
A Subgradient Based Algorithm for Distributed Task Assignment for
Heterogeneous Mobile Robots

Alessandro Settimi and Lucia Pallottino

Abstract— In this paper the problem of assigning tasks to a
set of mobile and heterogeneous robots based on their ability
and their costs to accomplish a task is considered. Moreover,
the dynamics of the robot and a private cost function to be
optimized together with the assignment are also taken into
account. To deal with a possibly high number of tasks and
robots a distributed approach based on the subgradient method
is used. A local dynamic optimal control and task assignment
problem based on the information exchanged through a com-
munication network are solved. With the proposed dynamic
approach different types of kinematic vehicles with different
motion constraints can be taken into account.

I. INTRODUCTION

In an industrial environment, autonomous vehicles and
more in general all robots can accomplish a large variety
of tasks depending on their peculiarities. For example, an
autonomous vehicle can carry materials across a warehouse,
put materials on conveyor belts while a robotic arm may
be able to accomplish tasks such as welding, screwing,
assembling, etc.. In a scenario with different task typologies,
it’s natural to try to assign a task to the most appropriate
robot.

At this point, after defining an optimality criterion, an
optimal task for a robot can be found. If every robot has a
specific optimal task, the problem resolve itself. But, if two
or more robots have some conflicts on the task to execute
this must be resolved to continue normal workflow. In such
cases an assignment that will be in some sense optimal for
the multi-robot system as a whole must be found.

Several algorithms that solve this problem with a cen-
tralized and a distributed approaches have been developed
in the literature. The need of a distributed architecture
occurs whenever there is a high number of robots and
whenever we are interested in exploiting the benefits of the
distributed systems (absence of a central unit, robustness
to faults, scalability, heterogeneity, changes in the number
of robots, etc.). Algorithms, in this case, must cope with
issues that typically occur in the distributed systems such
as the communication architecture, difficulty in proving the
convergence of algorithms, etc..

The Distributed Task Assignment Problem is a well-known
problem in Decision and Control Theory. Several works
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have been made over the years, involving many different
approaches.

For example, the works supervised by J. How use various
methods to achieve the assignment: consensus and auction
approach, for which the CBAA and the CBBA algorithms
are proposed ([1]), implicit coordination ([2]) and other
approaches (e.g. [3], [4]). Alami et al. have proposed the
M+ algorithm and the Contract-Net protocol ([5], [6]). Other
relevant examples of approaches are the distributed simplex
([7]), attraction fields ([8]), auction approach ([9], [10],
[11], [12]), swarm approach ([13], [14]). Examples of the
application to multi-robot systems can be found in [15], [16],
[17]. In general, due to the distributed fashion of the problem,
most of the algorithms do not ensure that an optimal solution
is achieved.

The problem we want to solve in this paper is to obtain
the optimal assignment for heterogenous robots based on
the robots ability in accomplish tasks. Moreover, we also
want to take into account the ability/cost of the robot
to physically reach the task to accomplish. Indeed, in an
industrial environment with various tasks and robots, it’s
reasonable to assume that a task is going to be performed
by a robot (able to accomplish it) that is sufficiently close
to it. This means that the concept of neighborhood between
tasks and robots, and between robots and other robots as
well, becomes important and must be taken into account.
Moreover, each robot may have also a private cost function
(other than the assignment cost) that it wants to optimize.
For example a low battery robots may prefer to minimize
energy consumption while a robot handling urgent material
may prefer to minimize the time to accomplish a task. To
solve this problem, a Complete Assignment Problem ([9]) is
considered together with the vehicle dynamics and the private
costs in a distributed approach. The proposed approach is
based on the dual decomposition method of the subgradient
method and, in those terms, it is similar to the work proposed
in [18] and [9].

K. Hirayama et al. ([18]) present an algorithm for GAP
(Generalized Assignment Problem) based on the dual decom-
position method and the subgradient method. The problem
addressed in [18] allows each robot to have more than one
assigned task. In this case, the robots need to exchange
additional information, with respect to the typical infor-
mation needed by the subgradient method, to detect that
convergence of the algorithm has been obtained. Finally, they
don’t provide the theoretical foundation of the dual variable
update law that is different from the one we will determine.

The other main work related to this paper has been



proposed by D. Bertsekas in [9] where the auction algorithm
has been introduced for the first time. A comparison with
the subgradient method is made, but since the subgradient
method requires the existence of a unique optimal solution,
he proceed with a different approach in which, at each step,
a dual variable component is updated instead of the entire
vector.

As first contribution we provide the model of the con-
sidered problem as an optimization problem in which the
optimization variables are the assignment values and the
robot control inputs. In particular, the optimization takes into
account both the assignment costs and the robots’ private
cost functions. To distribute the overall computation to single
robots, the problem is thus decoupled into subproblems using
the subgradient method. Moreover, we provide a convergence
condition that can be checked, locally by each robot, without
the need of sending further information other than the locally
computed vector (a subgradient vector). Finally, the proposed
algorithm is described and tested in simulation in different
scenarios.

A. Problem Formulation

For reader convenience, and to introduce the notation used
in the paper, in this section we briefly report the classical
task assignment problem [19]. Consider an environment with
n robots Ri and n tasks Ti, and the problem of optimally
assigning a task to each robot where each task has an
associated cost for each robot. We consider a cost matrix
C and an assignment matrix A:

C ∈ Rn×n A ∈ {0; 1}n×n (1)

where the element Ci,j is the cost of task Tj for robot Ri
while with ai,j = 1 (ai,j = 0) we denote that robot Ri is (is
not) assigned to task Tj . The maximal complete assignment
problem can be written as follows:

min
A

∑
i,j

cijaij

n∑
j=1

aij = 1 ∀i = 1, . . . , n

n∑
i=1

aij = 1 ∀j = 1, . . . , n

A ∈ {0; 1}n×n ,

(2)

where
∑
i,j

cijaij is the so called loss function that we want

to minimize.
The n constraints

n∑
j=1

aij = 1, ∀i = 1, . . . , n can be

written in matrix form as A1 = 1 where 1 ∈ Rn is the
vector with element 1 in any component. Those constraints
impose that no more than one task can be assigned to

a single robot. Similarly, the n constraints
n∑
i=1

aij = 1,

∀j = 1, . . . , n can be written in matrix form as 1TA = 1T .
Those constraints impose that each task is assigned to at
most one robot. Concluding, the constraints of the stated
task assignment problem imply that the assignment matrix
A is doubly stochastic.

Consider the n2 dimensional column vector cT =[
cT1 , . . . , c

T
n

]
where each component ci of c is a row of

matrix C, i.e. cTi = [Ci1, . . . , Cin]. Similarly, consider
the n2 dimensional column vector xT =

[
xT1 , . . . , x

T
n

]
where each component xi of x is a row of matrix A, i.e.
xTi = [Ai1, . . . , Ain]. The task assignment problem (2) can
be written in the vector form:

min
x
cTx

1Txi = 1 ∀i = 1, . . . , n
n∑
i=1

eTj xi = 1 ∀j = 1, . . . , n

x ∈ {0; 1}n
2

(3)

where the vector ei represents the i-th vector of the canonical
basis of Rn.

The model falls in the Binary Integer Programming prob-
lems (BIP), a particular case of Integer Linear Programming
(ILP).

II. THE OPTIMAL CONTROL PROBLEM FOR TASK
ASSIGNMENT

In the considered problem, tasks are assigned to mobile
robots and thus the assignment costs will depend on the time
needed by the robots to physically reach the task other than
the ability of the robot to accomplish it. For this purpose we
introduce a term d ∈ Rn2

to take into account, in the loss
function, the costs to reach the goal. Thus the considered
problem can be modeled as:

min
x

(c+ d)
T
x

1Txi = 1 ∀i = 1, . . . , n
n∑
k=1

eTj xk = 1 ∀j = 1, . . . , n

x ∈ {0; 1}n
2

.

(4)

The introduction of vector d gives us more flexibility in
the characterization of the loss function that depends on the
assignment robot-task. Hence, other than including motion
costs, the presence of d allows us to include in the loss
function also terms that depend only on tasks (e.g., priorities,
deadlines, activation/deactivation) or only on robots (e.g.
energy status). With this approach, we model the battery
charge necessity as a typical industrial task. For example,
d ∈ Rn2

may represent the distance vector between the
robots and the tasks that is updated over time. Depending on
the robot kinematics and motion constraints the time or path
length to reach a task may depend also on the orientation. For
example, in case of non-holonomic vehicles such as Dubins
vehicles (with minimum turning radius), d may represent
the minimum Dubins paths lengths for the agents toward the
tasks (an example of allocating tasks for Dubins vehicles can
be found in [20]), see Fig. 1. As another example, in case of
differential drive vehicles, the time to turn on the spot may
also be considered in the term d, see Fig. 2.

Hence, the introduction of term d leads to a more realistic
assignment in real multi-robot mobile systems. Fig. 3 shows



Fig. 1: Path traveled by a Dubins vehicle R toward a task
T .

Fig. 2: Path traveled by a differential drive vehicle R toward
a task T .

that, though the Dubins robot R is closer (for the Euclidean
distance) to T1 than to T2, the best assignment is task T2
that can be reached in less time or with a shorter path.

Using the technique shown in [21], we want to include
the dynamic Di of the robot in the assignment problem.
Furthermore, we want to consider the possibility that each
robot is interested in optimizing a private cost such as the
energy consumption, (maximizing) the distance from other
robots for safety purposes, (minimizing) the distance to
points of interests to be monitored etc. For this purpose,
let zi be the robot state vector and ui the control input.
We denote with zi = (zi, ui) and we consider a local cost
function Ji(zi) that depends only on robot i. Considering the
vector z = (z1, . . . , zn) and D = (D1, . . . , Dn), the overall

Fig. 3: Euclidean and Dubins Distances

model for the considered problem is thus

min
x,z

J(z) + (c+ d)
T
x

z ∈ D
1Txi = 1 ∀i = 1, . . . , n
n∑
k=1

eTj xk = 1 ∀j = 1, . . . , n (∗)

x ∈ {0; 1}n
2

(5)

Notice that, in (5), heterogeneous robots can be taken into
accounts with different dynamics, different speed constraints
etc.

III. A SUBGRADIENT DUAL METHOD-BASED
ALGORITHM

The constraint (∗) in (5) is the so-called coupling con-
straint of the problem, because it involves all the vectors
xk. Thus, a dual decomposition method ([22]) is applied to
decouple the constraint and distribute the problem resolution.
For the sake of clarity, we briefly report the theory of the
subgradient dual methods (see e.g. [22]). A problem in the
form: 

min
x1, x2

f1(x1) + f2(x2)

s.t. x1 ∈ C1, x2 ∈ C2

h1(x1) + h2(x2) = 0,

(6)

has associated dual function

g(λ) = inf
x1∈C1, x2∈C2

L(x1, x2, λ)

= inf
x1∈C1, x2∈C2

(f1(x1) + f2(x2) + λT (h1(x1) + h2(x2)))

= inf
x1∈C1

(f1(x1) + λTh1(x1))+

inf
x2∈C2

(f2(x2) + λTh2(x2)).

The dual problem can be distributed by fixing dual variable
λ and defining two subproblems:

{
min
x1

f1(x1) + λTh1(x1)

s.t. x1 ∈ C1

{
min
x2

f2(x2) + λTh2(x2)

s.t. x2 ∈ C2

with optimal values g1(λ), g2(λ). A first value of λ is
assigned to the subproblems and it is updated as follows:
• compute a subgradient hi(x̄i) ∈ ∂λ(−gi), where x̄i is

the optimal solution of subproblem i and ∂λ(−gi) is the
subdifferential of −gi1 with respect to λ;

• compute the sum of all the subgradients σ = h1(x̄1) +
h2(x̄2) ∈ ∂λ(−g)

• the master algorithm updates λ with λ + ασ where
α > 0 is an update step parameter. The obtained value
is used by the subproblems and the iteration continues
until convergence.

In case of convex functions fi and hi, by choosing an
appropriate update step, convergence can be ensured.

Regarding problem (5), the dual decomposition method is
applied considering constraint (*) as the one to be included

1Notice that the dual problem of (6) consists in maximizing g(λ) and
hence minimizing −g(λ).



in the Lagrangian function. Hence, let µT ∈ Rn be the
Lagrange multiplier vector associated with the coupling
constraints (*) in (5), i.e.:

µTj →
n∑
k=1

eTj xk = 1 ∀j = 1, . . . , n

Notice that, the other constraints in (5), including the
dynamic equation constraint, depend on the robot’s internal
variables only (state, control and the robot’s assignment to
tasks) and hence they can be directly decoupled.

The dual problem associated to (5) is:
max
µT

g(µT ) = max
µT

inf
x, z∈D

L(z, x, µT )

s.t. 1Txi = 1 ∀i = 1, . . . , n

x ∈ [0; 1]
n2

(7)

where

L(z, x, µT ) = J(z) + L̃(x, µT ),

L̃(x, µT ) = (c+ d)
T
x+

n∑
j=1

µTj

(
n∑
k=1

eTj xk − 1

)
.

As a consequence:

g(µT ) = inf
z∈D

J(z) + inf
x
L̃(x, µT ).

Since J(z) does not depend on µT , the goal is now to mini-
mize the function −g̃(µT ) = − inf

x
L̃(x, µT ) with respect to

µT with constraints in (7). Furthermore, recall that J(z) can
be straightforwardly decoupled.

Notice that in (7), we have relaxed the boolean constraint
x ∈ {0; 1}n

2

to apply the dual decomposition method.
We made this choice to have a convex domain to use the
subgradient method for convex functions that is known to
converge to the optimal solutions under some conditions. On
the other hand, this choice does not represent a problem since
L̃ is affine in x and it attains its minimum on the domain’s
border, i.e. the optimal solution is in x ∈ {0; 1}n

2

.

We can rewrite the Lagrangian L̃ as follows:

L̃(x, µT ) =

(
c1 + d1 +

n∑
j=1

µTj
ej

)T
x1+

+ · · ·+

(
cn + dn +

n∑
j=1

µTj
ej

)T
xn −

n∑
j=1

µTj

= (c1 + d1 + µT )
T
x1 − µT1︸ ︷︷ ︸

L̃1

+

+ · · ·+ (cn + dn + µT )
T
xn − µTn︸ ︷︷ ︸

L̃n

= (c1 + d1 + µT )
T
x1 − µTT e1︸ ︷︷ ︸

L̃1

+

+ · · ·+ (cn + dn + µT )
T
xn − µTT en︸ ︷︷ ︸

L̃n

.

(8)

In our case, the dual problem is subdivided into n sub-

problems of the form
inf
zi
Ji(zi) + max

µT

g̃i(µT )

s.t.1Txi = 1
xi ∈ [0; 1]

n

(9)

where g̃i(µT ) = inf
xi

(ci + di + µT )
T
xi − µTT ei with one

of the possible subgradients

σi = xi − ei ∈ ∂µT
(−g̃i),

that must be send to other robots to compute the total
subgradient σ:

σ =

n∑
i=1

σi. (10)

After computing the total subgradient σ each robot use it to
update the vector µT as described in the following algorithm.

A. The Algorithm

The Lagrangian function to be minimized by robot i is

Li = Ji(zi) + [di + ci + µT ]
T
xi − µTT ei. (11)

The proposed algorithm is

Algorithm 1
1: set µT = 0
2: repeat
3: x∗i = arg min

xi,zi∈Di

Li(zi, xi µT )

s.t. 1Txi = 1, xi ∈ [0; 1]n

4: send σi = x∗i − ei to other robots
5: receive the subgradients σj = x∗j − ej from other

robots
6: compute total subgradient σ =

n∑
i=1

σi

7: update the Lagrange multiplier vector µT with:
µT := µT + αpσ

8: until µT converge

where αp > 0 is the update parameter at step p to be
chosen.

During the execution of the algorithm the total subgradient
σ changes its value until it converges to the vector 0. When
this occurs the founded solution is feasible. Indeed, a vector
σ =

n∑
i=1

σi =
n∑
i=1

[xi − ei] = 0, from the definition of vectors

xi, is possible only if there is only one value 1 in each row
and column of A and hence if the solution matrix A is doubly

stochastic. This leads to have
n∑
i=1

xi = 1 and due to the fact

that
n∑
i=1

ei = 1 from definition, we have σ = 0. Concluding,

the convergence to σ to 0 implyies that a feasible and hence
optimal solution has been found.

In order to have a distributed assignment, robot must
communicate their subgradient to all the other robots through
a communication network that may be not complete (i.e. we
can not assume that any robot is always able to communicate
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Fig. 4: Static example in symmetric configuration

with all others since communication is often limited in
range). Several classical approaches can be used to tackle this
problem. For example a piggybacking message can be used
to communicate the subgradient while executing a classical
distributed spanning three construction, see e.g.[23] under
the assumption of a strongly connected network.

Notice that also a classical consensus approach can be
used by robots to compute σ. Indeed, if the communication
network is connected the consensus is known to converge
toward the centroid of the initial values of the subgradient.
Hence, the consensus will converge toward 1

n

∑n
i=1 σi = 1

nσ
and each agent can compute the desired value for the dual
variable update by simply multiplying the obtained value by
n.

IV. SIMULATIONS

Several simulations have been conducted to test the valid-
ity of the described approach. In the first set of simulations
both static (constant d) or dynamic cases are considered.
Assignment costs c and tasks positions and robots initial
configurations have been randomly generated. A constant
update value αp = 0.1 has been used. In this set of sim-
ulations homogeneous unicycle robots are considered while
Euclidean distances and time spent by the robots to turn on
the spot are taken into account. A complete communication
graph has been used since we are interested only in the dual
subgradient method. Results have been reported in I.

From simulations in static case there exists initial config-
urations that cause a particular symmetry in the problem (in
particular in the costs c and d) leading to the proposed al-
gorithm to switch between two or more possible assignment
of equal cost, see Fig. 4. As expected, the simulation results
in a continuous oscillation of the assignment. Notice that in
the dynamic case this does not occur since motion breaks the
initial symmetry. For example, the same symmetric scenario
of Fig. 4 is tested in the dynamic case and the system
evolution is reported in Fig. 5. The motion of the robots
leads to an unbalanced cost vector and the optimal solution
is found.

An example of assignment for 10 robots is shown in Fig.
6. For these simulations we have supposed that the task it’s

��

��

��

��

�� ��

Fig. 5: Dynamic Example

Fig. 6: Example with n = 10 robots that have to reach a
point in the motion space

simply to achieve a certain point in the space. During the
execution, robots go to the associated task which may change
in time. At the end every robot has reached a different task
and the obtained assignment is the optimal one. Notice that
some robots change their direction when the assigned task
changes during the algorithm execution.

Since robots send one message at each step of the algo-
rithm, the total amount of messages is equal to the number
of robots multiplied for the number of steps for convergence.
We recall that the only information required for the proposed
algorithm to converge toward the optimal solution is the robot
computed subgradient. Hence a total of n2 bits of payload
are sent through the network at each step.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, a novel algorithm for optimal control
and distributed task assignment based on the subgradient
dual method is presented for mobile robots. The proposed
method allows to take into account robots with different
characteristics and dynamics, more in general to consider



average total total
n convergence sent sent

steps messages Kbytes
3 51 153 0,17
5 76 380 1,16

10 98 980 11,96

TABLE I: Simulation results

heterogeneous robots. In particular, eventually the optimal
assignment depends also on the path that robot must follow
to reach the task and not only its ability to accomplish it.
Moreover, symmetric configuration that lead to assignment
of equal optimal cost in the static case are solved when
the problem is solved during robot motion. This makes
the proposed approach more realistic and useful in mobile
systems.

A formal robustness analysis of the proposed approach
is part of our future work. However, for small errors, for
example on the robots and tasks position, the algorithm still
work correctly.

Several extensions of the proposed approach are part of on
going research such as the case in which the number of tasks
and robots is different and the private cost function depends
on the assignment values.
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