
A time expanded network based algorithm for safe and efficient
distributed multi-agent coordination

Mirko Ferrati and Lucia Pallottino

Abstract— In this paper we propose a novel approach for dis-
tributed traffic management of a group of mobile collaborative
vehicles, moving within a shared environment. Our algorithm
is based on a modified graph representation of the space-
time where the robotic vehicles operate. The proposed graph
representation augments standard path planning strategies by
allowing multiple speeds. Robots can negotiate their route
and set their speed to prevent and solve possible collisions
while taking into account the energy consumption. Indeed, the
algorithm will be formally proved to provide collision free paths.

I. INTRODUCTION

The use of multi-vehicle robotic systems is increasing
rapidly in, e.g., industrial transportation and logistics sys-
tems. However, their adoption raises management and coor-
dination problems such as collision avoidance and conflict
resolution both requiring fast and reliable negotiation of
shared resources.

In this paper we propose a distributed coordination pro-
tocol to address such issues in case of a traffic network for
autonomous vehicles. The goal is to guarantee the overall
system safety while taking into account the energy consump-
tion aspects.

In case of environment tessellation, cells are seen as
resources for which vehicles compete. Several centralized
and distributed control strategies have been proposed in the
literature, see e.g. [1], [2], [3].

While centralized approaches are able to easily guarantee
the absence of deadlock, they often require an unfeasible
computational capabilities. The required computational ca-
pabilities could be lowered by using distributed algorithms,
which in turn pose more challenging problems in proving
deadlock freedom. Examples of research in this field are
represented in [4], where the agent coordination is obtained
by using a spatial temporal pattern, and in [5], where the col-
lision avoidance policy is inspired by real world pedestrian
collisions policy.

In [6], authors are able to prove that a class of algorithms
is livelock free based on the proposed discretization of the
environment while in [7], the problem is solved by allowing
more than one agent in the same cell. A similar approach is
used in this paper. In [8], collisions are prevented in a reactive
fashion by the definition an ad-hoc protocol that allow agents
to vary their speeds. However, as a result agents may often

The research leading to these results has received funding from the
European Union Seventh Framework Programme [FP7/2007-2013] under
grant agreements n.257462 HYCON2 Network of excellence and n.2577649
PLANET.

Authors are with the Research Center “Enrico Piag-
gio”, and the Dipartimento di Ingegneria dell’Informazione,
University of Pisa, Italy, mirko.ferrati@gmail.com,
l.pallottino@centropiaggio.unipi.it.

Fig. 1. A square in Pisa modelled as a graph

need to change speed resulting in a non smooth (and non
efficient in terms of energy consumption) system evolution.

Although inspiring, all these approaches do not take into
account the energy cost that an agent incurs in when it stops
to re-plan its path by applying its collaboration algorithm.
When a vehicle (a forklift, a car, etc) brakes, its kinetic
energy is converted to heat by the friction of the brake
pads. The total amount of energy loss depends on how often
and how hard the vehicle brakes, see e.g. [9], [10], [11].
Indeed, based on the analysis results of the papers, fuel
consumption is mainly affected by extreme acceleration or
deceleration rates (as long as vehicles are driving below 80
Km/h). From those studies, we can state that the sudden de-
celeration/stop/acceleration behaviour will result in negative
influences on fuel consumption.

Based on those results, the proposed coordination pro-
tocol allows the agents to keep moving while coordi-
nating/communicating to avoid collision or planning their
routes. Indeed, in the proposed framework, an agent stops
only in case of exceptional events (such as unsolvable
conflicts) which are handled with exceptional behaviours
(i.e. stopping agents in the neighbourhood and using a fall-
back behaviour). The approach is based on the distributed
use of a normalized and augmented time-expanded network
for the computation of the vehicle’s speed and is proven to
be deadlock free under given conditions on the number of
agents. To the authors best knowledge this is the first work
that exploits time-expanded network to produce a distributed
collision avoidance and coordinated planning which is able
to control both agents speed and paths, in order to reduce
energy consumption due to “stops&go” strategies.

II. TIME EXPANDED NETWORK

The concept of time expanded network (TEN) is briefly
described here as in [12] for reader convenience. For more
details and some use examples see e.g. [13], [14], [15],
[16]. In [17] authors use time-expanded network to provide
a centralized coordinator for multiple vehicle systems.

Consider a weighted digraph G0 = (V0, E0), where the
weight dij of an arc ei,h = (vi, vj) is the arc travel time

Fig. 2. Basic graph, the weight of arc (1, 3) doubles the weight of arcs
(1, 2) and (2, 3).

Fig. 3. TEN associated to the graph in Fig. 2 with M − 1 = 3

or delay where, if t > 0 is the leaving time from node vi,
t+ dij is the arrival time at node vj .

In case of discrete models, both the time variable t and
travel time dij are natural numbers so that t+ dij ∈ N.

The finite TEN digraph Gt(Vt, Et) is obtained by expand-
ing the original dynamic network G0 in the time dimension,
and making a separate copy of all nodes for the integer values
of time t ∈ T = {0, 1, . . . , M − 1}, where M is a finite
maximum value for the time dimension.

Every node in Vt is a node-time pair (vi, t) where vi ∈ V0

and t ∈ T , where t represents the time layer associated to
vi. The nodes with time layer value M−1 represent all time
layers with m ≥M − 1.

Every edge in Et is an edge from (vi, t1) to (vj , t2) with
t2 > t1. Furthermore, if ((vi, t1), (vj , t1)) ∈ Et with i 6= j
then, necessarily, t1 = M − 1.

Given the planar graph G0 represented in Fig. 2, the TEN
associated to G0 with M − 1 = 3 is reported in Fig. 3.
Notice that, in the TEN, to take into account the weights
di,j of ei,j ∈ E0, arcs connecting time layer k with time
layer k + h with h > 1 may be considered. Such arcs are
h-multi-layer arcs. Notice that, given a time discretization of
step T , we have h =

di,j
T .

The first layer represents the current time: agent is always
at the first layer l1 and whenever it reaches the second layer
l2 all layers are translated by one to the bottom (li−1 is
replaced by li).

Time-expanded networks have several properties. For ex-
ample, in case of positive travel times, TEN are acyclic when
neglecting the arcs at the time layer M − 1. Moreover, a
shortest path problem in a dynamic network can be solved
by applying a static shortest path algorithm to its TEN
representation.

III. PRELIMINARIES, MODEL DESCRIPTION AND
PROBLEM STATEMENT

To model the two dimensional world (street maps or
indoor environment) in which agents move, we identify
regions of interest and we associate a key-point to each
region, usually corresponding to their center. Key-points will
be connected by roads and agents will only be able to go
from a region to another by moving on roads, see Figure 1.

αv0

a0(t0)

Ds

a0(t)

ai(t) ai(t0)Ro

Fig. 4. Time separation for avoiding collisions on a node.

Let G0 = (V0, E0) be the graph representation of the
world, where V0 = {v1, v2, . . . , vN} and E0 ⊆ V0 × V0

represent the set of nodes (key-points) and the set of edges
(road from one key-point to another), respectively. To each
node vi we associate the corresponding coordinates (X,Y)vi
in the environment. On the other hand, each arc eij has a
weight that is the distance Leij from (X,Y)vi to (X,Y)vj .

Consider a group of m agents, the position of an agent
aj in the environment is represented by its coordinates
(X,Y)aj . The maximum speed of agents is assumed to be
the same for all agents and indicated with vmax, if this
is not the case assume in a conservative fashion vmax =
mini vmaxi

, so that all agents are able to move at a common
maximum speed. Similarly, the minimum non null speed is
vmin = maxi vmini . Let Ds the minimum required distance
(safety distance) to be kept between agents to avoid collisions
that depends on vehicles physical dimensions and motion
constraints.

Assumption 1: Two (or more) different roads in the real
world may overlap only close to regions associated to key–
points, i.e. in a circle of radius Rk centered in them.
As a consequence, road intersections are always considered
as key–points, so that agents moving on different arcs will
not collide except when close to the same key–point.

From now on, we will consider regions centered in
the nodes with the most conservative R̃ value, i.e. R̃ =
maxk∈{1, ..., N}Rk.

Definition 1: A node vi is occupied by agent j at time
t, denoted with vi(t) = aj , if

∥∥(X,Y)aj − (X,Y)vi
∥∥ < R̃

holds at time t.
Assumption 2: We assume that the distance between any

two key–points is larger that 2R̃+ Ds

2 .
Under this assumption there can be no collision between two
agents occupying different nodes.

Definition 2: There is no collision between agents ai and
aj if

∥∥(X,Y)aj − (X,Y)ai
∥∥ ≥ Ds.

We first examine the case of collisions between agents near
the same node, while we will examine the case of collisions
between agents on the same arc in Theorem 1.

Proposition 1: Given an agent a0, at time t0, occupying
node v0 and moving at vmin from node v0 to node vb and an
agent ai moving at vmax from node vc to v0, where vb 6= vc,
there is no collision on node v0 if agent ai does not occupy
it before time t0 + ∆t, where ∆t = Ds

1+cosα
sinα

lmax

vmax
, lmax =

vmax/vmin and α is the angle of roads intersection.
Proof: Without loss of generality, we will assume that

the road (v0, vc) is parallel to the x axis of a reference system

centered in the node v0 (i.e., (X,Y)a0 = (0, 0) and ai is
moving on y = 0) and that t0 = 0, see Fig. 4.

In the worst case, if a collision between agents ai and a0

does not occur, there ∃t̄ : ‖(X,Y)ai − (X,Y)a0‖ = Ds,
i.e. the distance is exactly the minimum allowed one. At
that time t̄ the position of agent a0 is Xa0 = vmin(t̄ −
Ro

vmin
) cosα, Ya0 = vmin(t̄ − Ro

vmin
) sinα. To reach a confi-

guration in which agents are at minimum distance, at time t̄,
agent ai must be in (x, 0) such that X2

a0−2Xa0x+x2+Y 2
a0 =

D2
s where this second order equation has two coincident

solutions. In this case t̄ = (Ds+Ro sinα)/(vmin sinα) and
then x = Ds/ tanα. Since the position of agent ai at time
t0 = 0 was x + vmaxt̄, we can determine the time ∆t at
which ai occupies v0:
∆t = (Ds/ tanα−Ro)/vmax + t̄ = (Ds

sinα (lmax + cosα) +
Ro(lmax − 1))/vmax , where we used lmax = vmax/vmin.

Considering Ro = Ds

tanα , we obtain that ∆t = Dslmax(1+
cosα)/(vmax sinα) and hence the thesis.

Remark 1: Proposition 1 provides a time value ∆t that
will be used to create a discretized TEN. In the proof of the
Proposition we have provided a value of the parameter Ro
to obtain a nice expression of the time separation required
to ensure collision avoidance on a node in the worst case
scenario of the following cases: an agent occupying a node,
another one crossing an incoming arc of that node, an agent
occupying a node, another one crossing an outgoing arc of
that node, two agents crossing two different incoming arcs
of the same node.
Such value depends on the angle of intersection of roads
that can be however minimized by a value αmin. Since
larger angles produce larger values of Ro, the proof of the
Proposition is still valid considering Ro = R̃ = Ds

tanαmin
).

Notice that the ratio lmax = vmax/vmin is another parameter
that will be set later in the paper.

Finally, by extending the Proposition 1 to all agents and
nodes, the absence of collision on all the nodes of the graph
can be stated as:

∀t, ∀δt ∈ [0, ∆t],∀i 6= j (1)
vh(t) = ai, vm(t+ δt) = aj ⇒ h 6= m.

Definition 3: A path P (vs, vt) = vs, . . . , vt is a sequence
of adjacent nodes from vs to vt. The path length is the sum
of all weights of the arcs connecting nodes of the path. The
first i nodes of a path P are indicated with Pi.

Definition 4: A Filter map is a boolean function b : E →
{0, 1} that returns false if arc eij cannot be used in a path-
planning algorithm, true otherwise.
Filter maps will be used during the planning phase because
arcs claimed by higher priority agents will need to be
excluded by lower priority agents.

Definition 5: A filtered graph G∗ is a subgraph of G
where the filtered arcs have been removed by the filter map.

Time step discretization: Proposition 1 states that ∆t is the
time required by any agent to cross a node (the total time of
node occupancy) before another agent can occupy it without
colliding. This naturally leads to create a discrete TEN with
a time steps discretization T = ∆t = Ds

1+cosα
sinα

1
vmin

. In
this case the set T representing the time steps is T =
{0, T, 2T, . . . , T (M − 1)}.

Fig. 5. Normalized TEN graph

A. The Normalized Augmented TEN

In the proposed approach we require agents to start occu-
pying a node of the TEN only at time steps T and we also
want agents to occupy a node at each time step T . To model
this requirement we have to cope with two different aspects:
arcs possibly have different length and agents may move at
different speeds. The proposed approach solves this problem
with a normalization and a subsequent augmentation of the
TEN.

Referring to the graph G0 and its associated TEN repre-
sented in Fig. 2 and 3 respectively, we notice that the arc
(1, 3) in G0 is represented by a double layer arc in the TEN
since an agent requires double time to cross those arcs at
the same speed. Hence, after a time step, an agent may still
lay in the middle of an arc (as in the case of arc (1, 3)). To
ensure that at each time step each agent occupies a node,
we normalize the TEN by splitting l-layer arcs introducing
l − 1 virtual nodes. We denote with Lbasic the normalized
arcs length.

Referring to graph G0 of Fig. 2 nodes v4 and v5 are
introduced to split direct arcs (1, 3) and (3, 1) respectively.
The associated normalized TEN is reported in Fig. 5.

With the normalization procedure, the TEN has arcs with
equal travel times. In order to allow agents to travel at
different speeds we augment the network by inserting again
l-layer arcs with a different meaning: an l-layer arc of the
normalized and augmented TEN corresponds to an arc of
length Lbasic of the normalized TEN traveled at speed vmax

l .
Notice that, in the newly obtained normalized and aug-

mented TEN (NA–TEN), for any l-layer arc from (vi, t) to
(vj , t + l) there exist l different q-layer arcs from (vi, t)
to (vj , t + q) with q = 1, . . . , l. On the graph G0 this
implies that arc (vi, vj) can be traveled by l agents at
different speeds, i.e. the maximum value scaled by q =
1, . . . , l. Hence the number lmax is environment-dependent
and represents the maximum number of agents that can cross
an arc. Since we have that all normalized arcs are Lbasic
long, we set the parameter lmax so that lmax ≤ Lbasic/Ds.

In Fig. 6 the final NA–TEN, of G0 in Fig. 2, is reported.
a) Arc Weights: In the NA–TEN we choose arcs

weights in order to penalize multi-layer arcs that are slower
than single layer ones by increasing their weights. The
weight of a l-layer arc is lβ ∀l ∈ {1, lmax}, where β ≥ 1 is
a penalization factor so that an agent will try to move at the

Fig. 6. Normalized and augmented TEN of the graph G0 of Fig. 2

fastest speed in low traffic arcs instead of slowing down in
a crowded arc. Finally, arcs weights of layer M − 1 are set
sufficiently high to ensure that any vehicle reaches its target
at lower layers if possible.

IV. THE DDISTRA ALGORITHM

In this section we will describe the distributed coordination
algorithm on the NA–TEN named DDISTRA algorithm.
The protocol will guarantee that agents negotiate a mutual
exclusion access of nodes (or resources) while avoiding
collisions. Once the access to a resource is obtained by an
agent the resource is said to be locked by it.

We now describe the algorithm from the point of view
of agent ā with its unique identification number UIDā, that
will be used also in the following as a unique priority value.

We assume that at the beginning of the algorithm, all
agents are occupying a node. Since the algorithm is based
on agents coordination, we first describe the information
exchanged by agents to obtain a mutual exclusion access
of a resource, i.e. to lock it. The information is structured in
a t-tuple as follows:
• the UID of the agent UIDaj (that will be denoted by
aj itself);

• a set of K nodes V (aj) = {(vj1 , t+ 1), . . . , (viK , t+
f)} where f is the number of future time steps trans-
mitted.

We will denote the information packet (Locking Resource
Packet) with LRP (aj , V (aj)).

Notice that, since there are multi-layer arcs, f ≥ K
where f = K only in case of transmitted single-layer arcs.
The number f is environment-dependent and represents the
temporal length of the desired path. A large f will result in a
long locked path with possibly few path changes during the
algorithm execution. Moreover, a large f may require more
negotiation steps to obtain the mutual exclusion access. On
the other hand, a small f allows for more responsiveness
(more possible path changes) and requires less negotiation
steps. On the other hand, the number K of nodes in V (ā)
is a parameter to be tuned considering that KLbasic is the
maximum distance at which the agents communicate.

A. Negotiation phase

The algorithm consists of a negotiation phase during
which agents exchange information and re-plan their motion

to obtain a mutual exclusion access to desired nodes as
described next. The negotiation happens while agents are
moving and once it successfully ends, agents possibly have
a new desired node and head towards it.

The negotiation phase takes place at every time-step t ∈ T
and consists of Ñ + 1 negotiating steps of time δt <<
T , where Ñ is the number of neighbours (known upon
communication) and δt is such that (Ñ + 1)δt < T . If
the communication channel or the computational power of
the agents cannot satisfy this condition, agents cannot react
fast enough to environmental changes, thus T should be
incremented accordingly (i.e. vmax should be decremented).

For each negotiating step, a classical Dijkstra algorithm
is computed to produce a shortest path P on a possibly
filtered NA–TEN from the current node (vi(ā) ∈ G0) to the
desired one. The filter is based on the LPR packets received
by ā from other agents with higher priorities, i.e. aj > ā.
Indeed, the nodes in V (aj) would like to be locked by higher
priorities agents and then discarded by ā through the Filter
Map, see Definition 4.

Given P , ā tries to lock all the resources V (ā) = {(v, t) ∈
P |t < f} by sending an LRP (ā, V (ā)) to neighbours. Then
the agent waits for δt seconds to receive the LRPs from its
Ñ neighbours.

The lock of the resources is successful if for any received
LRP (aj , VS(aj)) with V (aj) ∩ V (ā) 6= ∅ it holds aj < ā,
i.e. all the resources of interest for ā are of interest of only
lower priority agents. Otherwise, ā starts another negotiating
step by re-executing Dijkstra on the newly filtered graph in
which the nodes requested by agents with higher priorities
have been deleted together with their incoming arcs.

When Dijkstra algorithm reports a failure, agent ā is not
able to plan a path. This emergency situation occurs in case
of traffic jams and is treated with an emergency behaviour
(see IV-B). If after Ñ negotiating steps no emergency situ-
ation has occurred the negotiation phase is said to be ended
successfully.

Remark 2: After a successful negotiation phase, all agents
are able to move and currently locked nodes of layer 0 can
be released (unlocked). Consider the situation in which there
more than one agent trying to go toward the same planar node
vi ∈ G0 at the same time t. Since the negotiation phase is
successful each vehicle managed to lock one resource (vi, t+
kT) with a different value k ≤ m for each agent. Hence,
each agent has a mutual exclusion access to a new resource
and can release the level 0 resource locked.

After a successful negotiation, the agent ā changes its
direction (if required) and moves toward its first locked
node. To ensure that the time requirement of reaching the
nodes at time steps T is respected, the agent sets its speed
accordingly.

It may occur that, after negotiation, two agents would cross
the same planar arc at different speeds, with the faster agent
that overtakes the slower one. Since our arcs represent one
road large enough for only one agent, an overtaking implies
a collision and hence it must be avoided. More formally

Definition 6: An overtaking on a planar arc (vi, vj) ∈ E0

between agents ā and â occurs when ∃i, j, t0 < t1 <
t2 < t3 : (vi, t0) ∈ Pā, (vj , t3) ∈ Pā while (vi, t1) ∈
Pâ, (vj , t2) ∈ Pâ

To avoid overtakings and hence collision, at the last step of
the negotiation phase, nodes (vj , t2) and (vj , t3) are swapped
between Pâ and Pā.

B. Emergency Situation
Whenever an agent ā fails to find a path, an emergency

situations occurs (usually in case of traffic jams). The agent
hence sets its speed to zero and sends to all its neighbours
an emergency packet containing the identification number of
the planar node v(ā) that is:
• the currently occupied node, or
• the tail node of the arc that ā is crossing.
Suppose now that ā sends an emergency packet. Each

agent that receives the packet and that is moving, in the NA–
TEN, toward a node of type (v(ā), k), with k ∈ T (i.e. is
going to collide with ā) sets its speed to zero. Then it sends
an emergency packet itself so that the emergency situation
is propagated backward and no agent will collide.

Since agents that were not involved in the emergency
situation will continue to move, at any time step k ∈ T
it is possible for agents that stopped their motion to be able
to start moving again, once the jam has been solved as it
typically occurs on real traffic networks.

V. DDISTRA PROPERTIES: COLLISIONS AND
DEADLOCKS

Theorem 1: Based on assumptions 1 and 2, the proposed
DDISTRA algorithm ensures a collision free agents evolu-
tion.

Proof: Since, during the execution of the algorithm,
agents can either be occupying a planar node or crossing
a planar arc (an agent is said to be on an arc only if it
does not occupy neither its head nor its tail nodes), based
on Definition 2, we need to prove that no collision occurs
between two agents in all possible configurations on the
planar graph as described next.

The case in which two agents occupy node v may occur
only if during the negotiation phase (v, t1) and (v, t2) have
been assigned to the agents. Also in the worst case, i.e. t2 =
t1±T , Proposition 1 ensures the absence of collisions since
T = ∆t.

In case of agents on different nodes or arcs, collision
avoidance is ensured by assumptions 1 and 2.

Consider now the case of one agent on a node and the other
on an incoming/outgoing arcs of that node. The minimum
distance between an agent on a node and the agent on
an incoming/outgoing arcs of that node is T vmin. Indeed,
DDiSTRA guarantees a time step separation T (see Remark
2) and the minimum allowed speed is vmin. By applying
Proposition 1 in case of vmax = vmin, the absence of
collisions is ensured (indeed T depends only on vmin).

If two agents are on the same arc, the last step of
negotiation ensures that no overtaking takes place on arcs.
Agents may only travel on the same arc with the same speed
or with speeds that increase their mutual distance.

Finally, in case of an emergency, the speeds of all the
agents that may incur in a collision with the agent in the
emergency situation are set to zero and no collision occurs.

Definition 7: A deadlock is defined in [18] as a state in
which all the following conditions are satisfied:

1) Agents get exclusive lock of the resources they require
(“mutual exclusion” condition).

2) Agents hold resources already locked to them while
waiting for additional resources (“wait for” condition).

3) Resources cannot be forcibly unlocked from the agents
holding them until the resources are used to completion
(“no preemption” condition).

4) A circular chain of agents exists, such that each agent
locks one or more resources that are being requested by
the next agent in the chain (“circular wait” condition).

Theorem 2: The DDISTRA policy is deadlock free if no
emergency situation occurs. Otherwise, in case of emergency
situation occurrence, let Cn be the dimension of the smallest
cycle in G∗0 (normalized planar graph) and m the number of
agents in the environment, there always exists one agent that
is able to move if (lmax + 1)Cn > m.

Proof: In absence of emergency situations, since the
proposed NA–TEN is an acyclic graph along the time dimen-
sion (see Section II) and since agents claim resources from
the NA–TEN, we have that a circular chain of agents can
not exists. So the “circular wait” condition of Definition 7
is never satisfied and hence no deadlock arises.

If there is an emergency situation, we need to prove that a
circular wait is not possible even in the planar graph (since an
agent in emergency mode locks the node for every possible
layer in the NA–TEN graph). Consider the smallest cycle
C in G∗0 (normalized planar graph) consisting of Cn nodes
and Cn arcs. Consider the worst case scenario in which an
agent in the cycle C (on nodes or on arcs) incurs in an
emergency situation. The maximum number of agents that
can be conveyed in the cycle is lmax for any arc plus Cn
(agents may occupy a node o lay on an arc). If (lmax +
1)Cn > m there always exists at least a node on the NA–
TEN that is not occupied and hence a node toward which at
least one agent can move. Hence, under the given hypothesis
no deadlock may occur.
Notice that there exist less restrictive conditions under which
Theorem 2 is still valid. For space limitations a simpler con-
dition is provided for reader convenience. However, another
condition is:
• m < (lmax+ 1)N , where N is still defined as the total

number of nodes in the planar graph, and
• the planar graph is fully connected.

Intuitively, these conditions describe the worst case scenario
in which every arc is crowded by vehicles (with minimum
security distance separation), except for one available slot on
an arc (or node). But also in this case, there will always be
at least one vehicle that is able to move.

VI. SIMULATION RESULTS

The DDISTRA algorithm has been applied to different
application scenarios. We will now describe the results
obtained in several simulation. To view the original
videos please go to the AscariSimulator channel on
http://www.youtube.com/user/ASCARIsimulator/videos?flow=grid
where also a simulation of another scenario, not described
for space limitations, can be found.

A. Continuous X-cross circuit
This scenario shows the synchronization capabilities of

agents and is reported in Fig. 7. Eight agents are divided

138

09 10

11
12

13 14

15

16 158

09

10

11 12

13

14

15

16

178

09

10

11

12

13
14

15

16

198

09
10

11

12

13

14
15

16

218

09

12

11

14

13

16

15

10

371

09

12

11

14

13

16

15

10

Fig. 7. Evolution of 6 vehicles in the X-cross scenario.

into two groups, each running towards the same x-cross, i.e.
we have one node and two arcs. Each agent in each group
maintains the safety distance with the other. When an agent
reaches the cross, it slows down to let one agent of the other
group crossing first and so on. After the crossing the speed
can be set again to the maximum one.

The result is that the safety distance among agents in the
same group is doubled, so that for the next group crossing
there is no need to slow down.

B. Warehouse simplified scenario
In this example a simplified warehouse is chosen as

environment: the graph represents a warehouse which has
3 east-west and 3 north-south routes, with a total of 9 nodes
in G0, see Fig.8. Six agents move in the warehouse with
random targets, during evolution collision are avoided and
no vehicle enters in the emergency situation.

VII. CONCLUSIONS

A new approach to graph modeling oriented to the dis-
tributed coordination of multi-agent systems has been pro-
posed. The approach is proved to be deadlock free and it
enables agents to set both their speed and path to avoid other
neighbours during their motion. The conditions that ensure
the system to be livelock free are still under investigation.

Based on a shortest path algorithm applied to a custom
TEN graph, DDiSTRA algorithm aim at reducing the power
consumption of robots by decreasing braking and accelera-
tions. Furthermore, it increases graph arcs flow by redirecting
the agents to lower traffic paths.

REFERENCES

[1] S. M. LaValle, “Planning Algorithms,” 2006.
[2] S. Morinaka, T. Nishi, M. Konishi, and J. Imai, “A distributed routing

method for multiple agvs for motion delay disturbances,” in IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems, IROS, 2005, pp. 1986–
1991.

[3] Y. Guo and L. Parker, “A distributed and optimal motion planning ap-
proach for multiple mobile robots,” in Proceedings IEEE International
Conference on Robotics and Automation, vol. 3, 2002, pp. 2612–2619.

2

5

1

4

3

8

6

7

150

2

5

1

4

3

8

6

7

190

2

5

1

4

3

8

6

7

240

2

5

1

8

3
4

6

7

290

Fig. 8. Snapshot of the evolution of 6 vehicles in a simplified warehouse
scenario.

[4] Y. Ikemoto, Y. Hasegawa, T. Fukuda, and K. Matsuda, “Zipping,
weaving: control of vehicle group behavior in non-signalized inter-
section,” in Proceedings IEEE International Conference on Robotics
and Automation, vol. 5, 2004, pp. 4387–4391.

[5] W. Koh and S. Zhou, “An extensible collision avoidance model
for realistic self-driven autonomous agents,” in IEEE International
SymposiumDistributed Simulation and Real-Time Applications, 2007,
pp. 7–14.

[6] S. A. Reveliotis and E. Roszkowska, “Conflict resolution in free-
ranging multivehicle systems: A resource allocation paradigm,” IEEE
Transactions on Robotics, vol. 27, no. 2, pp. 283–296, 2011.

[7] E. Roszkowska and S. A. Reveliotis, “A distributed protocol for motion
coordination in free-range vehicular systems,” Automatica, vol. 49,
no. 6, pp. 1639–1653, 2013.

[8] K. M. Krishna and H. Hexmoor, “Reactive collision avoidance of
multiple moving agents by cooperation and conflict propagation,” in
Proceedings IEEE International Conference on Robotics and Automa-
tion, vol. 3, 2004, pp. 2141–2146.

[9] E. Ericsson, “Independent driving pattern factors and their influence
on fuel-use and exhaust emission factors,” Transportation Research
Part D: Transport and Environment, vol. 6, no. 5, pp. 325 – 345,
2001.

[10] G. Santos, H. Behrendt, and A. Teytelboym, “Part ii: Policy in-
struments for sustainable road transport,” Research in Transportation
Economics, vol. 28, no. 1, pp. 46–91, 2010.

[11] M. S. Young, S. A. Birrell, and N. A. Stanton, “Safe driving in a green
world: A review of driver performance benchmarks and technologies
to support “smart” driving,” Applied ergonomics, vol. 42, no. 4, pp.
533–539, 2011.

[12] I. Chabini and S. Lan, “Adaptations of the a* algorithm for the
computation of fastest paths in deterministic discrete-time dynamic
networks,” IEEE Transactions on Intelligent Transportation Systems,
vol. 3, no. 1, pp. 60–74, 2002.

[13] S. Pallottino and M. G. Scutella, “Shortest Path Algorithms in Trans-
portation models : classical and innovative aspects,” 1997.

[14] B. C. Dean, “Algorithms for Minimum-Cost Paths in Time-Dependent
Networks with Waiting Policies,” 2004.

[15] J.-f. Berube, J.-y. Potvin, and J. Vaucher, “Time-dependent shortest
paths through a fixed sequence of nodes : application to a travel
planning problem,” vol. 33, pp. 1838–1856, 2006.

[16] X. Cai, T. Kloks, and C. K. Wong, “Time-Varying Shortest Path
Problems with Constraints,” Networks, vol. 29, no. 3, pp. 141–150,
1997.

[17] J. Yu and S. M. LaValle, “Time optimal multi-agent path planning
on graphs,” in Workshops at the Twenty-Sixth AAAI Conference on
Artificial Intelligence, 2012.

[18] E. G. Coffman, M. Elphick, and A. Shoshani, “System deadlocks,”
ACM Computing Surveys (CSUR), vol. 3, no. 2, pp. 67–78, 1971.

