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Abstract— In this paper, we present a method to plan grasps
for soft hands. Considering that soft hands can easily conform
to the shape an the object, with preference to certain types of
basic geometries and dimensions, we decompose the object into
one type of these geometries, particularly into Minimal Volume
Bounding Boxes (MVBBs), which are proved to be efficiently
graspable by the hand we use. A set of hand poses are then
generated using geometric information extracted from such
MVBBs. All hand postures are used in a dynamic simulator
of the PISA/IIT Soft Hand and put on a test to evaluate if a
proposed hand posture leads to a successful grasp. We show,
through a set of numerical simulations, that the probability
of success of the hand poses generated with the proposed
algorithm is very good and represents an evident improvement
with respect to our previous results published in [1].

I. INTRODUCTION

The increase of robot capabilities to actively execute tasks
and modify surrounding scenarios, thereby reaching versatile
goals, is tightly linked to the ability to generate stable grasps
for objects that are even unknown to the robot. A key tool
to this ability is the faculty of selecting a successful grasp
without the need of identifying a priori an object, but only
based on its composition of shape primitives with known
associated grasps, i.e. resorting to part-based grasps.

To this sake, assuming that distorted and/or scattered
clouds of 3D points of an object are given — here we
assume the segmentation algorithm robust enough to distin-
guish the manipulandum from the environment — two basic
ingredients are needed: (i) a suitable algorithm enabling the
representation of these points as a set of shape primitives
(e.g., boxes, spheres or cylinders), and (ii) a strategy that
takes advantage of the simple primitive shape representation
of parts to associate grasps to them.

This approach is well entrenched in the grasp planning
community, as testified by [2], [3] and [4]. A not nearly
complete classification of the vast literature on this topic
can be attempted on the basis of the types of primitive
shapes employed for object decomposition. Many bottom-
up approaches — starting from point clouds they synthesize
object part shapes — use superquadrics (SQs). SQs are
parametrizable models that offer a large variety of different
shapes. However, to approximate object parts, only superel-
lipsoids out of the groups of SQs are employed in practice,
as only these represent closed shapes. In these group we can
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Fig. 1. The main idea of this paper is to find different hand poses with
high probability of being successful when grasping objects

recall [5], [6] and [7], not mention only a few. However,
the more complex the shape is, there higher the number of
SQs that have to be instantiated to accurately represent the
different parts, and the immense parametrization capabilities
lead to highly inefficient algorithms. To overcome these
difficulties, beside the region-growing (bottom-up) strategy
which proved to be not very effective in practice [7], the split-
and-merge (split: top-down, merge: bottom-up) technique
was proposed. Even if this technique allowed to better cope
with irregular and unorganized data, the high sensitivity to
noise and outliers of SQs approximations, make their wide
use still impractical.

Following a mid-level solution, according to a purely top-
down strategy, a fit-and-split algorithm based on Minimum
Volume Bounding Box (MVBB) algorithm to object decom-
position for grasp planning was originally proposed in [8].
The method consists on iteratively build MVBB of points
resulting from splitting the point cloud of the object. The
split procedure is performed in such a way that the sum of
the two areas resulting from the convex region of each set
of points is minimized. An algorithm for grasp planning for
fully actuated hands using MVBB decomposition of object
was proposed in [9].

In this paper, we adopt a modified version of the MVBB
algorithm for object decomposition in [8], as it presents
the following properties: (i) it is very efficient and can
accomodate scattered 3D points delivered by arbitrary 3D
sensors; (ii) the outcome constellation of boxes is quite
insensitive to noise. However, with respect to [9] and [10],
where 2D grasp hypotheses are made and evaluated on point
projections onto box faces and assume, from the outset, the
use of rigid and fully-actuated robotic hands or grippers, in



the present work we propose a shift of prospective in the
creation of grasp hypotheses as we employ a compliant and
adaptive hand, the Pisa/IIT SoftHand.

New developments in robotic hands [11], [12] have shown
that the correct combination of underactuation and embedded
compliance is key to have robotic hands with dexterity
comparable to the human hand. In practice, thanks to their
mechanism, these hands adapt to the shape of the object
while executing a grasp. This behavior brings about a shift of
paradigm in grasp planning [1], since old algorithms used to
find points or regions in the object to establish a contact can
not be directly applied. Considering the mentioned behavior,
a rough approximation of the geometry of the object via
decomposition into bounding boxes is enough to generate
candidate hand poses to grasp an object. The possibility to
rely on the adaptive behavior of the hand embedded in its
the mechanical design, alleviates the task of planning the
exact finger placement on the object, and can easily absorb
shape primitives approximations due to noisy data, as well as
limitations in the representation itself. The framework allows
for an easier handling of approximation inaccuracies through
haptic feedback and grasp controllers for online corrections.

With a reduced burden to plan detailed finger placements,
the box set representation of an object, also ease the mapping
of complex actions to box and/or box distribution properties.
For example, as also mentioned in [10], in order to pick-up
an object and place it somewhere, it may intuitively be a
good option to grasp the largest box. Instead, in order to
show the same object to a camera to gather more views, it
may be preferable to grasp the object from the outermost
box, and or, from a box that allows a pincher grasp, so to
minimize occlusions caused by hand parts.

In this paper, we recall the method to decompose objects
into MVBB presented in [8]. Then, considering the adapt-
ability of soft hands, we present a strategy to propose grasp
postures to grasp a set of kitchenware objects [13] previously
decomposed into MVBBs. The performances of the method
are compared with those presented in [1] and, through sim-
ulations performed with the MBS software ADAMSTM [14],
we show that with the strategy presented in this paper we
highly increase the successful rate of grasps for the same
objects.

A. Organization

Section II recalls the algorithm used to decompose the
object into MVBB. In Section III, the method developed
in this paper to generate hand postures to grasp an object
is presented. In Section IV, we present the analysis of the
simulations performed with a set of kitchenware objects and,
finally, Section V presents the conclusions.

II. BOUNDING BOX DECOMPOSITION

Algorithm 1 was presented in [9]. The idea is to decom-
pose the object in MVBBs minimizing the volume of the
boxes which fit partial point clouds. The algorithm takes
a point cloud of an object (points3D) and approximates
it with a MVBB. The points are then projected onto three

planes which are the non-opposite faces of the box. Then,
using Algorithm 2, the points are split in two sets. The split
is performed for each of the projected points (faces), and
for each of the two projection axes. After that, the points
are approximated with a box and its area is computed. At
the end, the algorithm returns the point and the direction
minimizing the mentioned area. The split is then preformed
for the set of all 3D points: it results in two boxes with a
set of 3D points. The reduction rate of the volume of the
two new boxes compared with the original is then compared
with a user-given parameter t to judge the split useful or
not. In case it is found useful, the split is performed and
each of the boxes are consider as new point clouds to repeat
the procedure on; the algorithm is stopped otherwise.

Algorithm 1 Approximate the object in MVBB
1: procedure BOXAPPROXIMATE(faces, points3D)
2: box← FindBoundingBox(points3D)
3: faces← nonOppositeFaces(box)
4: (p, q)← split(FindBestSplit(faces, points3D))
5: if (percentualV olume(p+ q, box) < t then . t is

a stop criteria
6: BoxApproximate(p)
7: BoxApproximate(q)
8: end if
9: end procedure

Algorithm 2 Split the point cloud
1: procedure FINDBESTSPLIT(faces, points3D)
2: for i← 1 to 3 do
3: p2D ← projects(points3D, faces[i])
4: for x← 1 to width(faces[i]) do
5: (p1, p2)← verticalSplit(p2D, x)
6: a1← boundArea2D(p1)
7: a2← boundArea2D(p2)
8: if (a1 + a2 < minArea) then
9: minArea← (a1 + a2)

10: bestSplit← (i, x)
11: end if
12: end for
13: for x← 1 to height(faces[i]) do
14: (p1, p2)← verticalSplit(p2D, y)
15: a1← boundArea2D(p1)
16: a2← boundArea2D(p2)
17: if (a1 + a2 < minArea) then
18: minArea← (a1 + a2)
19: bestSplit← (i, y)
20: end if
21: end for
22: end for
23: end procedure

Fig. 2 shows a comparison of different values of t. De-
pending on the task that we want to perform, this parameter
can assume different values. For example, if we want to



(a) t = 0.0001 (b) t = 0.00001 (c) t = 0.00000025

Fig. 2. Comparison of the MVBB generated by the algorithm 1 using different values of t.

grasp objects from handles, like in cups or pots, they can
be isolated using a small value of t, see Fig. 2(a). Similar
values can be used to grasp a cup from above for example.
On the other hand, if we want to explore more deeply the
geometry of the object to, for example, being able to grasp
edges in pinch grasp configurations, the parameter t must be
increased, see Fig. 2(b) and Fig. 2(c).

In practice, the selection of the parameter t is related to
the translation of high level task specifications to low level
grasp actions. Let us consider an example in which a robot
has to pick up a pot to pour the content into another glass.
In this case, a convenient choice is to grasp the pot from
the handle, as shown in Fig 3(a). Therefore, in this case
a very fine object decomposition is not necessary. On the
other hand, if we consider the task passing an object from
one hand to another in a bi-manual manipulation setting,
the selected box to be grasped could be one in the border
of the cooker body, see Fig. 3(b), such that the second arm
has more options to decide where to grasp the object without
collisions with the first hand. Thus, in this case, a finer object
decomposition is beneficial.

III. PROPOSING GRASP POSES

The aim of this section is to explain how we align the hand
with respect to the object in order to grasp it. We consider
the orientation of each of the MVBBs and the orientation of
the object itself. The orientation of the boxes come from the
principal axis defined by the Principal Component Analysis
(PCA) performed inside the FindBoundingBox function.
The inclusion of the PCA is one of the differences with

(a) (b)

Fig. 3. The selection of the box to grasp depend on the high level task
specification.

respect to the original algorithm in [9], and makes the
algorithm invariant to the reference frame of the point cloud.
In the other hand, the frame attached to the point cloud of
the object is defined always with the z axis in the normal
direction of its base. Then, the x axis is oriented to some
features of interest (a handle, for example) and parallel to
the plane of the object base. The origin is placed always in
the intersection of the middle axis of the object and the base
plane. Once the object is decomposed into MVBBs, the next
step is to select a box to grasp. There are many criteria to do
this, the most promising and useful depending on the task
that the robot has to perform once the object is grasped. In
this paper, we start generating hand poses from the outermost
box. This choice is driven by our first priority of just grasping
the object in a successful manner — most probably in a
power grasp configuration, as the hand is just closed to a
certain extend — for, e.g., clearing a table. Once a MVBB
is selected, the procedure followed to find the transformation
TH
O describing the pose of the hand with respect to the object

is the following:

1) Align the x axis of the hand parallel the longest side
of the MVBB.

2) Align the z axis of the hand with the axis of the box
which has the smallest angle with respect to the z axis

Fig. 4. Graphical explanation of the procedure performed to align the hand
with each bounding box.



Fig. 5. One example of the free collision hand poses generated for one of
the box of the cup.

of the hand.
3) Compute the orientation of the y axis to form a right-

handed frame.

From this procedure, we can generate the rotation matrix
RH

O defining the orientation of the hand frame H with respect
to the object frame O. The frame H is placed 5 mm out of
the MVBB, in the negative direction of the z axis defined
previously. The procedure is explained graphically in Fig. 4.

From the previous steps we can see that, from steps 1)
and 2), the selected axis can be the same. In this case, we
still align the x axis with the longest side of the MVBB.
Instead, the z axis is aligned with the axis of the box which
has the smallest angle with respect to the vector connecting
the centroid of the MVBB with the object centroid.

A. Pose Variations

The previous procedure generates just a single hand con-
figuration. However, once a MVBB is generated, there is a
large number of possibilities to grasp it.

In order to generate more variations for a box, we first
set the range of motion in which we can move the hand,
translating a distance xt and rotating by an angle αt, both
along the longest axis of the box, while still not colliding
with the object. Fig. 6 shows the random variations created
for the cup. Variables xt and αt generates a 2D space, with
high probability of being fee collision, from where we pick
a random point, with uniform distribution, and the check for
collision. If this configuration is collision free, then it is a
candidate pose to grasp the object. In this work, we generate
40 random configurations for each box and considered the
first 5 boxes on the object, thus for each object there are 200
candidate poses.

This procedure constitutes one of the differences with
respect to the method proposed in [1], where the authors
did not consider collisions in the procedure previous to
the simulations. As they explained in the paper, they had
a high percentage of failures just because from the very
beginning of the simulations, there were many collisions with
the object.

In this work, we used a simple collision detector. The hand
was approximated using 6 boxes, one for the palm and one
for each of the fingers. In order to detect a collision we check
if each one of the points constituting the point cloud is inside
the boxes of the hand. One example of collision-free hand
poses generated for the cup can be observed in Fig. 5.

Object Old method (%) MVBB method (%)
Colander 5.25 61.66
Cup 7.5 52.5
Plate 28 80
Pot 34.5 97.5
Average 18.81 77.61

TABLE I
COMPARISON OF THE SUCCESSFUL GRASP PERCENTAGE OF THE

METHOD PRESENTED IN [1] AND THE PORPOSED IN THIS PAPER

IV. SIMULATIONS

In this section, we present the simulations preformed for
the set of kitchenware objects presented in Fig. 7, which
are extracted from the PaCMan Grasp Dataset available
at [13]. This figure shows: a) the mesh of the object used for
simulations and for MVBB generation, b) the first 2 MVBBs
generated by Algorithm 1, c) a finer MVBB generation, d)
the first MVBB selected for the method, and finally d) show
the first hand pose suggested by the method proposed in this
paper.

Table I reports the comparison of the percentage of
successful grasp generated with the method presented in
this paper and the one presented in [1]. The results are
improved mainly because of two reasons, 1) simulations
never fail because of collision of the hand and the object
at the beginning of the simulations, and 2) the MVBB
decomposition helps to better place the hand with respect to
the object, also giving more informed options about where
and how the variations must be generated.

In order to go through all the process we take the example
of the kettle. This is an object that, in practice, because of
the dimensions of the object itself and those of the hand,
can be grasped just either from the handle or the spout.
The first step is to decompose the object in MVBBs. As
it can be observed in Fig. 9(b) the algorithm presented in
Section II segments the handle and the spout. The next step
is to select a box to grasp: Fig. 9(c) shows the selected box
in red — this is the outermost one. Then, the collision free
hand poses are generated for the selected poses, see Fig. 9(d).
Finally, the simulations are performed. Fig 9(e) shows the

Fig. 6. In order to generate more poses to grasp each box, the hand is
rotated and translated along x axis of the box.



(a) Original point clouds of the objects

(b) Fist MVBB generated

(c) Fine MVBB generation using t = 0.0001

(d) First MVBB to grasp suggested for the MVBB method

(e) Simulation if the first grasp suggested by the MVBB method

Fig. 7. Set of objects used for simulations

final configuration of the hand in of one of the simulations
where the box-guided grasp suggestion results in the hand
grasping the kettle from the handle.

A. Observations

Form the simulations performed in this work we observe
that most of the failed simulations were caused by the hand
being fixed during the whole grasping procedure. Observ-
ing how humans grasp an object, we can affirm that they
normally adapt the position of the hand with respect to the
object to avoid the object being ejected. This suggests to
implement a strategy to try to reproduce the same behavior.
This could be implemented observing the evolution of the
contact forces as the object moves.

Another point to take into account is how strongly to
close the hand to grasp an object. In some simulations, as an
example when grasping the plate, the hand closes too much.

Therefore, even when the grasp is successful the grasp is
still not human-like, as the fingers are too wrinkled. See
Fig. 10. A strategy to load the motor current in simulations
is envisioned for future research.

Fig. 8 shows the xt vs αt space. Green points represent
the successful grasp and red points the unsuccessful ones
for experiment with the kettle. This plot suggest that a
second phase of the procedure can be included to bias
new configurations to the regions where there exist more
successful grasp. The size of this region can be considered
also as a measurement of the grasp quality and robustness
of the box.

V. CONCLUSIONS

Inspired by the new developments in robotic hands, in this
paper we presented an algorithm to propose hand poses for
grasp a objects. The algorithm consists in, firstly approxi-
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Fig. 9. Grasp planning using the method presented in this paper was executed for the kettle.

Fig. 8. 2D Space representing all possible variations for a box. Green
points are successful grasps while red unsuccessful.

mating the object with a set of MVBB. Then, as the main
contribution of this paper, we present a method to select a
MVBB in the object and then align the hand. Performing
dynamic simulations of the PISA/IIT soft hand we register,
with the proposed algorithm, an increase in the probability
of success of a proposed pose from 18.1% to 77.61% with
respect to the method presented in [1].

Applying the algorithm presented in this paper to a point
cloud coming from a 3D sensor and trying to generate hand
postures in real-time is left for near future work.

ACKNOWLEDGMENTS

This work is supported by the EC under the CP-IP
grant no. 600918 “PaCMan”, within the FP7-ICT-2011-9
program “Cognitive Systems”, ERC Advanced Grant no.

Fig. 10. This figure shows non human like but successful grasp. This
problem is generated because the hand is always closed to the maximum.

291166 “SoftHands” - A Theory of Soft Synergies for a
New Generation of Artificial Hands-, under grant agreements
no.611832 “Walk-Man” and by CONACYT through the
scholarship 266745/215873.

REFERENCES

[1] M. Bonilla, E. Farnioli, C. Piazza, M. G. Catalano, G. Grioli, M. Gara-
bini, M. Gabiccini, and A. Bicchi, “Grasping with soft hands,” in
IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids), Madrid,
Spain, November 18 - 20, In Press.

[2] K. Shimoga, “Robot grasp synthesis algorithms: A survey,” Int. Jour-
nal of Robotics Research (IJRR), vol. 15, no. 3, pp. 230–266, 1996.

[3] A. T. Miller, S. Knoop, H. Christensen, and P. Allen, “Automatic grasp
planning using shape primitives,” in IEEE Int. Conf. on Robotics and
Automation (ICRA), 2003.

[4] C. Borst, M. Fischer, and G. Hirzinger, “Grasp planning: How to
choose a suitable task wrench space,” in IEEE Int. Conf. on Robotics
and Automation (ICRA), 2004.

[5] C. Goldfeder, P. K. Allen, C. Lackner, and R. Pelossof, “Grasp
planning via decomposition trees,” in IEEE Int. Conf. on Robotics
and Automation (ICRA), 2007.

[6] G. Biegelbauer and M. Vincze, “Efficient 3d object detection by fitting
superquadrics to range image data for robots object manipulation,” in
IEEE Int. Conf. on Robotics and Automation (ICRA), 2007.

[7] L. Chevalier, F. Jaillet, and A. Baskurt, “Segmentation and su-
perquadric modeling of 3d objects,” Journal of WSCG, vol. 11, no. 1,
pp. 1–8, 2003.

[8] K. Huebner, S. Ruthotto, and D. Kragic, “Minimum volume bounding
box decomposition for shape approximation in robot grasping,” in
IEEE Int. Conf. on Robotics and Automation (ICRA), May 2008, pp.
1628–1633.

[9] S. Geidenstam, K. Huebner, D. Banksell, and D. Kragic, “Learning of
2D grasping strategies from box-based 3D object approximations,” in
Robotics: Science and Systems (RSS), Seattle, USA, June 2009.

[10] K. Huebner and D. Kragic, “Selection of robot pre-grasps using box-
based shape approximation,” in IEEE Int. Conf. on Intelligent Robots
and Systems (IROS), Sept 2008, pp. 1765–1770.

[11] M. G. Catalano, G. Grioli, E. Farnioli, A. Serio, C. Piazza, and
A. Bicchi, “Adaptive synergies for the design and control of the
pisa/iit softhand,” Int. Journal of Robotics Research (IJRR), vol. 33,
p. 768–782, 2014.

[12] R. Deimel and O. Brock, “A novel type of compliant, underactuated
robotic hand for dexterous grasping,” in Robotics: Science and Systems
(RSS), Berkeley, USA, July 2014.

[13] “Pacman grasp dataset,” 2015. [Online]. Available: https://github.com/
CentroEPiaggio/unipi-grasp-datasets/tree/master/scenario1

[14] MSC Software. (2015) Adams. [Online]. Available: http://web.
mscsoftware.com/

https://github.com/CentroEPiaggio/unipi-grasp-datasets/tree/master/scenario1
https://github.com/CentroEPiaggio/unipi-grasp-datasets/tree/master/scenario1
http://web.mscsoftware.com/
http://web.mscsoftware.com/

	Introduction
	Organization

	Bounding Box Decomposition
	Proposing Grasp Poses
	Pose Variations

	Simulations
	Observations

	Conclusions
	References

