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Abstract—Effective execution of a manipulation task using
prosthetic or robotic hands requires that the motion and the
impedance profiles of the fingers be appropriately commanded.
This, however, brings some design and control challenges
regarding the individual planning and realization of the finger
motion and stiffness trajectories. It appears that the central
nervous system solves for this complexity in an effective and
coordinated manner which has been well-recognized under
the concept of hand synergies. While the exploitation of this
concept in kinematic coordinates has lead to the development
of several successful robotic designs and control strategies,
its extension to dynamic coordinates, such as coordinated
stiffening of the fingers, remains to be investigated. Indeed, in
this study we provide preliminary evidence on the existence
of such coordinated stiffening patterns in human fingers
and establish initial steps towards a real-time and effective
modelling of the finger stiffness in a tripod grasp. To achieve
this goal, the endpoint stiffness of the thumb, index and middle
fingers of five healthy subjects are experimentally identified and
correlated with the electromyography (EMG) signals recorded
from a dominant antagonistic pair of the forearm muscles. Our
findings suggest that: i) the magnitude of the stiffness ellipses
at the fingertips grows in a coordinated way, subsequent to
the co-contraction of the forearm muscles; ii) the length of the
ellipses’ axes appears to have a nearly linear relationship with
the co-contraction level of the antagonistic muscle pair.

Keywords—Electromyography, Tele-Impedance, Rehabilita-
tion Robotics, Hand Stiffness

I. INTRODUCTION

The need for accurate reproduction of human hand
and arm functionalities ranges across many disciplines of
robotics, including rehabilitation robotics and prosthetics
and teleoperation for surgical or disaster-response robotics.
Traditional teleoperation robotics uses direct position control
to operate the end-effector, potentially producing undesired
interaction forces. Alternatively, force information can be
fedback to the operator to result in finer control that may
be subject to noticeable lag, resulting in potential stability
issues [1], [2]. To address these drawbacks, previous work
from our lab devised a method for tele-impedance operation
of a compliant slave robot [3], [4]. In tele-impedance, a
compound reference command which includes the position
and stiffness profiles of the master is replicated by a slave
robot in real-time. Several physical interaction scenarios
have been investigated to evaluate the efficiency of the
proposed framework in establishment of an appropriate
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Fig. 1: Experimental setup used for the trials. The KUKA applies
planar perturbations to the fingers of the subject and the resulting
forces are measured at the fingertips along with the surface EMG
signals from the FDS and EDC muscles.

mechanical interface between the robot and the uncertain
environment [4], [5]. As an extension, the work below
presents a pilot study in modelling and real-time tracking
of the human finger stiffness for future applications in
rehabilitation robotics or other teleoperation scenarios.

Past studies on human stiffness have focused mainly
on the arm and found that the endpoint stiffness is influ-
enced both by limb configuration (joint angles and limb
segment lengths) [6] and joint torques [7]. Another factor
that affects the endpoint stiffness of a limb is antagonist
co-contraction. In the hand motor control system, in fact,
antagonist co-contraction serves several purposes, including
monitoring limb position, especially when learning a new
task, decelerating the limb in ballistic movements, and
increasing stiffness [8]. Stiffening behavior can be realized
to stabilize movement or to fix posture in isometric tasks
[9]. Previous work examining finger and hand stiffness has
explored various topics including the mechanical impedance
of the fingers [10] or at the fingertip [11], pinch grasp
stiffness during an isometric grasp task [12], or variance
of stiffness depending on finger force or posture [13]. The
estimation of the impedance parameters in these studies
is mainly achieved by an off-line post-processing phase,
imposing severe limitations in real-time applications such as



tele-impedance control of the prosthetic or robotic hands. At
first, this might imply that a complete model and thus control
of the finger motion and stiffness trajectories are required to
perform a target manipulation task. However, observations in
human control suggest that the entral nervous system solves
for this complexity in an elegant and coordinated manner
which has been well-recognized with the concept of hand
synergies [14], [15], [16]. While the exploitation of this
concept in kinematic coordinates has lead to the development
of several simple, effective and adaptive robotic designs
and control strategies (e.g. see [16], [17]), its extension to
dynamic coordinates, such as coordinated stiffening of the
fingers, remains to be investigated.

Toward the twofold purpose of investigating the presence
of coordinated regulations of the finger stiffness in human
hand and the establishment of a real-time technique in
modelling and identification of the finger stiffness while
grasping, we explore the relationship between the fingertip
stiffness and the EMG activity of the antagonist muscles
contributing to this profile. To achieve this, the experiments
are performed using a tripod-grasp device developed in
the lab that contains a 6-DOF force/torque sensor at each
contact point (thumb, index, and middle fingers) as well
as a global 6-DOF force/torque sensor in the base of the
device. While constrained in a tripod posture in the Tripod
Device, subjects were asked to hold a stable level of stiffness
without applying grasping forces and experienced a series of
perturbations provided by the KUKA lightweight robot arm.
EMG was recorded alongside force/torque measurements.
Consequently, we established the mapping between the fin-
gertip stiffness profiles, as calculated from the force/torque
measurements, and the EMG data.

II. MATERIALS AND METHODS

A. Study Design
Five subjects participated in the experiment, 3 males and

2 females aged 28 ± 3 years. Before participating, subjects
signed an informed consent form approved by the local
ethical committee. Subjects placed their fingers in a Tripod
Device and maintained a steady level of hand stiffness,
as measured by surface EMG, while experiencing pertur-
bations provided by the KUKA lightweight robot (Figure
1). Subjects completed the first trial while relaxed and then
increased stiffness to low, medium, and finally high levels in
subsequent trials. The block of four trials was repeated three
times for a total of 12 trials. Each perturbation trial lasted
35 seconds and the experiment lasted less than an hour.

B. Tripod Device and Experimental Setup
The Tripod Device is an instrumented manipulandum

that can be grasped with three fingers and includes three
individual contact surfaces. Each contact surface consists of
a contact module rigidly attached to the structure of the ma-
nipulandum, through an interface engineered in Acrilonitrile-
Butadiene-Stirene (ABS) rapid prototyping material. Every
contact module consists of a cylindrical base in ABS (rigid
case, Young Modulus 1.4 GPa). To minimize structural
deformations, the core frame of the Tripod Device was built
in aluminium using a CNC (Computer Numerical Control)
machine.
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Fig. 2: Exploded drawing view of the Tripod Device and its main
features with dimensions in [mm].

A force/torque sensor (Series Nano 17 by ATI, Apex,
NC, USA) was positioned below the interface where each
contact module was attached to measure the force and
torque components applied by each finger. A finger-slot
was designed and fixed to each contact surface to minimize
the relative movements between the finger and the Tripod
Device. A fourth F/T sensor (Series Nano 45 by ATI, Apex,
NC, USA) placed at the base of the structure provided an
independent measure of the external wrench. An exploded
drawing view of the manipulandum with dimensions is
reported in Fig. 2.

The Tripod Device was mounted on the end-effector
of a 7-DOF robot arm: the KUKA lightweight robot
(KUKA/DLR). All force and displacement measures were
reported in the base reference frame of the KUKA. The
KUKA, which has a positioning repeatability of ±0.05mm,
was programmed to follow a planar random trajectory,
keeping constant the orientation angles of the end-effector
(roll, pitch, yaw), so that the Tripod Device remained parallel
to the ground and maintained the same orientation with
respect to the fixed frame (Figure 1). The subjects adopted
a tripod posture and inserted the index finger, the middle
finger, and the thumb in the dedicated finger-slots of the
Tripod Device. At each finger, the forces in response to the
position perturbation were measured by the contact point
F/T sensors described above. Surface EMG signals on the
forearm were measured and amplified with a Delsys-Bagnoli
16 (Delsys Inc.). The data acquisition and synchronization
interface between the KUKA controller, the four F/T sensors,
and the EMG acquisition board were developed in Microsoft
Visual C++ environment.

C. Protocol
Subjects were seated for the duration of the experiment.

Surface EMG electrodes were placed on the flexor digitorum
superficialis (FDS) and extensor digitorum communis (EDC)



muscles. To minimize cross-talk from neighboring muscles,
the electrodes were positioned following the methods
described by Perrotto et al. [18].

Each subject placed his thumb, index, and middle fin-
gertips in the finger-slots of the Tripod Device; his arm
was immobilized against a board at an angle to allow
the tripod grasp to be comfortably maintained parallel to
the ground, see Fig. 1. In a pre-trial, the KUKA did not
perturb the subject, and the subject was instructed to produce
maximum hand stiffness without applying any force to the
F/T sensors. The level of co-contraction produced in this
trial was used as an upper-bound for the co-contraction level
in subsequent trials. In the first trial, the subject remained
relaxed while the KUKA perturbed the subject following
the trajectory described above. In subsequent trials, while
the KUKA perturbed the hand, subjects were asked to
produce respectively a “low”, “medium” and “high” level of
stiffness without squeezing the Tripod Device; to help them
maintaining constant and coherent co-contraction levels,
subjects were provided visual feedback on the co-contraction
level and the visualized targets for the three conditions
corresponded roughly to 20, 40, or 60% of the maximum
level of co-contraction previously obtained. Subjects were
also instructed to prioritize stability of co-contraction level
over accuracy of targeted level; that is, subjects aimed to
keep a low standard deviation over producing a particular
mean co-contraction level. The block of four trials was
repeated three times for a total of 12 trials.

D. Data Analysis
To estimate the endpoint stiffness at each of the three

fingers, we adopted the same techniques used in [4] for the
arm. Following Perrault et al. [19] we applied continuous
stochastic perturbations for 35 seconds to the subject’s
fingers through the Tripod Device. The perturbations were
applied in x and y directions, with a peak-to-peak value of
10 mm in each direction and with a frequency spectrum
that was flat in the range of 0 to 6Hz and null elsewhere.
The first 5 seconds of data were discarded to allow the
subject to reach the required stiffness level.

For each finger, the multiple-input, multiple-output
(MIMO) dynamics of the endpoint stiffness were decom-
posed into four linear single-input, single output (SISO)
subsystems; the identification of each SISO subsystem was
performed in the frequency domain using a nonparametric
algorithm [20]. The endpoint inertia, viscosity and stiffness
matrices, I, B and K, where found by comparing each SISO
transfer function with a second order linear model of the
type:

Gi, j(s) = Ii, js+Bi, js+Ki, js, i, j = x,y.

The external wrench measured at the base of the Tripod
Device with the ATI Series Nano 45 force/torque sensor was
compared with the external wrench derived from the three
force-torque sensors placed under the fingers to verify that
the measurements were correct. The surface EMG signals
were acquired with a Delsys-Bagnoli 16 apparatus, sampled
at 750Hz, high-pass filtered at a cut-off frequency of 4 Hz
with a 4th order Butterworth filter and then rectified. Finally,

Fig. 3: x components of a typical endpoint displacement d(t)
and the resulting force F(t). F(t) and d(t) were used to estimate
the endpoint stiffness of the fingers by means of a nonparametric
algorithm in the frequency domain [20].
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Fig. 4: Example of Multiple Coherence function values for the five
subjects.

each rectified signal was low-pass filtered in order to obtain
its envelope. The average values of the EMG signals relative
to the FDS and EDC muscles, respectively p′ and p′′, were
calculated at each trial. The resulting level of co-contraction
(Lcc) was computed as:

Lccs,t =
1
2
(

p′s,t
p′s,max

+
p′′s,t

p′′s,max
)

Where s indicates the subject, t the trial number and p′s,max,
p′′s,max the maximum EMG values recorded respectively at
channel 1 and channel 2 of subject s.

III. RESULTS

Figure 3 shows the x component of a typical endpoint
displacement d(t) along with the x component of the result-
ing force F(t) measured at the index fingertip. To evaluate
the linear dependency of each output (forces) to all system
inputs (displacements), the multiple coherence indices were
computed on the obtained measurements. A strong linear
dependency of the inputs and the outputs was found in the
frequency range 0-6 Hz, as shown in the Figure 4; for this
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Fig. 5: Endpoint stiffness ellipses generated by Subject 1 during
four consecutive trials.

Fig. 6: Typical normalized EMG signals for three different targeted
stiffness levels. The data are relative to Subject 2.

reason the parameter estimation was performed in the same
range.

After estimating each stiffness matrix K, its symmetric
Ks and asymmetric Ka parts were extracted:

Ks =
1
2
(K +KT ) Ka =

1
2
(K−KT )

The error of approximation was computed as:

e =
||Ka||2
||Ks||2

,

obtaining a mean value ē≈ 0.07.
The eigenvalues λ1 and λ2 (with λ1 < λ2) of Ks and

the corresponding eigenvectors, v1 and v2, were computed.
In all of the examined cases, Ks was found to be positive
definite, with λ1 and λ2 real and greater than 0.

Figure 5 presents the endpoint stiffness ellipses that were
generated by one of the subjects during four consecutive
trials (with four different indications on the stiffness set-
point level). Stiffness ellipses are a consolidated method
of representing the endpoint stiffness. In the 2D case, the
major and minor axes of the ellipse represent respectively
λ2 and λ1, while the orientation θ of the ellipse is given
by the angle between v2 and the x axis. As expected, the
stiffness ellipse area (A = πλ1λ2) increases with increasing
targeted stiffness levels. On the other hand, the orientation

TABLE I: Average ellipse orientations for the four targeted
stiffness levels.

θ(◦) Finger Rest Low St. Medium St. High St.

Subject 1
I 8.1 10.3 0.2 5.7
M 12.1 14.6 15.5 15.6
T 10.6 14.0 14.2 19.1

Subject 2
I 20.8 22.4 24.1 −15.0
M 24.8 25.9 32.2 22.8
T 12.3 1.5 −6.1 0.5

Subject 3
I −1.6 3.1 4.1 4.1
M 28.2 7.5 2.3 3.2
T 5.4 11.4 2.5 −2.0

Subject 4
I 34.1 8.9 6.7 −11.6
M 27.3 15.6 20.5 24.7
T 27.3 23.5 22.0 22.9

Subject 5
I 15.3 13.5 15.5 16.7
M 15.2 18.1 −10.7 −25.7
T 13.7 20.3 23.3 −10.2

TABLE II: Average ratio λ1
λ2

of the ellipse axes for the four targeted
stiffness levels.

λ1
λ2

Finger Rest Low St. Medium St. High St.

Subject 1
I 0.13 0.09 0.19 0.25
M 0.27 0.31 0.27 0.23
T 0.19 0.14 0.16 0.17

Subject 2
I 0.41 0.34 0.31 0.30
M 0.37 0.26 0.22 0.19
T 0.22 0.17 0.20 0.30

Subject 3
I 0.22 0.19 0.17 0.16
M 0.51 0.29 0.26 0.32
T 0.48 0.44 0.32 0.20

Subject 4
I 0.61 0.43 0.61 0.58
M 0.07 0.32 0.42 0.40
T 0.23 0.31 0.40 0.46

Subject 5
I 0.14 0.14 0.18 0.21
M 0.18 0.25 0.33 0.19
T 0.17 0.23 0.26 0.40

θ , as well as the shape (here quantified with the ratio λ1
λ2

), of
the stiffness ellipse does not appear to be correlated with the
targeted stiffness levels. Table I reports the mean values of
the stiffness ellipses’ orientations corresponding to different
targeted stiffness levels. For each subject, the values are
distributed in three different rows I, M and T that correspond
respectively to the index finger, middle finger and thumb.
Following the same structure of Table I, Table II presents the
average ratio λ1

λ2
with respect to different targeted stiffness

levels.
To further investigate the behavior of the stiffness com-

ponents λ1 and λ2 at each finger, we used the measured
surface EMG signals from the FDS (channel 1) and EDC
(channel 2) muscles as an indicator of the global stiffness of
the hand. Figure 6 shows the filtered EMG signals acquired
from one of the subjects during three different trials. The
three trials corresponded to three increasing targeted stiffness
levels. Each signal was normalized to the maximum value
produced by the subject during the pre-trial phase for the



Fig. 7: Linear regression of normalized stiffness axes with respect to the level of co-contraction (Lcc). The graphs are relative to Subject
3.

TABLE III: Angular coefficients mi, f of the fitting lines along
with the average coefficient of determination R2 for each subject.

m1,I m2,I m1,M m2,M m1,T m2,T R2

Sub ject1 1.20 1.25 1.13 1.17 1.25 0.71 0.73
Sub ject2 1.19 1.18 0.93 0.96 1.11 0.61 0.86
Sub ject3 1.31 1.33 1.14 1.34 0.91 0.53 0.72
Sub ject4 0.88 0.74 0.45 0.67 0.70 0.50 0.42
Sub ject5 1.68 2.60 2.13 1.67 1.95 1.13 0.60

corresponding EMG channel.
The acquired EMG signals were used to compute the

level of co-contraction (Lcc) index for each trial. To measure
the correlation between the stiffness components at each
finger and the Lcc index, Pearson’s Correlation Coefficient
(PCC) was used. PCC produces a measure of the linear cor-
relation between two measures; it can range from −1 (total
negative correlation) to 1 (total positive correlation), with
0 indicating absence of correlation. The average correlation
coefficient obtained between λ and Lcc was:

PCC ≈ 0.81

For every subject, we then linearly fitted the normalized
values of λ1 and λ2 with respect to Lcc. A total of six
fittings were performed for each subject (two per finger) by
implementing least-squares regression to find the coefficients
mi, f and qi, f in the following equation:

λi, f

λ
MAX

i, f
≈ mi, f Lcc+qi, f i = 1,2

where f = T, I,M indicates thumb, index or middle finger,

respectively, and λ
MAX

i, f is the maximum value of λi, f among
the 12 trials. The results for one of the subjects are presented
in Figure 7. The slopes of the fitting lines for each subject
along with the mean coefficient of determination R2 are
given in Table III.

IV. DISCUSSION

The experimental results corroborate the feasibility of a
generalized mapping between the EMGs recorded from the
forearm and the hand stiffness.
Since the aim of this work was not the generation of an
accurate model of hand stiffness control but instead to
move a step towards the design of more natural and better
performing control interfaces for hand prostheses and tele-
operation, we focused only on the relationship between the
hand stiffness and the FDS and EDC muscles. In particular,
we represented the endpoint stiffness of the fingers with
stiffness ellipses and found that their area increased with
respect to increasing levels of co-contraction Lcc, while their
orientation and shape did not seem to be related to Lcc.
In fact, the variation of θ and λ1

λ2
across trials as seen in

Table I and II does not appear to depend on the requested
stiffness level; this conjecture is supported by the studies on
the human limb stiffness, which state that the orientation and
shape of the endpoint stiffness ellipses is mainly determined
by posture [21].

In general, the endpoint stiffness of the thumb, index
and middle fingers was found to increase when the level
of co-contraction Lcc increased. Furthermore, the results
of the linear fittings (Table III) show that, not only the
relationship between stiffness and Lcc was nearly linear, but
also that, with the exception of m2,T , the slopes of the fitting
lines tended to maintain a similar value within the same



subject. This result is very important because it highlights a
tendency of the fingers to stiffen in a coordinated way that is
also proportional to the level of co-contraction of the EDC
and FDS muscles. However, in order to produce a simple
but efficient generalized mapping between hand stiffness
and co-contraction, further studies should be conducted.
In particular, in this work we focused on the relationship
between co-contraction and hand stiffness in absence of grip
force. The subjects were in fact asked not to produce any
grip force and, by checking the force/torque measurements,
we found that the request was fulfilled in all the trials with
the exception of Subject 4 and Subject 5 during the high
stiffness condition. This simplification was made in order to
better understand the role of co-contraction in the control of
hand stiffness, but we believe that the mapping will not be
applicable in real tasks unless it will also take into account
the possibility of the exertion of grip forces.

V. CONCLUSIONS

We have presented an approach for the characterization
and mapping of the hand stiffness. To the best of our knowl-
edge, this is the first work that analyses the relationship
between co-contraction of the FDS and EDC muscles and
the endpoint stiffness of thumb, index and middle finger; the
results suggest that, while the shape and orientation of the
stiffness ellipses are mainly influenced by the hand posture,
there is a nearly linear relationship between the level of co-
contraction and the length of the ellipses’ axes. Furthermore,
by normalizing the endpoint stiffness components of each
finger, we were able to identify a rate of growth between the
stiffness components and the level of co-contraction that had
little variations among different fingers of the same subject.
These results show the feasibility of a generalized mapping
between the EMGs recorded from the FDS and EDC muscles
and the hand stiffness. Such a mapping could be applied to
many disciplines of robotics; in particular, it could allow
the design of more natural and efficient control schemes for
upper limb prostheses.
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