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Abstract— In this paper, we present a method to reconstruct
the configurations of kinematic trees of rigid bodies not using
measurements of relative angles (such as, e.g. rotary encoders at
joints) but absolute posture sensors (such as IMUs) along with
suitable filter algorithms. We argue that the relatively larger
inaccuracies shown by absolute sensors can be compensated by
suitable processing, such as a passive complementary filters ex-
ploiting the Mahony-Hamel formulation. The proposed method
is applicable to systems where measurements of relative angles
is not feasible or convenient, or where the joint kinematics
are not lower pairs: for example, human body parts or soft
robotic devices. In the paper, we make explicit reference to
the reconstruction of posture of the compliant, underactuated
Pisa/IIT SoftHand. Quantitative comparisons with ground truth
data in grasping tests are used to validate the proposed method.
The resulting hardware design is mechanically robust, cheap
and can be easily adapted to robotic hands with different
structures, as well as to sensorizing gloves for studying human
grasping strategies.

I. INTRODUCTION

In robotics textbooks and in the vast majority of robotics
papers, forward kinematics of serial and tree-like structures
is usually formulated as if perfect knowledge of the geometry
of (technical) joints connecting the manipulator links is
assumed, and the direct measurement of successive joint
variables is always possible and can be realized with no
effort [1]. Consider, with reference to Fig. 1, a kinematic
chain composed only by revolute joints: in this case, like
suggested from Fig. 1 (a), it is sufficient to measure the joint
configuration Q = (S1× ·· · × S1), provide each entry to a
pre-defined SE(3) template matrix (which varies according
to the parametrization chosen, e.g., D.-H., P.O.E., and so
on), and assemble the obtained matrices via standard matrix
product to obtain the Cartesian configuration C= (SE(3)×
·· ·×SE(3)).

In most robotic structures, where the limb geometry is
known with high accuracy and the joint kinematics are
simple, this is without doubts the most effective approach —
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Fig. 1. Sensorization methods: (a) classical joint angle measurements, (b)
direct measurements, (c) intermediate method (the one we propose).

optical or magnetic encoders, or potentiometers are employed
in these cases.

A different approach with respect to the one previously
described is depicted in Fig. 1 (b), and normally adopted in
biomechanics [2]. Here, due to the essential non existence of
technical joints that connect biological limbs, the only viable
method is usually a direct sensorization of each limb (e.g.,
via optical markers and/or magnetic and inertial devices,
“strap down” to the greatest extent to the underlying bone)
in sufficient number so that the direct extraction of the
SE(3) pose of each limb, assumed as rigid, is performed.
In this manner, the Cartesian configuration C = (SE(3)×
·· ·× SE(3)) is directly obtained. The goal is here, mostly,
the definition of the simplest assembly of technical joints
that best reproduces the animal or human joint motion [3],
and correlate motion patterns to functional status levels for
clinical studies [4]. However, high-costs, marker losses due
to frequent occlusions (especially when tracking hands) and
the need of working in a controlled environment (many
cameras are needed) render this method inapplicable if a
low-cost, non-invasive system has to be devised.

In this paper, we present an approach to reconstruct
the pose of serial kinematic chain that aims at reconciling
the two previously described, and could be defined as an
intermediate way of tackling the problem, see Fig. 1 (c).
Inspired by (b), we sensorize each link of the chain with
an Inertial Measurement Unit (IMU), thus estimating its
orientation via the corresponding SO(3) attitude matrix.
These measurements provide use with the global attitude
configuration Ca = (SO(3)×·· ·×SO(3)). Then, we exploit
a mild knowledge about the underlying kinematic topology
— mostly the number of DoFs at each joint and the link
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geometry, while the directions of the joint axes are negotiated
with the data — to estimate (solving an inverse problem)
Qa = (S1×·· ·×S1) and, finally, arrive at the global SE(3)
pose of each link, thus obtaining (like in (a)) the Cartesian
configuration C= (SE(3)×·· ·×SE(3)).

Even if the methodology presented in this work can be
adapted to any tree-like structure, we refer, in the unfolding
of the procedure, to the to the problem that motivated us
towards this study: reconstructing the posture of a compli-
antly underactuated robotic hand and, in particular, the hand
developed in our lab, the Pisa/IIT SoftHand [5].

In fully sensorized (and actuated) robotic hands, like the
DLR-HIT Hand II [6], the UB Hand3 [7], and the iCub
Hand [8], direct measurement of each joint angle is possible.
However, high cost is paid to this sake in terms of large
dimensions, heavy weight, weakness to external shocks or
to magnetic fields — in those cases where encoders or
potentiometers are employed.

In recent years, a novel design paradigm of compliantly
underactuated robotic hands has been developed giving rise,
among many others, to the Pisa/IIT Softhand [5]. Even if
this hand is pretty robust and easily controllable, on the other
side it has no joint position sensors, which could hinder it
from widespread use when feedback control is requested.
One exemplar case is during interaction with the environment
in recognizing or reconstructing the shape of an object when
robotic hand fingers are used as haptic probes: this allows to
provide a complementary sensory modality to support vision
in unstructured and cluttered environments.

In this hand, the complex kinematics (epicycloidal motion)
of one phalanx w.r.t. the next, introduced via the modular
design of roll-articular joints (directly realized via two geared
sectors in direct mesh), and the presence of pulleys, tendons
and elastic bands, does not allow to use encoders or similar
devices to measure joint angles. This motivated us to find
alternative ways to solve the problem.

The same approach can be applied also in the general
setting of human hand posture reconstruction. In this case,
gloves are widely employed as, for example, the CyberGlove
[9], the Super Glove [10], the Humanglove [11], and Color
Glove [12], to mention but a few (for a detailed survey see
[13]). In gloves as well, many problems are related to the
types of sensors employed, as, in many cases, they need a
long calibration phase, they are fragile (both mechanically
and in terms of output reliability) or, simply, because they
are not cost effective.

In this work, to tackle the joint sensorization problem we
present a general framework to measure the angular position
of revolute joints (also valid for higher-pair joints and non-
technical joints) which is suited both for robotic and human
hands: the hardware ingredient are the inertial measurement
units (IMUs), while the underlying algorithm is a tailored
version of the passive complementary (Mahony) filter [14].

As well known, IMUs are micro electro-mechanical sys-
tems (MEMS) composed by one or more inertial sensors.
IMUs are widely employed in general industry and aerospace
industry for GPS guidance systems, in vehicles [15] and in

particular in unmanned aerial vehicles (UAVs) [16]. More-
over, IMUs are also employed to stabilize camera devices
[17], to reconstruct human gestures [18] or human walk
[19], to reconstruct athletic movements [20], [21], [22] and
in entertainment field to develop game controllers [23].

This document is organized as follows: section II states
the attitude estimation problem via inertial measurements;
section III briefly recalls the Mahony filter basics; section
IV describes the method for reconstructing joint angle posi-
tions form IMU measurements, while section V reports on
the experiments for the validation of the model presented.
Finally, conclusions are drawn in section VI.

II. INERTIAL MEASUREMENTS

Generally, IMUs are classified based on the number of
measurement axes. Thus, for example, an IMU with 3 axis
accelerometer, 3 axis magnetometer and 3 axis gyro has 9
axes, aka 9 DoF (Degrees of Freedom).

Each measured triplet (components of a three-component
vector) is referred to a body frame {B} “strap down”
(attached) to the IMU, which is in generic motion w.r.t. an
inertial frame {A}. In this work, we call R = Rab the rotation
matrix describing the “displacement” from frame {A} to
frame {B} (coordinate transformation from {B} components
to {A} components).
Accelerometer: measures the instantaneous acceleration of
{B} w.r.t {A}. The measurement a is derived from the linear
acceleration (v̇) of the origin of {B} minus the gravitational
acceleration vector g0, both expressed in {A}. The accelera-
tion measurement a (in {B}) is therefore

a = RT (v̇−g0)+ba +µa, (1)

where ba and µa model measurement bias and noise, re-
spectively. In many robotic applications, the generic linear
accelerations of the links are negligible w.r.t. the gravita-
tional acceleration. Therefore, the linear acceleration can be
considered influenced only by bias and noise by rewriting
Eq. (1) as

a = RT g0 +ba +µa. (2)

If only the direction of the gravity field is needed, it is
possible to write

va =
a
|a|

. (3)

Magnetometer: measures the magnetic field (m) in {B}.
Therefore, the relation with the inertial frame components
Am is given by

m = RT (Am)+bm +µm (4)

where Am is the Earth magnetic field in the inertial frame
{A}, while bm and µm are bias and noise on the measure-
ments, respectively. In case of magnetic sources close to the
IMU, noise can be very significant. As for the accelerometer,
if only the direction of the magnetic field is needed, it is
possible to write
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vm =
m
|m|

. (5)

Rate Gyro: measures angular velocity Ωr of the frame {B}
w.r.t {A} expressed in {B},

Ωr = Ω+b+µ (6)

where Ω is the true angular velocity (again in {B}), while
b and µ are bias and noise, respectively.

III. THE MAHONY-HAMEL FILTER

In this section we briefly recall a discrete version of a
passive complementary filter presented in [14]. Let {A} be
the inertial reference frame and {B} the local IMU frame
which has unknown orientation w.r.t. {A}. The purpose of
the filter is to find the rotation matrix Rab = R, or rather the
matrix that describes the orientation of frame {B} w.r.t. {A}
from the IMU istantaneous measurements.

The filter builds up an instantaneous algebraic measure-
ment of the rotation matrix Ry as the solution of the following
optimization problem

Ry = arg min
R∈SO(3)

(λacc|v∗a−Rva|2 +λmag|v∗m−Rvm|2)≈ Rab,

(7)
where v∗a and v∗m are the measurements of gravity and
magnetic field in {A}, respectively, while va and vm are
the IMU’s instantaneous measurements in {B}. λacc and
λmag are just weights (i.e., adjustable parameters) chosen on
the basis of the relative confidence in sensor outputs. The
optimization problem (7) has three degrees of freedom and,
depending on the particular configuration, it cannot be easily
solved. Furthermore, without the magnetometer, particular
IMU configurations cannot be recovered (rotations around
the gravity vector).

Starting from these considerations, the idea of the filter is
to have an estimate of the rotation matrix based on previous
estimates: in this manner it is always possible to estimate
the rotation matrix, also in case of momentary loss of data
from the IMU.

Calling R̂ an estimate of the true rotation matrix R w.r.t.
a reference frame denoted with {E}, it is possible to state
that if R̂∼= R, {A} and {E} coincide.

Now, defining an estimate of the error matrix as R̃ = R̂T R,
we can notice that if the estimation matrix is close to the
true one, the matrix R̃ is close to the identity. The goal of
the filter is to provide a set of dynamic equations for the
estimated matrix R̂(t) ∈ SO(3) that drive the error rotation
matrix closest to identity, i.e. R̃→ I3.

Starting from the correct kinematics

Ṙ = RΩx, (8)

where Ω is the rate gyros in {B} while “x” is the skew
operator such that

Fig. 2. Block diagram of the simplified form of the passive complementary
filter

Ω =

 Ω1
Ω2
Ω3

 , Ωx =

 0 −Ω3 Ω2
Ω3 0 −Ω1
−Ω2 Ω1 0

 , (9)

the filter kinematics is composed by: (i) a prediction term
based on the measurement Ω, and (ii) a correction term ω :=
ω(R̃) derived from the error matrix R̃, which can be rewritten
in the inertial frame becoming

˙̂R = (RΩ+ kpR̂ω)xR̂, R̂(0) = R̂0, (10)

where kp > 0 is a positive gain to guarantee the filter con-
vergence. The expression in Eq. (10) expresses the dynamics
of a generic complementary filter on SO(3). In this work, we
use the Passive Complementary Filter (PCF), where also the
prediction term depends on the filtered attitude R̂, instead of
R. In this manner, the filter dynamics become

˙̂R = (R̂Ω+ kpR̂ω)xR̂. (11)

The ω in the correction term in (10) and (11) depends on
(R̃) and it is defined as

ω := vex(Pa(R̃)), (12)

where vex is the anti-skew operator, while P is the anti-
symmetric projection operator in the square matrix space.
This last choice allows us to write the PCF dynamics in the
IMU local frame {B}, resulting in

˙̂R = R̂(Ωx + kpPa(R̃)). (13)

Fig. 2 shows the block diagram of the passive complementary
filter.

As in Bastelseiten work [24], we implemented a discrete
version of the passive complementary filter considering the
correction term in Eq. (12) as a PI controller. In algorithm
1, we detail the steps followed to apply a discrete version of
the complementary filter to measurements coming from a 9
DoF IMU and obtain its instantaneous attitude matrix.

Here, Kp and Ki are the proportional and the integral
coefficients of the PI regulator, respectively. In Algorithm
1, step no. 11, a new estimation of the rotation matrix is
calculated as the sum of the previous one with a matrix
depending on a correction term. This strategy allows to
overcome to problem caused by loss of data from the IMU
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Algorithm 1 Discrete Filter Version at nth step
1: Reading the current values of the accelerometers (a′bn

),
magnetometers (m′bn

) and gyro rates (Ωbn ) in the local
IMU frame {B}

2: Normalizing gravity and magnetic field vector read from
IMU abn =

a′bn
|a′bn
| , mbn =

m′bn
|m′bn
|

3: Determining the gravity vector in {B} from the current
attitude estimate and normalized gravity vector in the
reference frame (daccn = RT

n−1aan )
4: Determining the magnetic field vector in {B} from the

current attitude estimate and the normalized magnetic
vector in the reference frame (dmagn = RT

n−1man )
5: Calculating the gravity vector error eaccn = abn ×daccn

6: Calculating the magnetic vector error emagn = mbn ×
dmagn

7: Summing the two error vectors premultiplied by their
weights en = λacceaccn +λmagemagn

8: Computing the contribution of the integrator In = In−1+
Ki

1
∆t en

9: Computing the correction term δωn = Kpen + In
10: Computing the new gyro rates ωn = δωn +Ωbn and its

skew
11: Computing a first estimatation rotation matrix Ren =

Rn−1 +Rn−1ωnx ∆t
12: Computing the new rotation matrix Rn from the first

estimation matrix Ren

but does not guarantee that the obtained matrix Ren ∈ SO(3):
therefore, a further step is required. At the step no. 12, as
shown in [25], a new marix Rn ∈ SO(3) closest to Ren (in
Frobenius norm) is computed minimizing the following cost
function:

||Rn−Ren ||F =
√

Tr((Rn−Ren)
T (Rn−Ren)), (14)

where Tr is the matrix trace operator. The solution of (14)
is equivalent to maximizing the trace of the matrix RT

n Ren .
This leads to Rn ∈ SO(3) as given by

Rn =U

 1 0 0
0 1 0
0 0 σ

V T , (15)

where U and V T are, respectively, left- and right- (orthog-
onal) eigenvector matrices of Ren (from its singular value
decomposition Ren = UΣV T ), while σ = det(UV T ). This
guarentees that det(Rn) = 1.

A. IMU Orientations

As previously described, each sensor on board the IMU
returns a measurement in the IMU-fixed-frame, with respect
to the inertial frame. Now, if we consider two different IMUs
(IMU1, IMU2), along with their frames {B1} and {B2},
they will return two sets of measurements (r1,r2) w.r.t. a
common inertial frame. Applying PCF to r1, we will obtain
a rotation matrix Rab1 = R1. Analogously, from r2 we will

Fig. 3. Simple structure with two link connected by a revolute joint

obtain Rab2 = R2. Trivially, the rotation matrix Rb1b2 = R12
expressing attitude {B2} w.r.t. {B1} is given by

R2 = R1R12 ⇔ R12 = RT
1 R2, (16)

It is possible to show that using the two sets of measures
(r1,r2) in a suitable way, the PCF directly returns R12 —
which is what we are interested in hand pose estimation.The
PCF computes, in a stepwise fashion, the new estimate of
the rotation matrix from the previous one and a new gyro
rate correction term as

Rn = Rn−1 +Rn−1ωnx ∆t; ωn = δωn +Ωn. (17)

Considering the orientation between the two IMUs, the
rotation matrix Rn in (17) becomes R12n . In (17), the gyro rate
correction term ωn is composed by the gyro rates Ωn at the
step nth and by the gyro correction term δωn that depends by
the error in the previous rotation matrix estimation. The gyro
rates read from the IMU its the angular velocity w.r.t. inertial
frame: therefore, if we are interested in the orientation of
the frame {B2} with respect the frame {B1}, we will be
interested in the angular velocity of the frame {B2} w.r.t.
frame {B1}. We will then employ Ω21n given by

Ω21n = Ω2n −Ω1n . (18)

As for the gyro correction term, this is given by the error on
the estimated rotation matrix at the nth step from the values of
the gravity and the magnetic field in the inertial frame. Now,
if we are interested in the relative rotation matrix between
two IMUs, this will depend on the gravity and magnetic
fields read in the IMUs local frames {B1} and {B2} so that

eaccn = ab1n ×RT
12n

ab2n (19)

emagn = mb1n ×RT
12n

mb2n . (20)
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To wrap up, the PCF is able to return an estimation of the
orientation between two frames in space knowing the gravity
and the magnetic field values in the frames and the relative
angular velocity between these ones. In Algorithm (2), we
report a modified version of Algorithm (1) that directly
outputs the rotation matrix between two local frames {B1}
and {B2} “strap down” to two IMUs (IMU1, IMU2).

Algorithm 2 Two IMUs Orientation Filter Version at nth step
1: Reading the current values of the accelerometers (a′b1n

,
a′b2n

), magnetometers (m′b1n
, m′b2n

) and gyro rates (Ωb1n ,
Ωb2n ) in the two IMUs frames ({B1}, {B2}).

2: Normalizing gravity and magnetic field vector read from
IMUs

ab1n =
a′b1n

|a′b1n
|
,ab2n =

a′b2n

|a′b2n
|
,mb1n =

m′b1n

|m′b1n
|
,mb2n =

m′b2n

|m′b2n
|

3: Determining the gravity vector in {B2} from the current
attitude estimate and gravity vector read in the {B1}
frame (daccn = RT

12n−1
ab1n )

4: Determining the magnetic field vector in {B2} from the
current attitude estimate and the magnetic vector read in
the {B1} frame (dmagn = RT

12n−1
mb1n )

5: Calculating the gravity vector error eaccn = ab2n ×daccn

6: Calculating the magnetic vector error emagn = mb2n ×
dmagn

7: Summing the two error vectors premultiplied by their
weights en = λacceaccn +λmagemagn

8: Computing the contribution of the integrator In = In−1+
Ki

1
∆t en

9: Computing the correction term δωn = Kpen + In
10: Computing the relative gyro rates Ωn = Ωb2n −Ωb1n
11: Computing the new gyro rates ωn = δωn +Ωn
12: Computing a first estimation rotation matrix Ren =

R12n−1 +R12n−1ωnx ∆t
13: Computing the new rotation matrix R12n from the first

estimation matrix Ren

IV. JOINT ANGLES VALUES FROM ROTATION MATRIX

Considering that, in most cases, robotic and human rev-
olute joints have maximum range less than 180◦, (as an
example, for the DLR-HIT Hand II the range is about
80◦, for the Pisa/IIT Softhand less than 120◦) it can be
convenient to combine elementary rotations for representing
general orientations. In this work, we use a Roll-Pitch-Yaw
representation, thus allowing a generic rotation matrix R to
be written as

R =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

= Rz(ϕ)Ry(θ)Rx(ψ) =

=

 cϕ cθ −sϕ cψ + cϕ sθ sψ sϕ sψ + cϕ sθ cψ

sϕ cθ cϕ cψ + sϕ sθ sψ −cϕ sψ + sϕ sθ cψ

−sθ cθ sψ cθ cψ

 ,
(21)

where cx = cos(x) and sx = sin(x). Considering θ ∈
(−π/2,π/2) ⇒ cos(θ) > 0 and from (21) it is possible
compute the three angle values as

ϕ = arctan
( r21

r11

)
θ = arctan

(
−r31√
r2
32+r2

33

)
ψ = arctan

( r32
r33

) (22)

In many robotic structures, as an example structure shown
in Fig. (3), a single revolute joint (one DoF) is present
between two links. In a robotic or human hand, there is
a simple revolute joint between distal and middle phalanx
as well as between middle and proximal phalanx. In these
particular cases, it is possible consider a simplified version
of the rotation matrix with a further reduction of calculations
complexity. With reference to the structure shown in Fig. 3,
between the links, then between the two IMUs, one 1-DoF
revolute joint is present and its revolute axis is parallel to
the x axis of IMU1 and IMU2. Then, IMU2 with respect to
IMU1 can only rotate about its x axis and the rotation matrix
obtained from data read from IMUs and PCF should be a
simple rotation about the x axis, as follows

R =

 1 0 0
0 r22 r23
0 r32 r33

=

 1 0 0
0 cψ −sψ

0 sψ cψ

 , (23)

and the joint angle value should be trivially given by

ψ = arctan
(

r32

r33

)
, (24)

Calculation complexity is reduced to solution of an arctan-
gent function.

In real robot however, it is impossible to obtain a rotation
matrix as in (23). In fact, due to tolerances in the IMU
costruction process, or simply in mounting IMUs on the
links, it is very difficult to perfectly align IMU frames. As
an example, referring to the structure shown in Fig. (3),
and considering R = Rz(ϕ)Ry(θ)Rx(ψ), it is not possible to
obtain from PCF ϕ = 0 and θ = 0.

Therefore, between two robotic links in the robot zero
configuration (all joints being in zero position) there are
always three offset angles ϕo,θo,ψo 6= 0. Offset angles due to
mechanical inaccuracies are time constant and independent
from the robot configuration, so it is always possible compute
an offset rotation matrix between two links and then consider
this one in the further joint angles value calculations.

From these considerations, in order to obtain more accu-
rate values in the joint angles reconstruction procedure, we
consider for each couple of links two different phases: (i)
initialization phase, perfomed once at starting conditions,
where the robot is in its zero configuration, and PCF is
applied to all IMUs couples to obtain all offset rotation
matrix Ro; (ii) operative phase, perfomed every time step,
where PCF is applied to all IMU pairs during free robot
movements, to obtain the on-line rotation matrix estimate
Rn.
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In the operative phase, the exact joint angles values are
computed from the current rotation matrix estimate obtained
from the PCF. This one is given by two matrices: one due
to mechanical precision Ro, and a second one due to joint
angles variations R jn as

Rn = RoR jn and R jn = RT
o Rn. (25)

In this manner, R jn depends only on the joint angles values.
By applying equations shown in (25), the computation of
joint angle values is an easy process. If, on the one hand,
management of offset angles increases the computational
burden (a matrix product per IMU pair is required), one
the other hand it guarantees higher precision and greater
reliability of the calculations.

V. EXPERIMENTAL RESULTS

To test the IMUs and PCF joint angles reconstruction, the
gripper reported in Fig. 4 (a) was built. This is composed
by a plastic frame and two fingers of the PISA/IIT SoftHand
(see also [5] for more details). Fingers are composed by
three revolute Hillberry’s (roll-articular) joint (see Fig. 4
(c) and [26] for further details) while we consider that a
spherical joint (virtual wrist) is connecting the palm to a
fixed (laboratory) frame. Overall, the gripper configuration
depends on nine joint angles. We model the rolling contact
joint with two revolute joints, with same joint angles q/2,
coupled by a virtual link.

For the sensorization of the gripper we used seven IMUs:
three for each finger, and one for the palm. Applying the
PCF to data read by IMU1 and IMU2 we compute q1 and
from data of IMU2 and IMU3 we compute q2. In the same
manner, by applying the PCF to IMU1 and IMU3 we compute
the angle q∗ = q1 +q2.

In these tests we employed 6-DoF IMUs composed by
three axis accelerometer and three axis gyroscope, without
the 3-DoF magnetometer. Thus, it is not possible to measure
the palm yaw angle φ and, in the case palm angle is not
zero, (ψ 6= 0), it is not possible to compute the exact joint
angles values for finger joints.

IMUs employed are MPU6050 sensors from InvenSense
(see also [27] for more details), with refresh frequency of
1 kHz, power supply of 3.3 V and operating current of
3.7 mA. MPU6050’s support digital serial communication
in fast mode I2C (400 kHz). Each IMU is connected and
communicates with an Arduino Micro board [28]. On line
visualization of the gripper posture is programmed with ROS
(Robot Operating System) [29]. Figs. 5, 6, 7 and 8, show
the real gripper during experiments and its resultant posture
reconstruction in ROS. In particular, Fig. 5 shows the gripper
rest configuration during the initialization phase. This is the
zero position of each joint angle value, (i.e qn = 0), and
the PCFs are applied to obtain the offset rotation matrices.
Figs.6 and 7 show the gripper and its ROS avatar in two
different positions, while Fig. 8 show the roll and pitch
reconstruction of the gripper with respect the inertial frame
obtained applying the PCF to IMU7.

ThimbleSense

FSR400

Control Board

(a) Gripper

(b) IMUs Positions

(c) Hillberry’s Joint

Fig. 4. Gripper setup and its main features for the proposed experiments.
In (a) we report the gripper used to test the joint angle calculation procedure
while in (b) theCAD representation 2-fingered gripper built out of the
Pisa/IIT SoftHand fingers (Details on the: joint angle taxonomy, positioning
of the IMUs on the phalanxes and the frame palm, components). Finally, in
(c) we point out the schematic illustration of the generic Pisa/IIT SoftHand
finger roll-articular joint.

A. Posture Validation

In order to validate the gripper postures we employ
FTR400 mono axial force sensors (from Interlink Electron-
ics) to discriminate which link of the gripper is in contact
with a grasped object. Moreover, in order to detect contact
points and related forces on the gripper fingertips, we fix
on the fingertips of the gripper the ThimbleSense (for more
details see [30]), properly modified for fitting the current
design (see also Fig. 4(a) for more details). In this manner,
we are able to detect which link is in contact with the grasped
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Fig. 5. On the left: gripper in its zero configuration; on the right: on-line
reconstruction of the gripper pose in ROS.

Fig. 6. On the left: gripper closing in free air; on the right: on-line
reconstruction of the gripper pose in ROS.

Fig. 7. On the left: gripper phalanx pushed by an external force; on the
right: on-line reconstruction of the gripper pose and force applied in ROS
(methodology for force measurement not described in this paper).

Fig. 8. On the left: gripper undergoing a roll and pitch angle rotations; on
the right: on-line reconstruction of the gripper pose in ROS.

object and, in addition, to measure forces at contact points
(see also Fig. 10).

Considering that the FTR400 and ThimbleSense sensors
are rigidly connected to the phalanges, and knowing the grip-
per posture with the algorithm here presented, it is possible
to indirectly validate the quality of posture reconstruction.

First, we compute the best fit circle to the contact points
measured, and then we compare its radius with the ground
truth value.

In Fig. 9, we report the validation experiments: the gripper
grasps three circular object with radii of 24.5 mm, 32.5
mm and 41.5 mm, respectively. Reconstruction results are
reported in Table I. It is possible to notice that the small error
on the radius value implies good posture reconstruction.

R1
R2

R3

R1=24.5 mm R2=32.5 mm R3=41.5 mm

Fig. 9. Gripper during validation tests. From left to right: the gripper
grasps three different circular objects with radii of 24.5 mm, 32.5 mm and
41.5 mm, respectively.

Fig. 10. Example of contact points and contact forces applied by the hand
to the object during the grasp of circle with radius 41.5 mm.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we described a fast and accurate method to
estimate joint angle values of a robotic hand, using low-cost
IMU sensors and a passive complementary filter (Mahony’s
passive filter). Two versions of the estimation algorithm were
presented that allow also to directly estimate the relative
attitude of the IMUs attached to subsequent links of a serial
kinematic chain. The overall architecture was tested on a
gripper composed by roll-articular joints extracted from the
Pisa/IIT SoftHand modular fingers. Satisfactory results were
obtained in terms of time response, reconstruction accuracy
and low computational cost. Future work will address the full
sensorization of Pisa/IIT SoftHand: this will allow to exploit
its compliance properties not only for grasping objects, but
also to use it as an adaptive haptic probe to provide touch
sensor capabilities in support for multi-modal perception of
unstructured and cluttered environments.
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Object R [mm] R∗ [mm] % Error C.P.
1 24.5 24.45 0.2 4
2 32.5 31.84 2 4
3 41.5 40.88 1.4 5

TABLE I
RECONSTRUCTION OF THE RADII OF THE TEST DISKS. R INDICATES THE

RADIUS OF THE GRASPED OBJECT, R∗ THE ESTIMATED RADIUS, %
ERROR THE PERCENTAGE ERROR BETWEEN R AND R∗ , RESPECTIVELY.
C.P. (CONTACT POINTS) SHOWS THE NUMBERS OF ACTIVE CONTACTS

BETWEEN THE GRIPPER AND THE OBJECTS IN THE GRASPS.

search Council under the ERC Advanced Grant no. 291166
SoftHands (A Theory of Soft Synergies for a New Gen-
eration of Artificial Hands), and under grant agreement
no. 601165 Wearhap (Wearable Haptics for Humans and
Robots), within the FP7/2007-2013 program: Cognitive Sys-
tems and Robotics.

REFERENCES

[1] R. M. Murray, Z. Li, and S. Sastry, A Mathematical Introduction to
Robotic Manipulation. Boca Raton, FL: CRC Press, 1994.

[2] A. Cappozzo, F. Catani, U. Della Croce, and A. Leardini, “Position
and orientation in space of bones during movement: Anatomical frame
definition and determination,” Clinical Biomechanics, vol. 10, no. 4,
pp. 171–178, 1995.

[3] L. Lucchetti, A. Cappozzo, A. Cappello, and U. Della Croce, “Skin
movement artefact assessment and compensation in the estimation of
knee-joint kinematics,” Journal of Biomechanics, vol. 31, no. 11, pp.
977–984, 1998.

[4] L. Balzini, L. Vannucchi, F. Benvenuti, M. Benucci, M. Monni,
A. Cappozzo, and S. Stanhope, “Clinical characteristics of flexed
posture in elderly women,” Journal of the American Geriatrics Society,
vol. 51, no. 10, pp. 1419–1426, 2003.

[5] M. G. Catalano, G. Grioli, E. Farnioli, A. Serio, C. Piazza, and
A. Bicchi, “Adaptive synergies for the design and control of the pisa/iit
softhand,” The International Journal of Robotics Research, vol. 33,
no. 5, pp. 768 – 782, April 2014.

[6] H. Liu, K. Wu, P. Meusel, N. Seitz, G. Hirzinger, M. H. Jin, Y. W. Liu,
S. W. Fan, T. Lan, and Z. P. Chen, “Multisensory five-finger dexterous
hand: The dlr/hit hand ii,” in Conf. on Intelligent Robots and Systems.
IEEE, 2008.

[7] F. Lotti, P. Tiezzi, G. Vassura, L. Biagiotti, G. Palli, and G. Melchiorri,
“Develpment of ub hand 3: Early results,” in Conf. on Robotics and
Automation. IEEE, 2005.

[8] A. Schimitz, U. Pattaccini, N. Nori, L. Natale, G. Metta, and G. San-
dini, “Design, realizatin and sensorization of the dexterous icub hand,”
in Conf. on Humanoid Robots. IEEE, 2010.

[9] “Cyberglove,” online; accessed 25-September-2014. [Online].
Available: http://www.cyberglovesystems.com/

[10] J. LaViola, “A survey of hand posture and gesture recognition tech-
niques and tecnology,” Brown University, Tech. Rep., June 1999.

[11] “Humanware,” online; accessed 25-September-2014. [Online].
Available: http://www.hmw.it/

[12] M. Schröder, C. Elbrechter, J. Maycock, R. Haschke, M. Botsch,
and H. Ritter, “Real-time hand tracking with a color glove for the
actuation of anthropomorphic robot hands,” in Conf. on Humanoid
Robots. IEEE, 2012.

[13] L. Dipietro, A. Sabatini, and P. Dario, “A survey of the glove-based
system and their applications,” IEEE Transactions on System, vol. 46,
no. 4, pp. 461 – 482, July 2008.

[14] R. Mahony, T. Hamel, and J. Pflimlin, “Nonlinear complementary filter
on the special orthogonal group,” IEEE Transactions on Automatic
Control, vol. 53, no. 5, pp. 1203 – 1218, June 2008.

[15] Y. Wang, J. Mangnus, D. Kostic, H. Nijmeijer, and S. T. H. Jansen,
“Vehicle state estimation using gps/imu integration,” in Conf. on
Sensors. IEEE, 2011.

[16] C. V. Angelino, V. R. Baraniello, and L. Cicala, “High altitude uav
navigation using imu, gps and camera,” in Conf. on Information
Fusion. IEEE, 2013.

[17] G. Panahandeh and M. Jansson, “Imu-camera self-calibration using
planar mirror reflection,” in Conf. on Indoor Positioning and Indoor
Navigation. IEEE, 2011.

[18] M. T. Wolf, C. Assad, M. T. Vernacchia, J. Fromm, and H. L. Jethani,
“Gesture-based robot control with variable autonomy from the jpl
biosleeve,” in Conf. on Robotics and Automation. IEEE, 2013.

[19] S. K. Kim, S. Hong, and D. Kim, “A walking motion imitation
framework of a humanoid robot by human walking recognition from
imu motion data,” in Conf. on Humanoid Robots. IEEE, 2009.

[20] A. Waegli, S. Guerrier, and J. Skaloud, “Redundant mems-imu inte-
grated with gps for performance assessment in sports,” in Conf. on
Position, Location and Navigation Symposium. IEEE, 2008.

[21] M. Lapinski, M. Feldmeier, and J. A. Paradiso, “Wearable wireless
sensing for sports and ubiquitous interactivity,” in Conf. on Sensors.
IEEE, 2011.

[22] Y. C. Huang, T. L. Chen, B. C. Chiu, C. W. Yi, C. W. Lin, Y. J. Yeh,
and L. C. Kuo, “Calculate golf swing trajectories from imu sensing
data,” in Conf. on Parallel Processing Workshops. IEEE, 2012.

[23] D. Freeman, O. Hilliges, A. Sellen, K. O’Hara, S. Izadi, and K. Wood,
“The role of physical controllers in motion video gaming,” in Conf.
on Design Interactive Systems, June 2012, pp. 701 – 710.

[24] O. Bastelseiten, “Personal blog,” online; accessed 25-September-2014.
[Online]. Available: http://www.olliw.eu/

[25] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Mod-
eling, Planning and Control. Springer, 2010.

[26] B. Hillberry and A. J. Hall, Rolling Contact Joint, 1976, uS Patent
3,932,045.

[27] “Mpu6050 datasheet and register map page,” on-
line; accessed 28-September-2014. [Online]. Available:
http://www.invensense.com/mems/gyro/mpu6050.html

[28] “Arduino micro home page,” online; accessed 28-September-2014.
[Online]. Available: http://arduino.cc/en/Main/ArduinoBoardMicro

[29] “Ros home page,” online; accessed 25-September-2014. [Online].
Available: http://www.ros.org/

[30] E. Battaglia, G. Grioli, M. G. Catalano, M. Santello, and A. Bicchi,
“Thimblesense: an individual-digit wearable tactile sensor for experi-
mental grasp studies,” in IEEE International Conference on Robotics
and Automation, 2014.

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2015 IEEE International Conference
on Robotics and Automation. Received October 1, 2014.


