
On Time-Optimal Trajectories for Differential Drive Vehicles
with Field-Of-View Constraints

Andrea Cristofaro§†, Paolo Salaris∗, Lucia Pallottino∗, Fabio Giannoni†, Antonio Bicchi∗‡

Abstract— This paper presents the first step toward the study
of minimum time trajectories for a differential drive robot,
which is equipped with a fixed and limited Field-Of-View (FOV)
camera, towards a desired configuration while keeping a given
landmark in sight during maneuvers. While several previous
works have provided a complete synthesis of shortest paths
in case of both nonholonomic and FOV constraints, to the
best of our knowledge, this paper represents the first analysis
of minimum time trajectories with the two constraints. After
showing the extremals of the problem at hand, i.e. straight lines,
rotations on the spot, logarithmic spirals and involute of circles,
we provide the optimal control laws that steer the vehicle along
the path and the cost in terms of time along each extremal.
Moreover, we compare some concatenations of extremals in
order to reduce the complexity of the problem toward the
definition of a sufficient finite set of optimal maneuvers.

I. INTRODUCTION

Time optimal trajectories for a bounded velocity Differ-
ential Drive Robot (DDR) which moves on a unobstructed
plane has been derived in [1]. In particular, authors provided
a proof of the existence and an analysis of the structure
of the time optimal trajectories. Moreover, they furnished
an algorithm to determine all optimal trajectories with the
associated time. Also in this paper, as in [1], we consider
a DDR with bounded velocity but in our case it has a
fixed on-board camera with limited Field-Of-View (FOV) –
basically further limiting feasible maneuvers. The objective
of this research, whereof this paper represents a first attempt,
is to derive the time optimal trajectories from any starting
configuration of the vehicle to a desired one, while keeping
a given landmark in sight during maneuvers. We consider
a pinhole camera model ([2]) with a limited horizontal and
vertical angle of view (see figure 1) whose principal axis
forms and angle Γ w.r.t. the robot forward direction.

Localization tasks and/or maintain visibility of some ob-
jects in the environment require that some landmarks must
be kept in sight. In visual servoing tasks this problem
becomes particularly noticeable and several solutions have
been proposed to overcome it. However, when the FOV
problem has been successfully solved for nonholonomic
vehicle, e.g. in [3], [4], [5], the resultant path is often
inefficient and absolutely not optimal. An optimal solution
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(a) H-FOV constraints with carte-
sian and polar coordinates of the
robot.

(b) V-FOV constraints.

Fig. 1. Mobile robot and systems coordinates. The robot’s task is to reach
P while keeping the landmark within a limited FOV (dashed lines).

for a nonholonomic vehicle with FOV constraints has been
furnished in [6] and [7]. In particular, [6] provides the short-
est paths synthesis in case of a camera modeled as a frontal
and symmetric (w.r.t. the forward direction of motion), planar
cone, i.e. only horizontal limits of the sensor are taken into
account. In [7] shortest paths to generic FOVs, including side
and lateral sensors (the forward direction of motion is not
o included inside the FOV) has been obtained. Moreover,
in [8] authors also introduced the vertical constraint limits
imposed by the camera.

On the other hand, optimal trajectories for DDRs without
FOV constraints are also derived in [9] where the total
amount of wheel rotation is optimized, while in [10] time
optimal trajectories are obtained for an omnidirectional ve-
hicle. The methodology used in [1] is an extension of optimal
control techniques developed in [11], [12], [13] for steered
vehicles. Moreover, in [14] a geometric algorithm to derive
time optimal trajectories for a bidirectional steered robot is
developed. The study of optimal controls for such vehicles
started with [15] and [16].

In this paper we start to study time optimal trajectories
for a DDR subject to FOV constraints, providing that the
extremal maneuvers, i.e. maneuvers that verify the necessary
conditions for optimality, are straight lines, rotations on the
spot, logarithmic spirals and involutes of circles. We, thus,
provide the optimal control laws that steer the vehicle along
the extremals and their cost in terms of time along each
arc. Finally, we compare some concatenations of extremals
in order to obtain a sufficient finite set of time optimal
maneuvers.

II. PROBLEM DEFINITION

Consider a differential drive vehicle ([1]) moving on a
plane where a right-handed reference frame 〈W 〉 is defined
with origin in Ow and axes Xw,Zw. The configuration of



the vehicle is described by ξ (t) = (x(t),z(t),θ(t)), where
(x(t),z(t)) is the position in 〈W 〉 of a reference point in
the vehicle, and θ(t) is the vehicle heading with respect to
the Xw axis (see figure 1). We assume that the dynamics
of the vehicle are negligible, and that the forward and
angular velocities, ν(t) and ω(t) respectively, are the control
inputs of the kinematic model of the vehicle. Choosing
polar coordinates (see figure 1), the kinematic model of the
unicycle-like robot isρ̇

ψ̇

β̇

=

−cosβ 0
sinβ

ρ
0

sinβ

ρ
−1

[ν

ω

]
. (1)

Denoting by wr and wl the angular velocities of the right
and left wheel, respectively, we have

v =
wr +wl

2
, ω =

wr−wl

2b

where b is half of the wheels axle length. We assume wi ∈
[−1, 1], i = r, l and the input space is U = [−1,1]2 ⊂ IR2. As
a consequence, the forward and angular velocities domain is
a convex compact subset U ∈ IR2.

The vehicle carries an on-board rigidly fixed pinhole
camera with a reference frame 〈C〉 = {Oc,Xc,Yc,Zc} such
that the optical center Oc corresponds to the robot’s center
[x(t),z(t)]T and the optical axis Zc forms an angle Γ with the
robot’s forward direction (see figure 1(a)). Without loss of
generality, we will assume 0 ≤ Γ ≤ π

2 , so that, when Γ = 0
the Zc axis is aligned with the robot’s forward direction,
whereas, when Γ = π

2 , the Zc axis is perpendicular to the
robot’s forward direction. The camera has a limited Field-Of-
View (FOV) whose horizontal and vertical angle of view are
δ and ε , respectively. Moreover, let φ̂ be half of the vertical
angular aperture, whereas φ is half of the horizontal angular
aperture. In the following, we consider the most interesting
case in which ε and δ are less than π/2. Consider φ1 =Γ− δ

2
and φ2 = Γ + δ

2 the angles between the robot’s forward
direction and the right and left sensor’s border w.r.t. Zc axis,
respectively.

We assume that the feature to be kept within the on-
board limited FOV sensor is placed on the axis through
the origin Ow, perpendicular to the plane of motion, so that
its projection on the motion plane coincides with the center
Ow (see figure 1). The feature has height h from the plane
Xc×Zc. Moreover, without loss of generality, let us consider
the position of the robot target point P to lay on the Xw axis,
with coordinates (ρ, ψ) = (ρP, 0).

The horizontal FOV (H-FOV), with characteristic angle
δ = |φ2−φ1|, generates the following constraints:

β −φ1 ≥ 0 , (2)
β −φ2 ≤ 0 . (3)

while the vertical FOV (V-FOV), with characteristic angle ε ,
generates the following one

ρ cos(β −Γ)≥ h
tan φ̂

:= Rb (4)

where Rb is a constant and it represents the minimum
distance from OW that the vehicle can reach without violate
FOV constraints. Let Cb denote the circumference with radius
Rb.

The goal is to determine, for any point Q ∈ IR2 on the
motion plane and orientation of the robot, the minimum
time trajectory from Q to P such that the feature in Ow is
maintained in the FOV of the sensor. In other words, the
problem to be solved is

min
ν ,ω

∫ T

0
dt , (5)

subject to (1) with controls (ν ,ω) ∈ U and such that
feasibility constraints (2), (3) and (4) are satisfied along the
trajectory, i.e. the landmark is always maintained in view.

Remark 1: The H-FOV and the V-FOV constraints (2),
(3) and (4) can not be simultaneously active, a part from a
1-dimensional curve Cδ , which is a circumference centered
in OW and with radius Rδ = Rb

cosφ
. As a consequence,

circumferences Cδ and Cb subdivide the motion plane in
three zones

Z0 := {(ρ, ψ)|ρ < Rb}
Z1 := {(ρ, ψ)|Rb ≤ ρ < Rδ}
Z2 := {(ρ, ψ)|ρ > Rδ} .

It is straightforward to show that Z0 is the inaccessible zone
where both V-FOV and H-FOV constraints are violated, Z1 is
the annulus where V-FOV constraint is more restrictive than
H-FOV ones and hence in this zone we can only consider the
V-FOV constraint (see figure 1(b)). Finally, Z2 = IR2 \ (Z0∪
Z1) is the zone where H-FOV constraints are more restrictive
than V-FOV one, and hence we can assume the camera as a
planar cone (see figure 1(a)).

III. OPTIMAL TRAJECTORIES CHARACTERIZATION

In this section we describe the extremal arcs associated
to the optimal control problem (5) based on the Pontryagin
Minimum Principle. For each arc we also provide the char-
acterization of controls that optimally steer the vehicle along
the arc. Finally, the time length of each arc is computed.

A. Adjoint equations and extremal paths

Both H-FOV and V-FOV constraints depend on the states
and not (explicitly) on the control variables. In this case the
constraints can be derived with respect to the time until the
equation depends on the control, see [17]. All the derivatives
obtained are introduced in the Hamiltonian function as it is
usually done with constraints on the control variables. The
constrained Hamiltonian of the system is hence given by

H(ρ,ψ,β ,ν ,ω) = 1−λ1(cosβ )ν +λ2
sinβ

ρ
ν

+(λ3−µ1 +µ2)

(
sinβ

ρ
ν−ω

)
+µ3(−cosΓ ν +ρ sin(β −Γ)ω),

with adjoints dynamics λ̇i =− ∂H
∂ηi

and µ1,µ2, µ3 ≥ 0.



1) Inactive constraints: Let us suppose that the initial
condition q(0) is such that

φ1 < β (0)< φ2, ρ(0)cos(β (0)−Γ)> Rh,

and hence the constraints are not active for an interval
U1 = [0, t1[. From [1], the extremal arcs have been obtained
together with the structure of optimal trajectories that consist
in at most five extremals. The extremals are rotations on the
spot (denoted by ∗) covered at maximum angular velocity
and the straight lines (denoted by S) covered at maximum
speed. For reader convenience, we explicitly report controls
ν and ω along such extremals{

ν = 0
ω =± 1

b
or

{
ν =±1
ω = 0

2) Active constraints: Let us assume now that in the
interval [t1, t2] one of the FOV constraints is active, i.e. one
of the conditions (2)-(3) and (4) is verified with the equality
sign. For the H-FOV case we have β ≡ φi and hence tanβ =
tanφi. By (1), ψ̇ = tanφi

ρ̇

ρ
= tanφi

d
dt (lnρ). By integration,

we obtain the equation of a logaritmic spiral (see [6] for
details)

ψ = tanφi ln
(

ρ

ρ0

)
+ψ0, or ρ = ρ0e(ψ−ψ0)cotφi (6)

where ρ0 and ψ0 are constant that depend on initial condi-
tions.

On the orther hand, the V-FOV constraint is activated for
those configurations that verify

ρ cos(β −Γ) = Rb. (7)

Given (1), the relationship between the control inputs v and
ω required to follow a path along which (7) holds is given
by

ρ̇ cos(β−Γ)−ρ sin(β−Γ)β̇ = 0⇒ ρ sin(β−Γ)ω = ν cosΓ.

From (1), the trajectory followed with such inputs satisfies
ψ̇ =− tanβ tan(β−Γ)β̇ that by integration gives the follow-
ing relation between ψ and β ,

ψ = ψb +β − cotΓ log
(

cos(β −Γ)

cosβ

)
+ cotΓ log(cos(Γ))

(8)
For Γ = 0 the above equation corresponds to an involute of
circle with equations:{

ρ cos(β ) = Rb

ψ = ψb− tanβ +β .
(9)

Paths characterized by equations (9) are curves known as
involutes of a circle1 On the other hand, equations (7) and
(8) correspond to an involute of a circle rotated of an angle
Γ around the point (Rb,ψb). With an abuse of notation, in
the following, we will refer to this as an involute of circle.

1The involute of a circle is the path traced out by a point on a straight
line r that rolls around a circle without slipping).

To determine how the vehicle covers those arcs along an
optimal trajectory, i.e. to choose the optimal values for wr
and wl , it is necessary to consider the Hamiltonian

H = 1+
wr

2
s++

wl

2
s−+

wr

2
m++

wl

2
m−,

where

s+ =
(
−λ1 cosβ +λ2

sinβ

ρ
+λ3

sinβ

ρ
− λ3

b

)
,s− = s++2 λ3

b ,

m+ = (µ1−µ2)
(
− sinβ

ρ
+ 1

b

)
+µ3

(
−cosΓ+ ρ sin(β−Γ)

b

)
,

m− = m+−2(µ1−µ2)
1
b −2µ3

ρ sin(β−Γ)
b ,

with µ1,µ2,µ3 ≥ 0. From Remark 1, one has necessarily
µ1µ2 = 0 and (µ1 + µ2)µ3 = 0, that is the three constraints
cannot be active simultaneously so as the two horizontal
constraints. Hence we now consider the conditions on the
derivatives of the constraints activated in [t1, t2], as function
of wr, wl , for the H-FOV and the V-FOV cases separately.

For the H-FOV constraints we have

β̇ =
sinβ (wr +wl)

2ρ
− wr−wl

2b
= 0. (10)

Hence for β = Γ± δ

2 = φi i = 1,2, from (10), the two wheels
velocities must satisfy

wr (ρ−bsinφi) = wl (ρ +bsinφi) . (11)

The Hamiltonian, with µ3 = 0, can be rewritten as

H = 1+wr

(
λ2

sinφi

ρ
−λ1 cosφi

)
ρ

bsinφi +ρ
=: 1+wrr+

(12)
or equivalently

H = 1+wl

(
λ2
−sinφi

ρ
+λ1 cosφi

)
ρ

bsinφi−ρ
=: 1+wlr−

(13)
If sinφi ≥ 0 then the Hamiltonian is minimized selecting
wr = −sign r+ in (12). Indeed, in this case, |wr| = 1 and,
from (11), |wl | < 1. Similarly, if sinφi < 0 we have wl =
−sign r− in (13). In this case |wl |= 1 and, from (11), |wr|<
1. Hence, constraint (wr,wl) ∈ [−1,1]2 is fulfilled. From
results in [6], [7] we know that condition (10) corresponds
to a spiral arc. Hence, the spiral is followed by the vehicle
with the outter wheel has maximum angular velocity while
the inner one follows according to (11).

From the results obtained in [8] we know that the V-FOV
constraints corresponds to an involute of circle. For space
limitations and for the sake of simplicity, we consider the
case Γ = 0. Consider the equation of the involute given by
ψ = tanβ −β +ψ0 (see [8]) we have

d
dt
[ψ− tanβ +β −ψ0] =

(2+ tan2
β )

wr−wl

2b
− sinβ

ρ
(1+ tan2

β )
wr +wl

2
= 0

(14)
From (14), the wheels velocities must satisfy the following
relation:

wr

(
3+ cos(2β )−2b

sinβ

ρ

)
=wl

(
3+ cos(2β )+2b

sinβ

ρ

)
.

(15)



Considering µ1 = µ2 = 0, also in this case, the Hamiltonian
can be rewritten in the form

H = 1+wrt+ (16)
H = 1+wlt− (17)

If β ∈ [0, π/2] we have sinβ ≥ 0 then the Hamiltonian
is minimized selecting wr = −sign t+ in (16). Indeed, in
this case, |wr| = 1 and, from (15), |wl | < 1. Similarly, if
β ∈ [−π/2, 0] we have sinβ ≤ 0 we have wl = −sign t−
in (17). In this case |wl | = 1 and, from (15), |wr| < 1.
Hence, constraint (wr,wl) ∈ [−1,1]2 is fulfilled. Hence, the
involute is followed by the vehicle with the outter wheel
has maximum angular velocity while the inner one follows
according to (15).

In conclusion we have four possible type of extremal
paths: rotations on the spot ∗, straight lines S, logarithmic
spirals T and involutes of a circle I. Notice that both the
two H-FOV constraints lead to two logarithmic spirals with
two characteristic angles φ1 and φ2 denoted by T1 and
T2 respectively. The same apply to the V-FOV constraint
that lead to two involute of circles evolving clockwise and
counterclockwise denoted by IR and IL, respectively.

Proposition 3.1: Optimal trajectories are concatenations
of extremal paths E, with E ∈ E = {∗, S, T1, T2, IR, IL}.
We recall that we use a superscript sign over the arcs
to denote the sign of the linear velocity used to cover
the arc. For example, symbols T+

1 and T−2 denote an arc
of logarithmic spiral with characteristic angle φ1 covered
forward and backward, respectively.

The proof of the existence of the optimal trajectory and the
proof that it consists in a finite number of switches among
extremal arcs are quite long and technical and for space
limitations could not be included in this paper2. On the other
hand, it is important to determine the finite set of extremal
sequences that characterize the optimal trajectories and a first
step in this direction is done in the rest of the paper.

B. Extremals Time costs

Given a path γ from Q1 to Q2, we denote by
T ?(γ,βQ1 ,βQ2) the time cost associated to γ with prescribed
initial and final orientations βQ1 ,βQ2 . We,thus, denote by
T (γ) = minβQ1 ,βQ2

T ?(γ,βQ1 ,βQ2). By definition one has
in general

T ?(γ,βQ1 ,βQ2)≥T (γ).

Let us compute the time costs associated to extremal paths
E ∈ E . Recalling that |ν | ≤ 1 and |ω| ≤ 1/b, the case of
extremal paths with inactive constraints is trivial.

Proposition 3.2: The time cost of a straight line from Q1
to Q2, say SQ1Q2 , is equal to the distance between the two
points:

T (SQ1Q2) = dist(Q1,Q2) = Q1Q2.
Proposition 3.3: The time cost of a rotation on the spot

of an angle β , say ∗β , is given by

T (∗β ) = b|β |.

2The proofs can be found at http://www.centropiaggio.
unipi.it/sites/default/files/HVFOV_timeopt.pdf

In order to evaluate the time cost of spirals and involutes,
the following simple formula with f = ρ or f = β will be
helpful:

t =
∫ t

0

ḟ (s)
ḟ (s)

ds =
∫ f (t)

f (0)

d f
ḟ ( f )

, ḟ 6= 0. (18)

Proposition 3.4: Given an arc of logarithmic spiral TQ1Q2
from Q1 = (ρQ1 ,ψQ1) to Q2 = (ρQ2 ,ψQ2), the time cost is

T (TQ1Q2) =
|ρQ1 −ρQ2 |

cosφi
+b|ψQ1 −ψQ2 |, i = 1,2.

Proof: For the sake of simplicity, let us assume β = φ1
with sin(φ1) > 0 and ρQ1 < ρQ2 along the path γ = TQ1Q2 .
From (11) and from the necessary conditions of optimality
for wr and wl , on this path the vehicle is driven by the
velocity ν =− ρ

ρ +bsinφ1
. The case β = φ2 can be treated

in a similar way.
From (18) with f = ρ , one has

T (TQ1Q2) =
∫

ρQ2

ρQ1

dρ

−cosφ1ν
=
∫

ρQ2

ρQ1

(
1

cosφ1
+

b tanφ1

ρ

)
dρ

=
ρQ2 −ρQ1

cosφ1
+b tanφ1 log

(
ρQ2

ρQ1

)
.

The conclusion follows from the equation of spirals in (6).

The time T (TQ1Q2) is hence given by the sum of the
length fo the spiral between Q1 and Q2 and the time
equivalent to a rotation on the spot of an angle |ψQ1−ψQ2 |.

Proposition 3.5: Given an arc of involute IQ1Q2 from Q1 =
(ρQ1 ,ψQ1) to Q2 = (ρQ2 ,ψQ2), the time cost is

T (IQ1Q2) = Rb(ζν(βQ2 ,Γ)−ζν(βQ1 ,Γ))

+b(ζω(βQ2 ,Γ)−ζω(βQ1 ,Γ)),

where βQi = arccos(Rb/ρQi)+Γ, i = 1, 2 and

ζν(β ,Γ) =

(
cotΓ

sinΓ
log
(

cos(β −Γ)

cosβ

)
− 2sinβ

sin2Γcos(β −Γ)

)

ζω(β ,Γ) = cotΓ

(
log
(

cos(β−Γ)
cosβ

))
.

Proof: Thanks to the symmetry of the problem, without
loss of generality we consider the right involute (IR) starting
from the point (Rb,0). Such curve can be parametrized as

x(s) = Rb(coss+ ssins)
y(s) = Rb(−sins+ scoss)

s =±
√

1
cos2(β−Γ)

−1 =± tan(β −Γ), β ∈ [Γ,π/2+Γ).

Let us also assume that the vehicle starting from point (Rb,0)
moves backward along IR. From optimality considtions we
have that wr =−1 and hence, the optimal linear and angular
velocities of the vehicle along this curve are given by ν =

− ρ sin(β−Γ)
ρ sin(β−Γ)+bcosΓ

, ω =− cosΓ

ρ sin(β−Γ+bcosΓ
and hence, by using

(18) with f = β and that ρ cos(β−Γ)=Rb along an involute,



we obtain

T (IQ1Q2) =
∫ βQ2

βQ1

ρdβ

sinβν−ωρ
=

= Rb

(
cotΓ

sinΓ
log
(

cos(β −Γ)

cosβ

)
− 2sinβ

sin2Γcos(β −Γ)

)∣∣∣∣βQ2

βQ1

+ bcotΓ

(
log
(

cos(β −Γ)

cosβ

))∣∣∣∣βQ2

βQ1

=

= Rbζν(β ,Γ)
∣∣∣βQ2

βQ1

+bζω(β ,Γ)
∣∣∣βQ2

βQ1

Remark 3.1: In the symmetric case Γ = 0 the expression
of the time cost T (IQ1Q2) can be substantially simplified
observing that

lim
Γ→0

ζν(β ,Γ) =
1
2
(
tan2

β −1
)
, lim

Γ→0
ζω(β ,Γ) = tanβ .

In particular for Γ = 0 one has

T (IQ1Q2) = Rb
2 (tan2 βQ2 − tan2 βQ1)+b(tanβQ2 − tanβQ1)

= Rb
2

(
1

cos2 βQ2
− 1

cos2 βQ1

)
+b(tanβQ2 − tanβQ1).

The time T (IQ1Q2) is hence given by the sum of the length
of the involute between Q1 and Q2 and the time equivalent
to a rotation on the spot of an angle | tanβQ1 − tanβQ2 |.

IV. OPTIMAL CONCATENATIONS

This section is devoted to the study of optimal concatena-
tions of extremal paths. Indeed, the final goal of this study
is to characterize the concatenations that do not belong to
optimal path under given conditions on the initial and final
configurations.

For space limitations and for the sake of clarity we assume
Γ = 0. In this case −φ1 = φ2 = φ ≥ 0 and the arcs of spiral
are denoted by T1 = T R and T2 = T L similarly to the involutes
notation. Referring to Fig. 2, we consider three distinct cases:
• Case 1: comparison between T+ ∗T− and T− ∗T+

• Case 2: comparison between I+ ∗ I− and I− ∗ I+

• Case 3: comparison between T+ ∗T− and I− ∗ I+

Fig. 2. Pairs of spirals and involutes arcs for length comparison

A. Case 1: Comparison between pairs of spiral arcs
Let us consider two points Q= (ρQ,ψQ) and V = (ρV ,ψV )

with ψQ ≥ ψV , ρQ ≥ ρV . There are two possible pairs of
spirals from Q to V : γ1 = T L+

Q ∗T R−
V and γ2 = T R−

Q ∗T L+
V .

The equations of the curves are

T L+
Q : ρ(ψ) = ρQe(ψ−ψQ)cotφ

T R−
V : ρ(ψ) = ρV e−(ψ−ψV )cotφ

T R−
V : ρ(ψ) = ρQe−(ψ−ψQ)cotφ

T L+
Q : ρ(ψ) = ρV e(ψ−ψV )cotφ

and therefore the corresponding intersection points, between
the two spirals of the paths, Ĥ1 = (ρ̂γ1 , ψ̂γ1) and Ĥ2 =
(ρ̂γ2 , ψ̂γ2) are given by

ρ̂γ1 =
√

ρQρV e
ψV−ψQ

2 cotφ , ψ̂γ1 =
logρV−logρQ

2cotφ
+

ψQ+ψV
2 ,

ρ̂γ2 =
√

ρQρV e
ψQ−ψV

2 cotφ , ψ̂γ2 =
logρQ−logρV

2cotφ
+

ψQ+ψV
2 ,

with {
ψV ≤ ψ̂γ1 ≤ ψQ, ψV ≤ ψ̂γ2 ≤ ψQ,
ρ̂γ1 ≤ ρV ≤ ρQ ≤ ρ̂γ2 ,

(19)

Such spirals can be compared only if γ1 lays in Z2, i.e.
ρ̃γ1 > Rδ .

Proposition 1: Given Q and V and the path γ1 and γ2
defined above, it holds:

T (γ2) = Tγ2 ≥T (γ1) = Tγ1 .
To prove this proposition we need the following:

Lemma 4.1: Given x,y,z∈ (0,∞) with x≥ y and z≥ 1, the
following conditions are equivalent

i) x≤ z
√

xy,

ii) y≥
√

xy
z

,

iii)
√

xy(z+1/z)≥ x+ y.
Proof: The equivalence between i) and ii) follows

immediately observing that

y≥
√

xy
z
⇔ 1

y
≤ z
√

xy
⇔
√

x
y
≤ z ⇔ x≤ z

√
xy.

On the other hand condition iii) can be rewritten as

(z2 +1)
√

xy− z(x+ y)
z
√

xy
≥ 0,

whose solutions z≥ 1 satisfy

z≥ (x+ y)+(x− y)
2
√

xy
=

√
x
y
.

We can now prove the Proposition 1.
Proof: The minimum time to cover the paths γ1 and γ2 is
given by

Tγ1 =
ρQ−ρ̂γ1

cosφ
+b(ψQ− ψ̂γ1)+

ρV−ρ̂γ1
cosφ

+b(ψ̂γ1 −ψV )+2bφ

=
ρQ+ρV−2ρ̂γ1

cosφ
+b(ρQ−ρV )+2bφ ,

Tγ2 =
ρ̂γ2−ρQ

cosφ
+b(ψQ− ψ̂γ2)+

ρ̂γ2−ρV
cosφ

+b(ψ̂γ2 −ψV )+2bφ

=
2ρ̂γ2−(ρQ+ρV )

cosφ
+b(ρQ−ρV )+2bφ .



By subtraction one gets

Tγ2 −Tγ1 =
2

cosφ
(ρ̂γ1 + ρ̂γ2 −ρQ−ρV ).

The conclusion Tγ2 −Tγ1 ≥ 0 is equivalent to ρ̂γ1 + ρ̂γ2 ≥
ρQ + ρV that follows from Lemma 4.1 with x = ρQ, y =

ρV and z = e
ψQ−ψV

2 cotφ . Indeed, the condition ρQ ≤ ργ2 , in
(19), is x ≤ z

√
xy. From Lemma 4.1, this is equivalent to√

xy(z+1/z)≥ x+ y and hence the thesis.

B. Case 2: Comparison between pairs of involutes

Consider two points Q and V with ρQ = ρV we set βQ =
−βQ = arccos Rb

ρQ
. From the equation of involutes (9), ψQ and

ψV are obtained and |ψQ−ψV |= Q̂OWV = ∆ψ > 0;
Consider the two possible concatenations of involute

curves from Q to V :

C1 = I+Q ∗ I−V , C2 = I−Q ∗ I+V .

Those curves can be compared only if C2 lays inside Z1. As
proved in [8], denoting by `(γ) the length of the path γ , there
exists ρ̄ >

√
2Rb such that{

`(C1)≤ `(C2) ρQ ≥ ρ̄,

`(C2)≤ `(C1) ρQ ≤
√

2Rb.

On the other hand the following identities are straightforward
to check for an arbitrary involute arc I from Q to V and
curves C1, C2:

T (I) = `(I)+b| tanβV − tanβQ|
T (C1) = `(C1)+2b(tanβQ− tanβH1)+2bβH1
T (C2) = `(C2)+2b(tanβH2 − tanβQ)+2bβH2 ,

where we have denoted by Hi the switching point between
the involutes in the Ci curve, i = 1,2. As a consequence,
since by construction βH1 < βH2 , one can infer that

T (C1)≤T (C2) for ρQ ≥ ρ̄.

The converse case ρQ ≤ ρ̄ leads to different scenarios,
depending on several parameters: the radius ρQ itself, the
angle ∆ψ and the weight parameter b. We will highlight this
fact through some illustrative examples. Prior to present the
numerical tests, we introduce a helpful result.

Example 1: Let us consider ρQ =
√

2Rb with Rb = 1, that
is βQ = π/4. Fig. 3 illustrates the behavior of T (C1)−
T (C2) for different values of b as ∆ψ varies in [0,2β̄ ],
with tan β̄ − β̄ = π/4, i.e. β̄ ∈ [0, π/4]. Notice that, small
values of β̄ correspond to small values of ∆ψ and viceversa.
It can be easily observed that, as b increases, the measure
of the interval of positivity of T (C1)−T (C2) decreases.
In particular, there exist values of b such that C1 is shorter
in time with respect to C2. On the other hand, in general,
for small amplitude of spanned angles, i.e. small values of
β̄ , along the circumference of radius

√
2Rb the fastest path

is C2 while for large amplitude of spanned angles, i.e. large
values of β̄ , the fastest path is C1. Hence, the fastest path
depends on the initial and final configurations.

Example 2: In this second example we would like to
illustrate the behavior of T (C1)−T (C2) as βQ varies. To

this end, let us consider b = 0.08 and evaluate the time-
costs for different values of βQ as ∆ψ varies in [0,2β̃ ] where
tan β̃ − β̃ = π/6. Notice that, as expected, for small values
of ∆ψ the fastest path is C2 while for large values of ∆ψ

the fastest path is C1 (see Fig. 4).
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Fig. 3. Evaluation of T (C1)−T (C2) with βQ = π/4 for different values
of the parameter b.

0.00 0.02 0.04 0.06 0.08 0.10

�0.04

�0.02

0.00

0.02

0.04

0.06

0.08

�Ψ

T
Β0�Π�6
Β0�Π�5
Β0�Π�4
Β0�17Π�64

Fig. 4. Evaluation of T (C1)−T (C2) with b = 0.08 for different values
of the heading angle βQ.

C. Case 3: Comparing pairs of spirals with pairs of involutes

We are now able to consider the cases in which one
of the spiral pairs or the involute pairs intersect Z1 or Z2,
respectively. We hence consider two points Q and V on the
circumference Cδ = Z1 ∩ Z2, refer to Remark 1, such that
Q̂OWV =∆ψ . Let us consider the pair of spirals γ1 = T−Q ∗T+

V
with switching point H1 and the pair of involutes C2 = I+Q ∗I−V
with switching point H2 such that ∆ψ = 2(tan(δ/2)−δ/2−
tan(βH2)+ βH2). The time costs of the two concatenations
are given by the following formulae:

T (γ1) = 2Rh(e
∆ψ

2 cot δ
2 −1)

cos2 δ
2

+b∆ψ +bδ

T (C2) = Rh

(
1

cos2 δ
2
− 1

cos2 βH2

)
+2b(tan δ

2 − tanβH2)+2bβH2 .

Proposition 4.1: The difference T (γ1)−T (C2) does not
depend on the parameter b, i.e.

T (γ1)−T (C2) = `(γ1)− `(C2).

Proof: In order to prove the statement it is sufficient
to observe that tan δ

2 − tanβH2 +βH2 =
∆ψ

2 + δ

2 .
Due to the proposition above, the behavior of the concatena-
tions is completely determined by the length of the paths; to



this purpose, in the next result we state a necessary condition
for the ordering of `(γ1) and `(C2).

Lemma 4.2: The following condition holds true:

`(γ1)> `(C2) if ∆ψ > 2log
3
2

tan
δ

2
=: δ̃

Proof: For space limitations we can not report here
the length of the paths γ1 and C2 that can be computed by
the equations of 2T (TQ,H1) and of 2T (IQ,H2) with b = 0.
Indeed, imposing b = 0 the minimum time corresponds to
a minimum lenght. A sketch of the proof follows. The
statement can be verified observing that

`(γ1)− `(C2) =
2e

∆ψ

2 cot δ
2 −3

cos2 δ

2

+
1

cos2 βH2

and hence 2e
∆ψ

2 cot δ
2 > 3⇒ `(γ1)> `(C2).

In order to illustrate the converse case ∆ψ < δ̃ , we present
the following examples.

Example 3: Setting Rh = 1, the difference `(γ1)− `(C2)
has been evaluated as β varies in [0,δ/2], that is ∆ψ ∈
[0,2tan(δ/2)−δ ], for different values of δ/2. Referring to
Fig. 5, it can be noticed that, if δ/2 ≤ π/5, the inequality
`(C2)≥ `(γ1) holds true for any β ∈ [0,δ/2]; conversely, if
δ/2 > π/5 then `(C2)< `(γ1) for large values of β .

Example 4: Setting again Rh = 1, the difference `(γ1)−
`(C2) has been evaluated as δ/2 varies in [π/8,π/2] for
different values of ∆ψ . As clearly shown in Fig. 6, all
depicted curves share the same behavior: for any given ∆ψ ,
the curve C2 is faster than γ1 for small values of δ/2.
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Fig. 5. Evaluation of T (γ1)−T (C2) for different values of the angle δ/2.

V. CONCLUSION AND FUTURE WORKS

In this paper we have approached the study of minimum
time trajectories for a differential drive robot, which is
equipped with a fixed and limited Field-Of-View (FOV)
camera, towards a desired configuration while keeping a
given landmark in sight during maneuvers. We have started
comparing some concatenations of extremals in order to
reduce the complexity of the problem toward the definition
of a sufficient finite set of optimal maneuvers.

Still some work must be done to conclude the analysis
of optimal trajectory in order to exclude other concatena-
tions. For example, concatenations of involutes or spiral
with straight arc should be considered. Moreover, the time
optimal synthesis with feedback control law is also under
investigation.
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Fig. 6. Evaluation of T (γ1)−T (C2) for different values of the spanned
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