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Abstract— This paper presents a methodology to accurately
record human finger postures during grasping. The main
contribution consists of a kinematic model of the human hand
reconstructed via magnetic resonance imaging of one subject
that (i) is fully parameterized and can be adapted to different
subjects, and (ii) is amenable to in-vivo joint angle recordings
via optical tracking of markers attached to the skin. The
principal novelty here is the introduction of a soft-tissue artifact
compensation mechanism that can be optimally calibrated in a
systematic way. The high-quality data gathered are employed
to study the properties of hand postural synergies in humans,
for the sake of ongoing neuro-science investigations. These
data are analyzed and some comparisons with similar studies
are reported. After a meaningful mapping strategy has been
devised, these data could be employed to define robotic hand
postures suitable to attain effective grasps, or could be used as
prior knowledge in lower-dimensional, real-time avatar hand
animation.

I. INTRODUCTION

In the field of robotic grasping with anthropomorphic hands,
robots can learn from the way humans grasp. For example,
postural synergies [1] utilized by humans can be mapped to
a robotic hand, so that hand postures can be more easily
commanded. This paper deals with the challenge of how
to suitably record human finger postures during grasps.
To combine high accuracy with low data dimensionality,
optical position measurements need to be combined with
an accurate kinematic model of the hand. Commonly, such
models are constructed of serial chains of rotation axes, and
their kinematics is quite suitable for modelling the movement
of the skeleton. In [2], a 22 Degrees of Freedom (DoFs)
model of the hand has been employed to reconstruct hand
posture based on optical markers data. However, what was
not considered is that the skin moves relatively to the bones,
introducing what is called in literature a soft-tissue artifact
(STA) when measuring skeletal movement by tracking skin
markers.
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In [3], magnetic resonance imaging (MRI) was used to
measure the STA in different hand postures. Based on the
model by Zhang et al. [4], we propose an extension to 3D
and validate it using the aforementioned MRI data as ground
truth.
The skin movement model is incorporated into a 26 DoFs
kinematic hand model, which allows to take into account
the differences between hands of different subjects with a
calibration phase.
An algorithm, based on [5] where a probabilistic inference
framework is introduced to concurrently estimate joint angles
and model parameters, is developed; still, the calibration
phase is kept separated in order to avoid parameters drift.
A similar approach has been used by [6], with a 29 DoFs
model (23 + hand position and orientation), static geo-
metric calibration, an assumption for STA compensation,
and linearizing state estimation to retrieve joint angles. The
algorithm here developed uses instead an optimization to
calibrate model parameters, the used STA compensation
mechanism has been validated, and postures are identified via
an iterative state estimation procedure for improved results.
The proposed methods are used to reconstruct hand postures
during grasps of imagined objects and analyze them by
means of Principal Component Analysis (PCA). Results are
compared with the ones described in [7], where authors used
a glove–based hand pose reconstruction system (CyberGlove;
Virtual Technologies, Palo Alto, CA) to record hand postures
of five subjects, who were asked to shape their right hand as
if to grasp and use a large number of familiar objects.

II. DESCRIPTION OF THE KINEMATIC MODEL

The kinematic model of the human hand with respect to the
forearm is devised as a kinematic tree, whose root node con-
sists of the Cartesian reference frame {B} (rigidly attached
to a bracelet fastened to the forearm) and whose leaves are
the frames fixed to the distal phalanxes (PDs) of the five
fingers, as depicted in Figure 1. The five paths to the PDs
have a common segment through the wrist joint, centered
at point W , and then branch out from the MC2 (metacarpal
bone of the index) as serial kinematic chains.

A. Hand posture parametrization

To efficiently parameterize the posture of the j−th phalanx in
the i−th finger chain, we employ the Product of Exponentials
(POE) formula [8], i.e.

gBFij
(θi) =

[ j∏
k=1

eξ̂ikθik
]
gBFij

(0). (1)
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Fig. 1: Human hand kinematic model.

Here, the ξ̂ik’s are the twists of the joints defining the
kinematic chain of the i−th finger, θi = [θi1 · · · θik · · · θij ]T
are the exponential coordinates of the 2nd kind for a local
representation of SE(3) (Special Euclidean group, 4 × 4
rototranslation matrices) [9] for the j−th phalanx in the i−th
finger, and gPBij (0) is its initial configuration.

Twist components have to be expressed in the common
base frame {B} and in the reference posture for the hand,
i.e. when θik = 0. Therefore, it is possible to write more
explicitly ξij = bξij , where the left superscript describes the
reading frame, in accordance with [10]. To express it in a
different frame, one must employ

bξij = Adgba(0)
aξij , (2)

where gba(0) is the posture of {A(0)} w.r.t. {B} and the
Adjoint transformation Adg is a map between different
expressions of the same twist in different reading reference
frames.

B. Hand velocity parameterization

The POE parameterization of the hand posture can be
profitably employed for computing the rigid-body velocity
of each phalanx. As we shall see, this quantity is key for
systematically calculating the linear velocity of the optical
markers attached to the bone or to the skin.

The rigid-body velocity V̂
Fij

BFij
of {Fij} in the moving

frame {Fij} is given (as a 4 × 4 matrix) by the following
formula

V̂
Fij

BFij
:= g−1

BFij
ġBFij

=

[
ω̂
Fij

BFij
v
Fij

BFij

0 0

]
(3)

where, given RBFij
the 3 × 3 rotation matrix from {B} to

{Fij}, ω̂
Fij

BFij
:= RTBFij

ṘBFij
is the skew-symmetric matrix

of the angular velocity components (in {Fij}) of {Fij} w.r.t.
{B}, and v

Fij

BFij
= RTBFij

ḋBFij
are the components (in

{Fij}) of the velocity of the origin OFij
with respect to

OB . Equation (3) can be rewritten (as a 6 × 1 vector) in a
convenient form by factoring out the joint velocities θ̇i of
the i−th finger as follows

V
Fij

BFij
= J

Fij

BFij
(θi) θ̇i, (4)

where the distal Jacobian J
Fij

BFij
can be computed as (k =

1, . . . , j)

J
Fij

BFij
(θi) =

[
ξ†1 · · · ξ

†
j

]
; ξ†k = Ad−1

g k+1,Fij
ξk, (5)

where we defined gk+1,Fij := eξ̂k+1θk+1 · · · eξ̂jθjgBFij (0),
with gj+1,Fij

= gBFij
(0).

Since we will be interested in calculating the velocity
v
B,[OFij

]

BFij
of the origin OFij

w.r.t. OB in {B} components1,
we also define the hybrid rigid-body velocity

V
B,[OFij

]

BFij
:=

[
ω̂BBFij

v
B,[OFij

]

BFij

0 0

]
= Ad(RBFij

,0) V
Fij

BFij
.

(6)

A convenient form where the joint velocities θ̇i of the i−th
finger are factored out is given by the following expres-
sion

V
B,[OFij

]

BFij
= J

B,[OFij
]

BFij
(θi) θ̇i, (7)

where, defining ξ]k = Ad(RBFij
,0) Ad gFij,k+1

ξk, the

hybrid Jacobian J
B,[OFij

]

BFij
can be computed as (k =

1, . . . , j)

J
B,[OFij

]

BFij
(θi) =

[
ξ]1 · · · ξ

]
j

]
; , (8)

C. Modelling bone markers

To use the local frame {Mij} with the origin coincident with
the optical marker attached to the same phalanx, we could
simply add a local transformation such that

gBMij (θi) = gBFij (θi)gFijMij . (9)

1It is worth observing that the apparently cumbersome expression

v
B,[OFij

]

BFij
is simply d/dt(pBFij

). The indirect route followed for its

derivation is due to the different meanings of the linear velocities v
Fij

BFij

and vBBFij
.



Fig. 2: Model for markers on a joint moving with the skin.

D. Modelling joint markers

For optical markers close to areas where the skin stretch
is not negligible, a kinematic model considering the marker
frame fixed to some bone would give poor results because of
STA, as shown by the experiments presented in Sec. III. In
order to tackle this, we include a skin stretch compensation
mechanism specific for joint markers.

Joint marker displacement is influenced by the rotations of
the joints above which it is positioned, besides the rotations
of the proximal joints. However, the rotations of the last
joints in the virtual chain θ̃(θ) are (possibly nonlinear)
functions of the joint angles θ. To keep things relatively
simple we modeled this with linear functions

θ̃i(θi) = ciθi . (10)

Then, there is a constant offset transformation to account for
the posture of the marker frame in the initial configuration:
this can be recovered by direct inspection of Figure 2. Each
joint marker is characterized by the parameters ρ, δ, h, ci.
ρ, δ and h are the cylindrical coordinates of the marker
position in the initial configuration, while ci describe the skin
displacement (ci = 0, marker fixed to the proximal bone;
ci = 1, marker fixed to the distal bone). These parameters
can be calibrated once, as described in Sec. IV.

It is important to note that, given the joint marker direct
kinematics, the rigid-body velocity of the marker frame
can be computed by combining the contributions of (i) the
kinematic chain of the bones Jml0,m, and (ii) the Jacobian
∂θ̃/∂θ of the joint speeds θ̃ of virtual chain with respect to
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Fig. 3: Placement of the MRI-sensitive markers on the skin.
For validating the marker movement model, markers near the
MCP, PIP and DIP joints are considered.

the independent joint speeds θ, as follows

V ml0,m(θ, θ̇) = Jml0,m[θ1a, θ1b, θ̃2a(θ2a), θ̃2b(θ2b)]
∂θ̃

∂θ

∣∣∣∣
θ̃(θ)

θ̇

(11)

When the linear model in eq. (10) is adopted for the
description of the skin displacement, the explicit expression
for ∂θ̃/∂θ is given by

∂θ̃

∂θ

∣∣∣∣
θ̃(θ)

= diag(1, 1, c2a, c2b). (12)

Then, the hybrid version of eq. (11), can be recovered as
shown in eq. (7), and will be useful in the computation of the
residual Jacobian, as it will be explained in Sec. V, eq. (28).

III. VALIDATION OF THE SKIN MOVEMENT MODEL USING
MAGNETIC RESONANCE IMAGING

Here we use the MRI data measured in [3] as ground truth
to validate the skin movement model described in Sec. II-
D.

A. Measurement of skin movement

MRI-sensitive Soledum oil capsules (Casella-med, Cologne,
Germany; spheroids with diameter 7 mm and long axis
10 mm) are attached to the skin on the dorsal side of the hand
of one subject (Fig. 3) over the metacarpophalangeal (MCP),
proximal interphalangeal (PIP) and distal interphalangeal
(DIP) joints.



One posture (flat hand) is designated as the reference pos-
ture.

The soft tissue artefact (STA) is quantified as the distance
between the marker in the reference posture and the marker
in another posture:

sk = ||Ppm,k − Bpm,ref ||, (13)

where sk is the amount of uncompensated STA in posture
k, Bpm,k is the position of the marker with respect to bone
B in posture k and Bpm,ref is the position of the marker
with respect to the bone in the reference posture. Without
loss of generality, we choose to calculate with respect to the
proximal bone. The mean STA and its standard deviation are
shown in the second column of Table I.

B. Identification of joint axes

Our choice is to model PIP and DIP joints with one axis of
rotation (1 DoF), and the MCP joints with two intersecting
orthogonal axes of rotation (2 DoFs).

In 1-DoF joints, the modelled pose PTD,mod,k of the distal
bone D with respect to the proximal bone P in posture k can
be obtained via an homogeneous transformation:

PTD,mod,k = H
(

Ppa1,
Pa1, q1k

)
PTD,0, (14)

where Ppa1 ∈ R3 is a point on the rotation axis, Pa1 ∈ R3

is the rotation axis, q1k is the joint angle in posture k and
the operator H(p, a, q) produces an homogeneous matrix that
describes the general rotation:

H(p, a, q) =

(
Ra(q) (p− Ra(q) p)
0 1

)
, (15)

where Ra(q) is a matrix that describes a rotation around
an axis a that passes through the origin of the coordinate
system, and q is the rotation angle [9].

As initial pose, the measured pose in the reference posture
is taken:

PTD,0 = PTD,ref . (16)

In 2-DoFs joints, the rotation takes place around two rotation
axes:
PTD,mod,k = H

(
Ppa1,

Pa1, q1k

)
H
(

Ppa2,
Pa2, q2k

)
PTD,0.

(17)

The assumption of intersecting orthogonal axes im-
poses:

Ppa1 = Ppa2 and Pa1
Pa2 = 0. (18)

The residual transformation Tdiff,k between the modelled
bone pose PTD,mod,k and the measured bone pose PTD,k

is

Tdiff,k = PTD,k (
PTD,mod,k)

−1 =

(
Rdiff,k tdiff,k

0 1

)
. (19)

Rotational rr,k and translational rt,k residuals are:

rr,k = angle(Rdiff,k) and rt,k = ||tdiff,k||. (20)

mean STA (mm) ± SD optimized
joint uncompen- default optimized cross- parameters
name sated values values validated c1 c2
MCP1 3.2 ±2.6 2.3 ±1.5 2.0 ±1.4 2.5 ±1.5 0.5 0.4
MCP2 6.8 ±4.0 3.7 ±2.3 3.2 ±1.7 3.7 ±1.7 0.5 0.8
PIP2 2.5 ±3.3 1.4 ±1.0 0.8 ±0.4 1.1 ±0.6 0.8
DIP2 1.7 ±1.9 1.1 ±0.6 0.9 ±0.4 1.1 ±0.5 0.6

MCP3 6.6 ±5.0 2.8 ±2.1 2.0 ±1.2 2.2 ±1.3 0.6 1.2
PIP3 3.6 ±4.4 1.7 ±1.1 1.4 ±0.9 1.6 ±0.9 0.6
DIP3 1.7 ±1.6 1.7 ±1.2 1.2 ±0.9 1.1 ±0.9 0.4

MCP4 7.2 ±5.4 3.1 ±2.5 2.0 ±1.3 2.4 ±1.2 0.8 0.7
PIP4 3.0 ±3.6 1.7 ±1.2 1.5 ±1.1 1.6 ±1.2 0.6
DIP4 1.7 ±1.7 1.2 ±0.8 1.0 ±0.7 1.1 ±0.7 0.6

MCP5 6.9 ±4.5 4.6 ±2.4 2.8 ±1.6 3.5 ±1.8 0.5 0.2
PIP5 2.9 ±3.1 2.3 ±1.4 1.7 ±1.2 1.9 ±1.3 0.7
DIP5 2.1 ±1.7 1.7 ±1.1 1.3 ±1.0 1.4 ±1.0 0.7
mean 3.8 ±3.3 2.3 ±1.5 1.7 ±1.1 1.9 ±1.1

TABLE I: Validation of the skin movement model using MRI
measurements as ground truth.

The optimal axis positions Ppa1,opt and Ppa2,opt, the opti-
mal axis orientations Pa1,opt and Pa2,opt, and the optimal
joint angles Q1,opt = (q11,opt, . . . , q1np,opt) and Q2,opt =
(q21,opt, . . . , q2np,opt), are identified by minimising the mean
weighted sum of rotational and translational residuals.

C. Compensation of skin movement

The amount sresidual,k of residual STA is the distance
between the modelled and the measured marker posi-
tion:

sresidual,k = ||Ppm,k − Ppm,mod,k||. (21)

As described in Sec. II-D, the initial marker position Ppm0

and the proportionality factors c1 and c2 can be optimized
to best describe the skin movement. As a starting point, we
set

Ppm0,start =
Ppm,ref ,

c1,start = 0.5,

c2,start = 0.5.

The mean STA and its standard deviation obtained with these
values are shown in the third column of Table I.

The optimal skin movement parameters minimize the mean
amount of residual STA. The simplex algorithm by Nelder
and Mead [11], as implemented in Matlab, is used to find
the optimal parameters.

The mean STA and its standard deviation using the optimized
parameters, as well as the optimal parameters values, are
shown in the fourth, sixth and seventh column of Table I,
respectively.

A leave-one-out cross-validation is performed, and the re-
sulting mean and standard deviation of the STA are shown
in column five of Table I.

Notice that, although optimizing reduces the STA and gen-
eralizes well (cross-validation results are close to optimized
ones), even the starting point we chose is a substantial
improvement over the uncompensated values.



IV. CALIBRATION OF SUBJECT-SPECIFIC STATIC
PARAMETERS

In order to reconstruct realistic values of the joint angles
from markers data, the kinematic model employed should
mimic as closely as possible the actual kinematics of the
subject being recorded, identifying geometric parameters aG,
and the parameters aB and aJ controlling the location of the
bone and the joint markers, respectively.

At time instant k it is possible to define the residual

rk = r(xk; aG, aB , aJ) := yk − f(xk; aG, aB , aJ), (22)

where yk is the vector of markers coordinates measured by
the marker-based optical tracking motion capture system at
time k, and f(xk; aG, aB , aJ) represent the corresponding
coordinates when the joint angle values are set to xk and the
static parameters are set to the values aG, aB and aJ . Con-
sidering a number Np of training hand postures, being the
residuals in a unique vector R and x = [xT1 x

T
2 · · ·xTNp

]T , the
following scalar cost function is a measure of misfit:

g(x; aG, aB , aJ) :=
1

2
RTR =

1

2

Np∑
k=1

rTk rk . (23)

The calibration can thus be framed as the following con-
strained least-squares minimization problem

(x∗; a∗G, a
∗
B , a

∗
J) = argmin

xk∈Dx
a∈Da

g(x; aG, aB , aJ), (24)

where D# represents a feasibility region for the associated
quantity (e.g. box constraints for state variables or tolerance
regions around some initial guesses obtained, for example,
via caliper measurements for geometric parameters). In our
implementation, the solution of (24) is obtained employing
a primal-dual interior point method based on [12].

It is worth observing that the problem to be solved for the
calibration works on a high number of variables as it also
concerns finding the value of x∗, which is then discarded, but
this is not avoidable as we do not have any a priori estimate
of joint angles.

V. POSTURE RECONSTRUCTION

Since there are uncertainties in the model description and
noisy measurements, it is appropriate to consider the frame-
work of probabilistic inference.

Let xk denote the vector of all joint angles at time k, and
all parameters are considered known from the calibration. In
the following, let x̂ indicate an estimated quantity.

Let then y denote the coordinates of all markers measured
by the marker-based optical tracking motion capture sys-
tem.

For the process model we consider a random walk in the
state

xk+1 = xk + vk, vk ∼ N (0;Vk) (25)

where N (µ;M) is a normal distribution with mean µ and
covariance M , while, for the observation model of the
measurements yk, we use the direct kinematics relation-
ship

yk = f(xk) + wk, wk ∼ N (0;Wk) . (26)

Hence the residual is:

r(yk, xk) = yk − f(xk) = wk, rk ∼ N (0;Wk) . (27)

By differentiating eq. (27), the equation relating the Jacobian
of the residual Jr(x) and the kinematic (positional) Jacobian
Jf (x) is obtained as

Jr(x) = −Jf (x) , (28)

which can be composed using the elemental hybrid Ja-
cobians J

B,[OMij
]

BMij
, computed as in (7), for all the mark-

ers.

For the estimation phase, an Extended Kalman Filter (EKF)
could be applied, which would linearize the residual and con-
verge in one iteration. However, neglecting O(‖x‖2) terms
in the observation model can lead to inaccurate results. With
this in mind, we implement a recursive estimation procedure
based on an iterative EKF. The function we minimize for
both explaining the measurements and staying close to the
prior is:

h(x) =
1

2
rT (yk+1, x)W

−1
k+1r(yk+1, x)+

+
1

2
(x− x̂k+1|k)

TP−1
k+1|k(x− x̂k+1|k).

(29)

Due to the nonlinearity of the residual r(yk+1, x) w.r.t. x,
the minimization of (29) leads to a nonlinear least-squares
problem. This problem can be easily handled by modern
trust-region methods [13], [14]. These methods progres-
sively minimize (29) by iteratively minimizing quadratic
models of it built at each step and following a policy of
acceptance/rejection of the step based on the agreement
between the reduction in the nonlinear function and its
approximant.

VI. EXPERIMENTS AND RESULTS

The models and techniques described in the previous sections
have been used to reconstruct hand poses in experiments con-
ducted by subjects with an optical tracking system. Although
a complete movement can be reconstructed, we focus on
“static” grasping poses. To analyze reconstruction outcomes,
we consider only 24 out of 26 DoFs of the kinematic
model previously described (wrist DoFs are neglected); as
a possible application, PCA has been performed and results
are compared with the ones presented in [7].

A. Materials and Methods

Experimental task: Subjects were instructed to shape their
right hand as to grasp a certain amount of objects (n =
20, Table II) which were not physically present during the
experiment. Pictures of the objects were instead shown on a



computer screen with a specific timing (3 s with the image
displayed, 2 s waiting for a “beep” sound, then perform the
grasping and come back before, in 7 s, a new image is shown
- total cycle length 12 s), and the subject was asked to grasp
them as if they want to use them.

1. Bucket 11. Hammer
2. Calculator 12. Ice cube
3. Chalk 13. Jar lid
4. Cherry 14. Light bulb
5. Computer mouse 15. Pen
6. Dinner plate 16. Rope
7. Espresso cup 17. Telephone handset
8. Fishing rod 18. Tennis racket
9. Frisbee 19. Toothpick
10. Hair dryer 20. Wrench

TABLE II: List of objects used in the task

Each subject performed a total of six trials for each of the
objects, preceded by a few training trials; all trials were
presented in random order.

Subjects: Four right-handed subjects (two males and two
females, age in the interval 20 to 30 years) participated in this
study. All subjects gave informed consent, and the protocols
were approved by the ethical committee of the University of
Pisa.

B. Experimental Procedure and Data Analysis

Hand posture was obtained with the identification procedure
described in Section V, measuring the position of optical
markers using an optical motion capture system (Phase
Space, San Leandro, CA - USA) composed of 10 stereo-
cameras at 480 Hz, undersampling in post-processing down
to 15 Hz. Problems related to marker occlusions are treated
directly via the EKF estimation, which considers only its
prior to generate the estimate, achieving satisfying results for
short-time missing markers. To the authors’ best knowledge,
no means is present to solve the problem of long lasting
occlusions in optical tracking systems. The reconstructed
postural angles were then smoothed with a 5 samples moving
average filter. Subsequently, a selection of the actual frame
to consider for a specific grasp has been carried out, based
on the timing of object pictures presentation, via visual
inspection.

Markers were present on a bracelet fastened to the subject’s
forearm, to define the local system of reference; markers
were placed on each bone of the hand and on a selected
group of joints (Thumb CMC, MPC, IP; Index and Middle
MCP; all PIP’s) (see Figure 4).

Data Analysis: The data were then studied using PCA:
the percentage of variance accounted for by each principal
component (table III) and the cumulative variance (table IV)
are lower than the values reported in [7] (where, e.g.,
cumulative variance explained by the first 2 PCs ranges
between 77 and 90%), possibly because we do not reduce
intra-object variability via averaging, considering instead all
the repetitions for each object grasp in data analysis.

However, the main result is that with only five synergies
∼ 80% of data variance is taken into account for all subjects
(except for T.C.), thus suggesting a reduction of the 24 DoFs
to be recorded. This increased number of PCs w.r.t. [7]
needed to account for 80% of total variance is probably due
to the higher number of DoFs. Nonetheless, it is possible that
the kinematic model of the thumb, known to have complex
non-orthogonal base joints (see [15]), is a major factor: this
issue remains however to be studied.
Considering the covariation matrix as reported in Figure 5
(for the sake of space only the covariance matrix for one
subject is reported), what is noticeable is that MCP angles
of adjacent fingers as well as the PIP angles are highly
related to each other, with the extent of correlation decreasing
with the separation between pairs of fingers. A similar result
is attained also in [7]. In Figure 7 the distribution of the
angular differences for all joint angles between hand posture
reconstructed from the first two PCs and the actual posture
recorded is shown; for a large percentage of poses (∼ 70%)
the angular difference is within ±5o. This can be seen also
from Figure 6, where the distribution of normalized ampli-
tudes of the first five PCs are reported. The amplitudes are
normalized to the maximum (absolute) value of the first PC.
Notice that the amplitude to the third through the fifth PCs
are uniformly small, although not as small as in [7] where
they almost never (less than 1%) reach a normalized value
of 0.5. Finally, in Figure 8, postural synergies defined by
the first two principal components in 24 DoFs are reported.
The central hand posture is the average over 120 postures
(20 different objects 6 times each) for one subject (A.C.)
(for the sake of space). The postures to the right and left are
for the maximum and minimum values of the first principal
component (PC1), while other principal components have

Fig. 4: The hand of one subject after all markers have been
placed, showing the protocol for marker placement.
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Fig. 5: Gray scale plot of the covariance matrix for one
subject (M.B.) analyzing 24 DoFs. For sake of clarity and
to enhance result comparison, the same naming in [7] is
adopted; the term ABD refers to the adduction/abduction
degrees of freedom.

been set to zero. The postures at the top and bottom are the
same for the second principal component (PC2). Similarly
to what has been obtained in [7], along the PC1 (horizontal)
axis, it is possible to observe a gradual closure of the hand:
at one extreme, it is noticeable an extension and abduction of
the fingers at the MCP joints (PC1 max), while at the other
extreme, MCP joints flexion and adduction is observed (PC1
min). Along the PC2 (vertical) axis, we detect a PIP joints
flexion and MCP joints extension while moving towards
PC2 min, while the thumb abduction and internal rotation
decrease towards PC2 max. This result suggests that the
model of synergy still works in spite of the dimension of
the kinematic model in use, with many similarities across
models with a different number of DoFs.

Noteworthy, similar results could be seen also if considering
a different subset of the total 26 DoFs to perform the PCA,
e.g. 15 joints chosen as in [7], where neither palm arch joints
nor DIP joints were present. For the sake of space we do not
report this other consideration, which anyway leads to very
similar conclusions.

Subjects PC1 PC2 PC3 PC4 PC5

AC 55.6 13.2 7.3 5.3 4.5
MB 40.0 16.1 12.3 5.9 5.2
TC 27.9 17.3 12.1 7.4 6.3
DR 45.7 13.6 9.4 7.4 5.0

TABLE III: Percent variance accounted for by each principal
component in 24 DoFs

Subjects PC1 PC2 PC3 PC4 PC5

AC 55.6 68.7 76.1 81.3 85.8
MB 40.0 56.1 68.4 74.3 79.5
TC 27.9 45.3 57.4 64.8 71.1
DR 45.7 59.3 68.7 76.1 81.1

TABLE IV: Cumulative percent variance accounted for by
24 DoF PCs
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Fig. 6: Distribution of normalized amplitudes of the first five
principal components in 24 DoFs. These amplitudes have
been normalized to the maximum (absolute) value of the
first PC. For the sake of space, the data shown are for one
subject (D.R.).

VII. CONCLUSIONS AND FUTURE WORK

In this work a complete procedure to reconstruct human hand
posture is presented. The kinematic hand model in use is
fully parameterized and allows to take into account differ-
ences in subjects hands. Furthermore, the introduction of a
soft-tissue artifact compensation mechanism makes the pro-
cedure amenable to in-vivo joint angle recordings via optical
tracking of markers attached to the skin. The parametrization
structure of the model has then been exploited to reconstruct
hand poses in experiments, aiming at analyzing postural syn-
ergies in grasping, using kinematic models with a different
number of degrees of freedom. Results are compared to the
ones reported in [7], showing a significant coherence in the
synergies obtained, independently from the dimensionality
of the kinematic description in use. In conclusion, this paper
offers a useful tool that can be used to investigate more in
depth and with higher accuracy the synergy concept; the final
results, after the definition of a meaningful mapping strategy,
might drive the definition of robotic hand postures able to
realize effective grasps, or be used as a priori information
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Fig. 7: Distribution of the angular differences for all joint
angles between hand postures reconstructed from the first 2
PCs in 24 DoFs and the actual postures recorded. For the
sake of space, the data are for all objects from one subject
(D.R.).

Fig. 8: Postural synergies defined by the first two principal
components. The central hand posture is the average over
120 postures (20 different objects 6 times each) for one
subject (A.C.). The postures to the right and left are for
the maximum and minimum values of the first principal
component (PC1), while other principal components have
been set to zero. The postures at the top and bottom are the
same for the second principal component (PC2).

for hand avatar animation [16] or for the improvement of
the design and the performance of glove-based Hand Pose
Reconstruction (HPR) systems [17], [18].
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