sensors allow to monitor the
same sub–region q.

The function φ can take into account also some local cost
functions fi that depend only on robot configuration xi.
Those can be used to model private robot cost functions
such as the energy consumption consumed by the robot.
Hence, the considered quality coverage measure φ is:

φ(W,x) =
∑
q∈Q

nq(x)∑
l=1

Wq

l
−

n∑
i=1

fi(xi). (2)

The goal of the distributed coordination protocol is
hence to steer the team of robots toward the maximum
of the quality measure φ. The control laws π∗ in (1) will
be determined in next section.

III. Game Theoretic Formulation
Some basic and necessary game-theoretic concepts [18]

used to obtain the optimal control laws in (1) are here
briefly described.

A. Constrained Potential Games
Definition 4. [Constrained Strategic Game [10],
[5]] A constrained strategic game is defined as
Γ =

(
V, A, { Ui(·) }i∈V , { Ri(·) }i∈V

)
, with

V = {1, . . . , N} the set of robots. The collective action
set A is A = A1 × · · · × AN , where Ai is a finite set of
actions for robot i ∈ V . The function Ui : A → R is the
utility function of robot i ∈ V and each robot behaves so
as to maximize Ui. The function Ri : Ai → 2Ai provides
a so-called constrained action set.

The joint action of the group is denoted by
a = (a1, . . . , aN ) ∈ A and the collection of actions
other than robot i by a−i = (a1, . . . , ai−1, ai+1, . . . , aN ),
hence a = (ai, a−i).

Definition 5 (Constrained Potential Games [9]). A con-
strained strategic game Γ is said to be a constrained
potential game with potential function φ : A→ R if for all
i ∈ V , ai ∈ Ai and a−i ∈

∏
j 6=iAj , the following equation

holds for every a′i ∈ Ri(ai).

Ui(a′i, a−i)− Ui(ai, a−i) = φ(a′i, a−i)− φ(ai, a−i) (3)

Condition (3) implies that if robot changes its action,
the change of the local objective function is equal to that
of the group.
In non-cooperative game theory, the most important con-
cept is the well known (pure) Nash Equilibrium (NE), see
e.g. [19]. For our problem, we refer to the more general
concept of Constrained (pure) Nash Equilibrium (CNE):

Definition 6 (Constrained Nash Equilibria). For a con-
strained strategic game Γ, a collection of actions a∗ ∈ A
is said to be a constrained pure Nash equilibrium if the
following equation holds for all i ∈ V :

Ui(a∗i , a∗−i) = maxai∈Ri(a∗i )Ui(ai, a∗−i) (4)

Notice that, from (4), CNE are characterized by the subset
of actions determined by the function Ri.
It is known that any constrained potential game has at
least one pure CNE and each pure CNE is a potential
function maximizer [20].
Throughout this paper, we use the following assump-

tions on the constrain action functions:

Assumption 1. The function Ri : Ai → 2Ai satisfies the
following conditions.
(i) [Reversibility] For any i ∈ V and any a1

i and a2
i the

inclusion a2
i ∈ Ri(a1

i ) is equivalent to a1
i ∈ R(a2

i ).
(ii) [Feasibility] For any i ∈ V and any a1

i , a
m
i ∈ Ai, there

exists a sequence of actions a1
i → · · · → ami satisfying

ali ∈ Ri(al−1
i ) for all l ∈ {1, . . . ,m}.



B. Coverage Problem as Potential Game
We are now interested in defining the proposed cover-

age problem as a constrained potential game. The ben-
efit that robot i obtains through sensing is chosen as∑
q∈D(xi)∩Q

Wq

nq(x) . Such utility function splits the benefit
Wq among all the robots that monitor the same sub–
region q. The purpose of this choice is to give robots
movement a boost to look for areas with highest value
of Wq shared with as less robots as possible. In the
considered framework each robot is supposed to both gain
(a reward) and to lose (e.g. consume of energy) while
monitoring sub–regions. The capture of this trade-off is
the scope of the utility functions of robot i:

ui(W,x) =
∑

q∈D(xi)∩Q

Wq

nq(x) − fi(xi), (5)

where nq(x) can be distributively computed or obtained
based on sensor capabilities. The utility function ui is
distributed along the team, because it only depends on the
points q within the sensing range D(xi) and the actions
of {i} ∪ Ni(x).
The set A of the collective actions is, in our problem,
the state space X where there are constraints on the
feasible states, such as restricted/forbidden areas. On the
other hand, function Ri takes into account reachability
characteristics of the robot kinematics, e.g. the impos-
sibility for robots to walk through walls, the constraint
to move slower than the maximum allowed speed or
any other kinematic or mobility constraint. Finally, the
coverage problem can now be defined as a constrained
game Γcov = (V,X, {ui}i∈V , {Ri}i∈V ) for which it holds
the following

Proposition 1. The coverage game Γcov is a constrained
potential game with potential function defined in (2).

The proof is based on a direct verification of the defini-
tions and it is omitted for brevity.

As a consequence of Proposition 1, the set of pure
CNE of the dynamic coverage game Γcov is not an empty
set [10].
We are now able to show known algorithms that reach
pure CNE of constrained potential games.

C. Learning Algorithms
A learning algorithm is an algorithm that induces a

closed–loop dynamic π, introduced in Definition 3, to
converge to a pure CNE of the constrained potential game.

We restrict the analysis to two distributed learning
algorithms: the Distributed Inhomogeneous Synchronous
Learning (DISL) algorithm, [5], and the Payoff–based In-
homogeneous Partially Irrational Play (PIPIP) algorithm,
[6].

At each iteration t ∈ Z+, the learning algorithms choose
an action according to a specific procedure assuming that
each robot i ∈ V stores last two chosen actions xi(t− 1),
xi(t) (i.e., its last two states) and the outcomes ui(x(t−1))

and ui(x(t)) (i.e., the associated gains). The main steps of
the algorithms are:
1) At t = 0, all robots are placed in Q and sensors

configurations are initialized. Each robot i computes
its neighbourhood and ui(x(0)).

2) At each time t ≥ 1, based on Ri(xi(t)), each robot i
updates its state following a specific learning rule.

3) At the new position, every robot computes its neigh-
bours, utility function and next feasible action set.
The process is repeated from point 2.

The two algorithms differ in their learning rule: each
robot updates a parameter ε called exploration rate by

ε(t) = t−
1

N(D+1) , (6)

where D is the diameter of the graph G = (Q, E) and N
is the number of robots.
In particular, the learning rule for DISL is:
• With low probability, ε, the robot i experiments, i.e.,

it chooses the next action uniformly from the set
Ri(xi(t))\

{
xopti (t)

}
, where xopti (t) is defined as the

position with the best utility reached in the two past
steps.

• With high probability, 1 − ε, the robot i does not
experiment, i.e., it chooses next action as xopti (t).

On the other hand, the learning rule for PIPIP is:
• If ui(x(t)) ≥ ui(x(t − 1)) holds, it follows the same

rule of DISL algorithm.
• Otherwise, when ui(x(t)) < ui(x(t− 1)) the robot i:

– With probability ε, chooses its action uniformly
from the set Ri(xi(t))\ {xi(t), xi(t− 1)}.

– With probability (1 − ε)κε∆i(t), where ∆i(t) =
ui(x(t−1))−ui(x(t)), chooses xi(t) (the irrational
decision).

– With probability (1 − ε)(1 − κε∆i(t)), chooses
xi(t− 1).

where κ is the irrational factor chosen to satisfy

κ ∈
(

1
C − 1 ,

1
2

]
, C = max

i∈V
max
x∈X
|Ri(x)| (7)

The main difference from DISL and PIPIP is the ir-
rational factor k of the PIPIP algorithm that is used to
avoid local maximizer of the potential function. In [5] it
is shown that any team of robots playing a constrained
potential game Γ satisfying Assumption 1, and following
DISL rules converges to a CNE. In [6] is shown that any
team of robots playing the same game Γ, and following
PIPIP rules converges to a potential maximizer which is
an efficient CNE, i.e., it is the global maximizer of the
potential function.

IV. T–DISL and T–PIPIP Algorithms
In this section an extension of pay-off based algorithm

is proposed and applied to the algorithms described in
previous section, called Trajectory DISL (T–DISL) and
Trajectory PIPIP (T–PIPIP).



T–DISL (and T–PIPIP) will allow the implementation
of a controlled dynamics π that converges to a periodical
steady state trajectory of period T , instead of a steady
state configuration as the original algorithms do. In case
of dynamic environments, a steady state configuration can
prevent robots to detect changes in the interest func-
tion values, Wq. On the other hand, with the periodical
steady state trajectory, provided by T–Algorithms, such
problem may be overcome. An important improvement
due to T–algorithms is the capability to solve problems
having more conflicting goals without changing the action
selection rules. Another important motivation in using T–
DISL and T–PIPIP algorithms is given by scenarios in
which robots are not able or suitable to stop for stability
reasons or practical limitations in ignition, e.g. some types
of underwater and aerial robots.

Those algorithms are based on robot utility functions of
the form
uTi (W,xi(t− (T − 1)), . . . , xi(t)) =
T−1∑
h=0

[ui(W,xi(t− h))]− ψi (xi(t− (T − 1)), . . . , xi(t)) ,

(8)
where T ∈ Z+ is the period of the trajectory, i.e. in
case T = 1 the algorithms correspond to their original
version. The function ψi(xi(t − (T − 1)), . . . , xi(t)) is
used to optimize a second performance index that can be
antagonistic with respect to the first one but it depends
only on robot i and its past actions. In the considered
scenario, ψ is introduced to force robots to move and avoid
a steady state configuration. For example, for a period
T = 2, a possible choice is

ψi(xi(t− 1), xi(t)) = ||xi(t− 1)− xi(t)||−1
∞ . (9)

Indeed, by maximizing own utility functions, the robots
tends to maximize ||xi(t−1)−xi(t)|| and hence are forced
to move.
As a consequence, the coverage quality measure is:

φT (W (t), x(t− (T − 1)), . . . , x(t)) =
T−1∑
h=0

(φ(W,x(t− h)))−
n∑
i=1

ψi(xi(t− (T − 1)), . . . , xi(t)).

(10)

The function φT will be proved to be a potential function
associated to the utility functions uTi , see Theorem 2 in
the following.

A. T–DISL Algorithm
For space limitations, only T–DISL algorithm is de-

scribed in detail. A sligthly different approach is used for
the T–PIPIP protocol.
In order to simplify the protocol description we intro-

duce the following technical definition.

Definition 7. Let Rni (xi(t), xi(k)) ⊆ Ri(xi(t)), with
k, t, n ∈ Z+ and k ≤ t, be the set of actions in Ri(xi(t))

for which it does not exist a path of control actions, that
ends at xi(k), whose length is shorter than n.

In the T–DISL algorithm the exploration rate ε is

ε(t) = 1
T
t−

1
N(D+1) , (11)

where D is the diameter of the graph G = (Q, E), N is
the number of robots and T is the period.
The T–DISL is a learning rule of period T where the

DISL learning rule is applied only every T time steps. As
stated later, this approach maximize the coverage index
in (10). Hence, in the remaining T − 1 steps of a generic
time period [0, T − 1], other possible strategies may be
applied by robot i to cope with the optimization of the
private performance index ψi. In particular, for conver-
gence purposes, during the T − 1 steps the robot actions
must steer the robot, at time T − 1, in a configuration
reachable by the configuration in which the robot was at
time 0. More formally:
1) Initialization

• At t = 0, all robots are uniformly placed in Q.
• At each time t < T − 2, each robot:
– chooses the best next action in the set
Ri(xi(t))\RT−ti (xi(t), xi(0)),

– for every q ∈ D(xi(t)) computes nq(x(t)) and
ui(xi(t)) and,

– moves to next position.
• At t = T − 2, each robot
– chooses the best next action in the set
Ri(xi(T − 2)) ∩Ri(xi(0)),

– for every q ∈ D(xi(T−2)) computes nq(x(T−
2)), ui(xi(T − 2)) and

– moves to next position.
2) Update: At each time t = k(T − 1) where k ∈ Z+,

each robots computes uTi (W,xi(t−(T−1)), . . . , xi(t))
and updates its trajectory according to the following
rules:
• With probability ε: robot i experiments. It se-

lects best next action from the set Ri(xi(t)).
• With probability 1 − ε: robot i does not ex-
periment. It selects the first position of the
trajectory xopti (t). Where xopti (t) is the more
successful trajectory of robot i in the last two
period, i.e., the one which gains the best value
of uTi (W, ·) in (xi(t − (2T − 1)), . . . , xi(t − T ))
and (xi(t− (T − 1)), ..., xi(t)).

3) Free Movement Update: at each time t such that
k(T − 1) < t < (k + 1)(T − 1) for k ∈ Z+, if
the robot at time k(T − 1) has chosen to experi-
ment, it now chooses the next action from the set
Ri(xi(t))\R(T−(t−k(T−1)))

i (xi(t), xi(k(T − 1) + 1)).
Otherwise, it selects the next position of the best
trajectory, already selected at time k(T − 1).

4) Neighbour Computation: at the new position, every
robot computes its neighbours, utility function and



next feasible action set. The process is repeated from
point 2.

It is worth specifying that, in the free movement update,
the next action for robot i is the feasible action that
maximize the private performance index ψi. In this way
while once, any T time steps, the function φT is used to
chose the best action, the remaining T − 1 steps the other
function ψT is optimized leading to the accomplishment
of antagonistic tasks.

In order to apply de facto the algorithm, robots must
be able to reach a peak velocity at least three times higher
than the nominal one. Indeed, referring to Fig. 3, while non
experimenting, robots have to go back to xi(t− (2T − 1)).
To do that, in worst case, robots have to go from xi(t)
through xi(t − (T − 1)), xi(t − T ) and xi(t − (2T − 1)).
Hence, they have to cover three steps in one, i.e., at triple
speed.

Fig. 3: T–DISL algorithm (with T = 4) at time step t =
k(T − 1) when the DISL learning rule is applied. Top: robot i
experiments a new action and will move toward x(t+1). Center:
the robot does not experiment and the trajectory of the last
interval [t − 3, t] happens to be the maximizer of the utility
function uT

i . Bottom: the robot does not experiment but the
trajectory maximizing the utility function uT

i is the one of the
second last interval [t − 7, t − 4] whose initial configuration can
be reached in at most three steps and hence in a one time step
when triplicating the speed.

Under the given assumption it holds that CNE config-
urations are reached by the team following T–DISL algo-
rithm. More formally it holds:

Theorem 2. By applying the T–DISL algorithm, robots
evolution converges to a steady state periodic trajectory, of
period T , that is an optimizer of the index φT in (10).

The proof of this Theorem and its extension to other
dynamic learning algorithms are omitted for brevity.

B. Simulations of T–Algorithms in static environment
In this section the T–Algorithms performance is eval-

uated with respect to DISL and PIPIP performance in

Fig. 4: The mean variation of the normalized number of covered
sub–regions (dashed lines) and the normalized optimal values
of the potential function (10) (continuous lines), over different
values of the period T and different numbers of robots.

case of static environment. In such scenarios the interest
function W is constant. Algorithms have been tested for
different values of T ∈ {1, . . . , 20} and different number
of robots N ∈ {5, 10, 15, 20}, in a convex area with 400
sub–regions. Moreover, for any values of N and T , 50
different initial conditions have been considered. The robot
sensor footprint is a circle centred on the robot and of
radius corresponding to the dimension of two sub–regions.
The interest function is a Gaussian density function whose
mean is fixed at the centre of the space Q and variance is
25. Each robot i optimizes the utility function uTi defined
in (8) where the ψi is described in (9).
In order to compare T–Algorithms for different number

of robots N and different values of T a normalization
factor must be introduced. Indeed, for each value of N
the minimum (maximum) mean number of covered sub–
region is obtained for T = 1 (T = 20) while the opposite
holds for the mean value of the potential function. The
mean values for each N are hence normalized with the
maximum obtained (in T = 1 for the potential function
and T = 20 for the number of covered sub–regions).
Referring to T–DISL, in Fig. 4 the mean variation of the
normalized number of covered sub–regions (dashed lines)
and the normalized optimal values of the potential func-
tion (continuous lines) for different values of the period T
are reported. It is worth noting that, with respect to the
original algorithm (i.e., T = 1) the proposed T–Algorithms
provide an improving coverage (in terms of the number of
covered sub–regions) by loosing (less) in optimality, when
T grows up. Indeed, the potential optimal values decrease
with lower rate with respect to the rate of increasing of the
coverage. This behaviour depends on the chosen function
ψT . Indeed, when the function ψT ≡ 0 robots do not get a
reward if moving. In this case the number of coverage sub–
regions does not increase and the potential optimal values
is constant with T > 1. The same behaviour is obtained
by T–PIPIP algorithms and hence their simulation results
are omitted for space limitations.



This improvement in coverage with limited loss of
optimality plays a crucial role in application scenarios
characterized by dynamic environment, as described in
next section.

V. Learning algorithms in slow dynamic
environments

The algorithms DISL and PIPIP described in previous
section are designed for static environments. On the other
hand, the proposed T–DISL and T–PIPIP algorithms,
designed for dynamic environments, have been proved to
converge for static ones. In many real applications sce-
narios the interest function is time–varying, e.g. intruders
to be tracked can move in the environment or multiple
intruders may appear at different time. It has been already
proved that payoff–based algorithms naturally adapt to
such environmental changes without altering action selec-
tion rules when prior knowledge on environments is not
assumed [12]. In case of T–Algorithms, this statement is
verified using a Gaussian density function whose mean
changes in time, as interest function W . Moreover, in the
following set of simulations, W (t) is supposed to change
any M time steps, i.e. 1/M may represents the intruder
velocity. Since the evolution of the interest function W (t)
is unknown and unpredictable by robots, the use of T -
Algorithms allows robots to maximize the reward received
by W (t) while optimizing the ψ index which can be
designed to solve a different goal. Hence, in our scenario,
robots may track an intruder while still performing an area
patrolling task.
Simulation Setup

The algorithms have been tested for different
changes of the W function (or intruder speed),
M ∈ {100, 200, . . . , 1000}, different number of robots,
N ∈ {5, 10, 15, 20}, and different period, T ∈ {1, . . . , 20}.
The exploration rate ε = 0.1 is constant and the irrational
rate of the PIPIP algorithm is κ = 1

3 , as in test cases
reported in [12]. T–Algorithms have been tested fully
integrated with the well known Robot Operating System
(ROS) [14], in order to consider different robot dynamics.
Each simulation has been run for 20000 time steps.
Moreover, for any values of M , N and T , 50 different
initial conditions have been considered. The robot sensor
footprint is the same as the one used in previous section.
Each robot i optimizes the utility function uTi defined
in (8) where the ψi is described in (9). Three scenarios
characterized by different degrees of convexity are
considered (convexity measure is described in [21]), refer
to Fig. 5 for the scenarios representation. The free space of
each one has been discretized in 400 sub–regions. Higher
number of discretized sub–regions would require a higher
number of robots to maintain the same performance. To
represent the time variability of the environment, in the
simulation, the following Gaussian density function whose
mean µ(t) randomly changes every M steps have been
chosen:

W (q) = e−
||q−µ(t)||2

2σ2 , σ = 5 (12)

(a) Open sea (b) Island (c) Harbor

Fig. 5: Considered scenarios are characterized by different
degrees of convexity C, decreasing from the left to right:
Ca = 1, Cb = 0.75, Cc = 0.43, respectively, [21].

Simulation Results
For the purpose of comparisons the following error index
I ∈ [0, 1] is considered

I(t) = 1− 1
t

t∑
k=1

∑
i∈V ui(k)∑
q∈QWq(k) (13)

where ui is the utility of robot i and t ∈ Z+ is the time
step. The proposed index I represents the cumulative error
and it is inspired to the well known IAE index. It depends
on the total benefit of the scenario (determined by the W
on the whole environment) and the total benefit reached
by the team (determined by the robot utility functions ui).
Hence, a null index corresponds to the ideal case in which
each sub–region is covered by one and only one robot
sensor footprint at any time instant.

Fig. 6: Evolution of the T–DHSL mean value of the error
index for different values of T in convex environment and
N = 5 robots.

Fig. 6 reports the evolution of the mean value of the
error index I, in case of a convex scenario with N = 5
robots, for different values of T . In particular, the almost
constant value of I, for each T , corresponds to the fact
that, although moving, robots gather around the region
of higher interest that changes in time. For the purpose
of comparison, the evolution of the mean value of the
error index, for different values of M , N and scenarios,
is reported in Fig. 7 for 10–DHSL. It can be noted that,
for decreasing intruder velocities, the mean error decreases
despite of the number of robots N and of the scenario
convexity. On the other hand, lower convexity (that corre-
sponds to a higher complexity) of the environment induces



(a) Open sea

(b) Island

(c) Harbor

Fig. 7: Evolution of the T–DHSL mean value of the error
index for different M and N for different scenarios, when
T = 4.

a larger value of the mean error and of its variance
for any value of N . For space limitations results of T–
PHPIP are omitted, however no great differences can be
perceived in the simulation results with respect to the T–
DHSL algorithm.

Simulations results confirm that robots executing
T–Algorithms successfully adapt to the environmental
changes without the necessity to change the action se-
lection rule. Robots executing T–Algorithms with higher
values of T are able to better detect environmental changes
with respect to robots executing T–Algorithms with lower
values of T . Concluding, simulation results confirm the
validity of the proposed methodology to extend static
algorithm in case of dynamic environments also in case
of simultaneous possible antagonistic tasks.

VI. Conclusions
The problem of coordinating a system of underwater

robots for protection against asymmetric threats has been
modelled as a potential games. Two learning algorithms
have been proposed based on trajectory optimization to
allow the robots to manage different goals such as the
tracking of the intruder and the patrol of the area. Con-
vergence in probability toward Nash equilibria has been
proved in static environment. Finally, for dynamic envi-
ronments, the proposed algorithms have been evaluated
in simulation in different scenarios.
The simulation results can be used to design the team

(N) based on intruders characteristics (M) while main-
taining a given level of performance.
The proof of convergence in case of dynamic environ-

ments is still an open problem. On the other hand, also
the extension to the case of learning algorithm of different
periods for different robots may be evaluated together with
an automatic procedure for the choice of the best value of
T for each robot.
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