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Abstract—This work proposes a representation that com-
prises both shape and friction, as well as the exploration
strategy to gather them from an object. The representation is
developed under a common probabilistic framework, particu-
larly it uses a Gaussian Process to approximate the distribution
of the friction coefficient over the surface, also represented as
a Gaussian Process. The surface model is exploited to compute
straight lines (geodesic flows) that guide the exploration. The
exploration follows these flows by employing an impedance
controller in pursuance of safety, shape accommodation and
contact enforcement, while measuring the necessary data to
estimate the friction coefficient. The exploratory probes consist
of an RGBD camera and an Intrinsic Tactile sensor (ITs)
mounted on a robotic arm. Experimental results give evidence
for the effectiveness of the algorithm in the friction coefficient
gathering and enrichment of the object representation.

I. INTRODUCTION

Objects are perceived by robotic systems using non-

contact or contact sensing, or a combination of both, for tasks

such as recognition, and grasping and manipulation. Object

properties which are of interested in robotics include shape,

color, weight, texture, friction coefficients, inertial values,

degrees of freedom, among many others. Shape and color

are predominant due to the extensive use of cameras and the

large computer vision field. However, other properties, such

as the friction coefficients, are relevant to object grasping

and manipulation and object recognition, by itself or in

combination with visual information [1].

Visual and tactile array information has been successfully

integrated into a single object shape model for different

purposes. For instance, [2] uses the tactile information to

discriminate object pose hypothesis coming from vision, [3]

defines a hierarchical strategy to explore the object using

the tactile information to refine the object shape only when

necessary. In more recent works, [4] fuses the two sources of

information by applying symmetry constraints to reconstruct

the complete object shape, and [5] uses the contact points to

improve the object pose within the hand, initially obtained
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Fig. 1: The shape is acquired by an RGBD sensor and

the friction coefficients by the intrinsic tactile sensor, both

shape f(x) and friction m(x) functions are represented as

a Gaussian process GP(0, k(·)). The exploration follows

geodesic flows γi on the surface of a fixed object using a

compliant behavior.

by vision. Nonetheless, other object properties apart from the

shape are hardly explored, perhaps due to the fact that one

needs specific sensory systems to measure them and a proper

representation to process the information. In this preliminary

work, the hardware setup resembles that of [6] (see Fig. 1),

but instead of using tactile arrays at the tip of the exploratory

probe, we use an ITs because of its capability to retrieve the

contact force [7], which is necessary to our approach.

This work proposes a methodology to gather the kinetic

coefficient of friction, a potential feature for object recogni-

tion [8], and certainly relevant to grasp determination [9], as

well as its representation over the surface. The representation

is developed under a probabilistic framework, particularly

it uses Gaussian processes (GPs), which has proved to

provide good results in object recognition [10] and grasp

planning [11], [12]. The shape model allows to compute

paths on the surface, here we use straight lines, hence the

name geodesic flows, to guide the exploration. The actual

exploration is executed by the ITs mounted on a 7 DoF

arm. To this end, a controlled compliant behavior should

provide a safe contact, shape accommodation and good data

quality acquisition, assuming that the object is fixed to

the table. The rest of the paper is organized as follows:

Section II describes the devices and type of information

they provide, Section III details the object representation and

the exploration strategy, Section IV shows the experimental

results, and, finally, Section V draws the conclusions and

points for future developments.



II. SENSORY DATA

As shown in Fig. 1, the setup is composed of an RGBD

sensor and an ITs mounted on a robot’s end-effector, and a

fixed object to be explored. Visual and tactile data acquired

from them are described below.

A. Visual data

The object surface is acquired using a commercial RGBD

sensor (Fig. 2a). The raw data comes in a point cloud format

and it is pre-processed to isolate the point cloud of the

object, C = {x1, . . . ,xN}, where xi ∈ R
3 is a point on the

surface. It is also possible to estimate the normal at the con-

tact points which will be useful in the object representation

learning (Subsection III-A). The extrinsic camera calibration

is performed using objects as patterns and performing 3D

pose estimation.

B. Tactile data

The ITs is composed of a force/torque (F/T) sensor, a tip

and a compliant structure as a safety mechanism due to the

high cost of the F/T sensor (Fig. 2b). The tactile data includes

the contact point on the object surface, xj ∈ R
3 w.r.t. the F/T

sensor frame, and the contact force fj ∈ R
3 expressed in the

contact frame, such that we are able to estimate the kinetic

coefficient of friction as

µ =
‖ft‖

‖fz‖
, (1)

where fz and ft are the components in the normal and in

the tangent plane at the contact point, respectively [13].

There is no general correlation between the static and kinetic

coefficients of friction [14], however, in general, tables

are available for pairs of materials [13]. Given a set of

materials to be encountered in the environment and the

fingertip material, and assuming a fixed condition (humidity,

temperature, etc.), one might query for the kinetic coefficient

of friction and select the best matching pair and obtain the

static coefficient of friction. In this work, we will present

results with the the former only, since the procedure is

equally applicable for both of them. The tip is 3D printed in

ABS and with a hemi-spherical shape. The latter simplifies

the contact point and force calculation, but other ellipsoidal

surfaces can be used as well [7], or even arbitray NURBS

surfaces that require iterative optimization routines.

The ITs is mounted on a 7 DoF KUKA robotic arm

to form the exploratory probe with high mobility. The

compliant mechanism is an in-parallel passive compliant

coupler (PPCC) with known Cartesian stiffness, and used

to estimate the deformation using the F/T measurements.

However, the stiffness is set with spring preloads to have

negligible deformations on the range of forces applied during

the exploration.

III. EXPLORATION STRATEGY

The proposed strategy is based on three main ingredients:

the object representation for a complemented sensory data

processing, exploration paths for an optimal information

(a) RGBD sensor. (b) Intrinsic Tactile sensor.

Fig. 2: Visual and tactile devices.

gain, and contour following for a successful data acquisition.

Details on each of them are presented next.

A. Object Representation: Gaussian Process for implicit

functions

The object shape is modeled by an implicit function,

f(x) = 0, with x ∈ R
3 being any point on the surface. This

function is approximated using a Gaussian process (GP) [15]

over the object point cloud, C, as

f(x) ∼

N
∑

i=1

αikR3
(x,xi, σ), (2)

where kR3
(·) is the covariance function centered at points

xi ∈ C, σ is a smoothing parameter (set according to the

units of x and enforced to have the same value for all terms),

and αi is the weighing factor for each term (to be learned

from the measurements).

For 3D points, we use a triangular position kernel (see

[10], [16] for more details), which has the form

kR3
(d, σ) =







1−
(dTd)

1
2

2σ
if (dTd)

1
2 ≤ 2σ

0 if (dTd)
1
2 > 2σ,

(3)

where we perform the change of variable d = x− xi, ∀i.
The friction coefficient value over the surface is also

modeled by an implicit function, m(d), and approximated

as well by a GP, as

m(d) ∼
N
∑

i=1

βikµ(d,Σ). (4)

Due to the nature of the data, we decide to use a squared

exponential as the covariance function instead, with the form

kµ(d,Σ) = e−
(dT

d)
2Σ , (5)

where Σ is a smoothing factor without units. It is worth

noting that, the points on the surface in this case come from

both the tactile and visual data (Section II).

The determination of the weights αi and βi depends on

the function we want to represent to choose proper labels to

the sensory data. In the case of the object surface, we would

like to model

f(x)











> 0, if x is outside the surface

= 0, if x is on the surface

< 0, if x is inside the surface,

(6)



(a) The box has flat surfaces, hence
geodesics are straight lines.

(b) The can is almost a cylinder, hence
geodesics are elliptical curves.

(c) The teddy bear has a very irregular
shape, but still geodesic flows are found.

Fig. 3: Geodesic flows on object surfaces captured by an RGBD sensor. The color of the flow goes from red, i.e. the initial

contact point, to green, i.e. the final position, according to the predefined length of the curve.

therefore, the labeling goes for a positive, null or zero value,

e.g. 1, 0 and −1, for points that are outside, on, or inside

the surface, respectively. The set containing the points on

the surfaces are directly in the visual data (Subsection II-A).

The set containing points outside the surface is generated

by estimating the outward normal over the previous set,

and then, displacing the points along the normal. The set

containing points inside could be created using a similar

method, however, only one inside the surface proved to

be enough. Thus, let the vector y = (y1, . . . , yi, . . . , ys)
T

contains the labels corresponding to the joined point set, and

covariance matrix KR3
with elements kij,R3

= kR3
(dij , σ),

with dij = xi − xj for all points, the weights are approxi-

mated under simplifying assumptions as

(α1, . . . , αi, . . . , αN )T = K−1
R3

y. (7)

In the case of the friction coefficient function, we would

like to model

m(x)

{

= µ, if x is on the surface

< 0, otherwise,
(8)

therefore, the labels are the estimated friction coefficient and

negative, e.g. −1, for points from the tactile and visual data,

respectively. Note that, a non-sense value for the friction

coefficient is assigned for points that are not explored yet

but are known to be on the surface. Like so, the weights

are approximated again by arranging a proper label vector

n = (n1, . . . , ni, . . . , nN )T and covariance matrix Kµ with

elements kij,µ = kµ(dij ,Σ) as

(β1, . . . , βi, . . . , βN )T = K−1
µ n. (9)

The contact points during the exploration could potentially

be used to refine the object shape representation, but this

is useful in the case that they provide radically new infor-

mation, for instance, when exploring occluded parts of the

object, which is clearly a point for future investigation.

B. Exploration paths: Geodesic flows on implicit surfaces

Paths for exploration should have a good ratio between

information gain and exploration length (time or distance).

A way to achieve this is to walk in straight lines over the

surface to have minimal walking distance. Geodesics can

be computed using the implicit function representing the

surface and integrating from a point (x, y, z)(0) and a tangent

vector (p, q, r)(0) to the surface, until the curve have a

predefined length. Thus, given an implicit function f(x, y, z),
the geodesic curve equation can formulated in the following

six first-order differential equations






























x′ = p
y′ = q
z′ = r
e′ = ((pfz − rfx)r + (pfy − qfx)q)L/D
f ′ = ((qfz − rfy)r + (qfx − pfy)p)L/D
g′ = ((rfy − qfz)q + (rfx − pfz)p)L/D,

(10)



with

L = fxxp
2 + fyyq

2 + fzzr
2 + 2(fxypq + fyzqr + fxzpr)

D = (rfy − qfz)(rfy − qfz) + (pfz − rfx)(pfz − rfx)+
+(qfx − pfy)(qfx − pfy).

The first and second order derivatives of (2) required

in (10) are

δf

δx
=

N
∑

i=1

αi

δkR3
(d, σ)

δd

δd

δx
, (11)

and

δ2f

δx2
=

N
∑

i=1

αi

δ2kR3
(d, σ)

δd2

δ2d

δx2
, (12)

where

δkR3

δd
=











−
1

2σ

dT

(dTd)
1
2

if (dTd)
1
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0 if (dTd)
1
2 > 2σ,

(13)

and

δ2kR3

δd2
=











−
1

2σ

I3d
Td− ddT

(dTd)
3
2

if (dTd)
1
2 ≤ 2σ

03 if (dTd)
1
2 > 2σ.

(14)

Thus, by integrating (10) using (2), (11), and (12), we

obtain geodesic flows γi over the object surface, as shown

in Fig. 3.

C. Contour following: Stiffness controller

The tactile data acquisition can only be successful when

the contact with the object surface is guaranteed. To this end,

force and position control is required during the exploration.

Considering that there is no exact description of the object

shape, executing a pure position control might be dangerous

for the equipment. The presented ITs includes a compliant

structure for safety, however, when the KUKA arm uses the

stiffness controller, it behaves like a spring with defined

stiffness and damping parameters. In such manner, we set

the parameters to make the PPCC to seem infinitely stiff.

The provided control law for the arm for this mode is

τ = JT(Kc(Xd −X) + fd) +B(d) + τ dyn, (15)

where Xd ∈ SE(3) is the desired tool frame, fd ∈ R
6 is the

desired force at the tool, Kc ∈ R
6 is the desired Cartesian

stiffness of the tool frame specified along the three axes, and

d the desired damping behavior.

Concerning the contour following, the origin of the desired

tool frame is taken directly from the integration of the

geodesic curve. The orientation, instead, is corrected to keep

the zr axis of the end-effector reference frame aligned with

the normal at the contact point zc. This is due to the fact that

the arm lacks the capability to render any desired Cartesian

stiffness in this mode. Thus, since the tip of the ITs is

spherical, the orientation correction is equivalent to have a

fixed contact point w.r.t. to the sensor frame in a tactile-

servoing fashion. The error rotation matrix can be readily

obtained from angle-axis parameters, with angle

θ = cos−1(zc · zr),

Algorithm 1: Exploration logic.

Data: Scene point cloud S , and parameters

Result: Object representation (f,m)
C = SEGMENTOBJECT(S);
f = COMPUTESHAPE(C);
while INFORMATIONGAIN do

xi = SAMPLEPOINT(f );
ti = SAMPLEDIRECTION(f,xi);

γi = COMPUTEGEODESIC(f,xi, ti);
while EXPLORING(γi) do

(x
(t)
j , f

(t)
j , µ(t)) = RECORDTACTILEDATA();

m = COMPUTEFRICTION(C,x
(∀t)
j , f

(∀t)
j , µ(∀t));

return (f(x),m(x)) ;

and axis

a =
zc × zr

sin(θ)
.

With this, and additionally setting a lower stiff value on

the zr axis of the tool, as well as a non-zero desired contact

force along it, a safe contact and shape accommodation is

furnished during the haptic exploration.

D. Summary: Exploration logic

The three elements from the previous subsections are

looped following the pseudo-code outlined in Algorithm 1,

where the arguments of the implicit functions f,m are

omitted for clarity. The SEGMENTOBJECT and RECORD-

TACTILEDATA functions are related to the data acquisition

process described in Section II. Functions COMPUTESHAPE

and COMPUTEFRICTION are essentially the weight compu-

tations in (7) and (9). Function COMPUTEGEODESIC is the

integration of (10). The EXPLORING(γi) loop is performed

using the contour following procedure from Section III-C.

A clear point for future discussion is how to systematically

break the INFORMATIONGAIN loop.

IV. EXPERIMENTS

A. Implementation details

The object point cloud segmentation is done in four

steps. First, we apply a pass-through filter over the complete

point cloud to keep the table and object. Then, a dominant

plane is estimated using RANSAC techniques on the filtered

cloud. The table is removed, so only the object point cloud

remains, which is downsampled to speed up computations.

This process is aided by the PointCloud library [17] and the

ROS system [18]. The numerical integration of the geodesic

flows is performed using the boost C++ odeint library. The

F/T sensor used in the ITs is the ATI Nano17 SI-25-0.25. A

low-pass filter was applied to the F/T measurements to have

a smoother contact estimation. The tip and the PPCC were

designed in our lab. The arm where the ITs is mounted on

is the 7 DoF KUKA LWR controlled through the Standford

Fast Research Interface Library (FRIL). The data acquisition

and synchronization interface between the KUKA impedance



Fig. 4: Haptic exploration over objects. Top: a paperboard box. Bottom: a can.

TABLE I: Parameters used for the experiments.

Parameter Value

RGBD sensor, object modeling, and global trajectories

Leaf size (downsampling) 0.02m
Min cluster size 500
Surface smoothing factor σ 100m
Friction smoothing factor Σ 5
Int. fixed-step Runge-Kutta 0.0001
Geodesic flow length 15cm

KUKA lwr, ITs, and contour following

Robot cycle time 2ms

Cartesian stiffness ({E}) (10, 10, 2, 5, 5, 5) · 102[N/m, Nm/rad]
Desired force in zE 5N
Orientation correction gain 0.001
ITs force threshold 0.1N
Tip radius 0.02m
F/T filt. low-pass cutoff freq. 5Hz

controller, the RGBD sensor and the 6-axes F/T sensor were

developed in C++. The relevant parameters used for the

experiments are shown in Table I.

B. Results and discussion

In Fig. 4, we show snapshots of the haptic exploration

for two objects, a cardboard box and an aluminum can.

The maximum distance between the planned and executed

trajectories goes up to 2cm in the box, and 0.5cm in the

can, caused, for instance, by the extrinsic camera calibration,

object deformation, and F/T measurements errors. The force

measured along zc is used to determine the contact state of

the trajectory to properly estimate the friction coefficient.

Both are plotted in Fig. 5 for a single trajectory. We get

a mean value of µ = 0.62 and µ = 0.36 for the box

(ABS/Paperboard) and the can (ABS/Metal), respectively.

In Fig. 6, the object shape with the friction coefficient

estimation is shown after the haptic exploration along the

geodesic flow. The points on the surface are obtained by

sampling (2) and the color is obtained by evaluating (4),

confirming that the methodology is capable of representing

both visual and tactile data.
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(a) Exploration over the box.
Material: Paperboard.
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(b) Exploration over the can.
Material: Aluminum.

Fig. 5: Relevant data recorded during the haptic exploration.

Top: Force along zc used to detect the contact and non-

contact states for. Bottom: Friction coefficient µ, the red line

marks the mean value during the contact state.

V. CONCLUSIONS

This work proposed a novel object representation and the

exploration strategy to instantiate it. The added value with

respect to previous approaches is the consideration of the

friction coefficient within the representation. This added in-

formation is essential to relevant robotic fields such as grasp

planning and manipulation using mechanical hands, and po-

tentially useful in object recognition, in a similar way as [19]

recognizes textures. Whereas the visual data was acquired

using a well-known RGBD sensor, the tactile data demanded

a crude but effective Intrinsic Tactile sensor mounted on a

robot’s end-effector, acting as an haptic exploratory probe.

The exploration is planned in minimal length paths over the

object surface, i.e. geodesic flows, to looking to increase

the information gain and exploration length ratio. The actual

contour following used a stiffness controller for safety, and

shape accommodation while ensuring a continuous contact

during the exploration. The preliminary experimental results

on a single-finger-like fashion revealed a valid approach to



(a) Box
(b) Can

Fig. 6: Points on the object surface are colored with the estimated value of the friction coefficient, that is, the greener

the higher, the darker the lower. Note that near the explored trajectory, the friction coefficient is non-zero even when the

points are not exactly on the trajectory. For clarity, the actual surface points are smaller and shown in light blue, and an

approximated wireframe of the object in red.

have both visual and tactile data in a single probabilistic

framework using Gaussian processes.

Several points deserve further attention, such as how to

generate points outside/inside the surface for a generic case,

or the decision on when to end the exploration if no more

information is gained, or how a different contour following

controller can affect the quality of acquired data. Future

work involves exploring the unseen part of the object, as

well as the use of a dexterous hand equipped with ITs at

the fingertips, to investigate the limitations due to a reduced

mobility, and possibly, the benefits of a parallel tactile data

acquisition system.
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