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Abstract— In this paper, we propose a general method
to achieve a desired grasp compliance acting both on
the joint stiffness values and on the hand configuration,
also in the presence of restrictions caused by synergistic
underactuation. The approach is based on the iterative
exploration of the equilibrium manifold of the system
and the quasi-static analysis of the governing equations.
As a result, the method can cope with large commanded
variations of the grasp stiffness with respect to an initial
configuration. Two numerical examples are illustrated.
In the first one, a simple 2D hand is analyzed so that the
obtained results can be easily verified and discussed. In
the second one, to show the method at work in a more
realistic scenario, we model grasp compliance regulation
for a DLR/HIT hand II grasping a ball.

I. INTRODUCTION

The human hand is an extraordinary example of dexterity
and complexity. To imitate human dexterity, the develop-
ments of robotic hands was directed, over the years, to
increase the number of degrees of freedom (DoFs), arriving
to admirable example of technological design [1], [2], [3].
However, complex kinematic structures bring difficulties in
control and, for this sake, some underactuation mechanisms
were studied [4], [5]. Recent works get inspiration from
humans to properly design effective underactuation systems.
A large data set of human grasp postures was analysed via
PCA, finding the presence of preferential joint movement
patterns, also called synergies. This concept was imple-
mented in robotic devices as a correlation between hand
joints during the movements, both via hardware and software
control [6], [7]. The possibility to adapt the hand was
introduced with an elastic approach [8], called soft synergy,
where the synergistic movement is imposed to a reference
hand. Despite the fact that the soft synergies approach are
not easy to implement in an hardware device, in [9] the
authors demonstrated the possibility to obtain the similar
effects using tendon driven systems, called adaptive synergy.
The result is a hand able to adapt its shape and to achieve a
stable grasp of a huge set of common objects.
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Fig. 1: DLR/HIT Hand II endowed with joint impedance control, underac-
tuated via software according to the soft-synergy paradigm [8].

An other important feature studied during the last few
years, is the possibility to control the joint stiffness val-
ues. This aspect is crucial, for example, when accidental
collisions can occur both with the humans and with the
environment. The first strategy to cope with these events
is based on the application of proper control strategies, to
establish a desired joint displacement in consequence of a
certain load [10]. The second one is obtained by elastic
actuators that can change their stiffness [11], [12].

Both the contribution of variable stiffness joints and
underactuation are important in the problem of the grasp
compliance regulation: the first one affecting the grasp
compliance matrix, the second one reducing the space of
reachable hand/object configurations.

In this paper, a mathematical model of grasping in pres-
ence of both variable stiffness joints and synergistic under-
actuation is considered with the aim to evaluate and control
grasp compliance. Key to this objective, is the introduction
in Sec. II of the grasp compliance matrix. The proposed
approach is based on two main concepts: the equilibrium
manifold of the grasp, discussed in section III, and its tangent
space, discussed in section IV. While the first one defines
equilibrium configurations of the system, the second one is
instrumental to the computation of local grasp compliance.
In section V we present an optimization method, based on
a trust-region approach, able to steer the system towards a
desired grasp compliance while moving over the equilibrium



manifold.
Numerical examples, section VI, show the effectiveness of

proposed method by considering (i) a simple planar gripper
and (ii) the DLR/HIT hand grasping a ball. Both cases are
studied considering the possibility to change (i) the joint
stiffness, (ii) the synergistic references or (iii) both.

II. PROBLEM STATEMENT

With the term grasp compliance, we refer to the map
between the generalized forces acting on the grasped object
and its consequent displacement. In particular, we consider
a virtual kinematic chain connecting an inertial frame and a
frame attached to the object. The grasp compliance that we
consider in this paper is the map between the joint torques
and the joint displacements of this virtual kinematic chain.

Many are the parameters that influence the grasp com-
pliance matrix: the number and the nature of the contact
points, the presence of compliant joints, and others. From
an analytical point of view, the grasp compliance is a matrix
Cg∈ R6×6 such that

δu = Cgδw, (1)

where δu, δw ∈ R6 are the generalized displacements and
forces acting on the object, respectively. Denoting with ϕ ∈
R]ϕ a vector collecting all the forces and the configuration
variables describing a grasping problem, where ]ϕ indicates
the dimension of the vector ϕ, we can write the grasp
compliance matrix as a function of the form

Cg = Cg(ϕ) : R]ϕ → R6×6. (2)

Despite the fact that a definition of the compliance is
possible also for dynamic problems, we just focus on static
equilibrium configurations. With this in mind, the admissible
configurations are those ϕ̄ : E(ϕ̄) = 0, where E(•) is the
equilibrium constraint of the whole system, that has null
value if and only if the system is in equilibrium. In other
words, we focus on compliance matrices computed as

Cg = Cg(ϕ̄) : E ⊆ R]ϕ → Cg ⊆ R6×6, (3)

where E and Cg are suitable subspaces. In this paper, we
suggest a method to explore the space E with the aim to find
an equilibrium configuration where the grasp compliance is
the closest possible to a given one.

III. EQUILIBRIUM MANIFOLD OF THE GRASP

The global equilibrium constraint can be imposed by
studying the elemental parts composing the system. The
notation adopted is summarized in Table I. The underlying
analytical framework is based on [13], [14].

A. Equilibrium of the Object
The interaction between the hand and the grasped object

usually occurs at many points. On the ith contact point on the
object, we consider a frame of reference {Oi}. In this frame
we describe the ith interaction force foihi ∈ Rci , exerted by
the hand contact frame {Hi} on the object. The dimension ci
depends on the nature of the local contact [13]. Introducing
a frame of reference {B} attached to the object to mark its
posture with respect to an inertial frame {A}, we indicate
with wbe ∈ R6 an external wrench acting on the object, with

Notation Definition
δx variation of variable x
x̄ value of x in the equilibrium configuration
]x dimensions of vector x

q ∈ R]q joint parameters
qr ∈ R]q reference joint parameters
kq ∈ R]q joint stiffness
τ ∈ R]q joint torques
σ ∈ R]σ synergistic parameters
η ∈ R]σ synergistic generalized forces

n number of contact points
c number of contact constraints acting on the object

u ∈ R6 joint parameters of the virtual kinematic chain,
parametrize the object configuration

pcab∈ Rc pose of frame {B} with respect to {A}
in components {C}

ξcab∈ R6 twist of frame {B} with respect to {A}
in components {C}

vcab∈ Rc contact point velocity in the constrained directions
tba ∈ R]t compact form for tbab, if t is a velocity or a twist
foh ∈ Rc contact force/torque vector exerted by the hand

on the object
wbe ∈ R6 external wrench on the object
w ∈ R6 joint torques of the virtual kinematic chain,

parametrize the external wrench on the object
bJv ∈ R6×6 body Jacobian of the virtual kinematic chain
oJ ∈ Rc×]q hand Jacobian matrix in contact frame
S ∈ R]q×]σ synergy matrices
bG ∈ R6×c grasp matrix in body frame

Φ? Fundamental Grasp Matrix, the coefficient matrix
of the Fundamental Grasp Equation (29)

ϕ augmented configuration, vector collecting all
the variables of the system

TABLE I: Notation used for grasp analysis.

components in {B}. Using this definitions, the equilibrium
equation for the object can be expressed as

wbe + bGfoh = 0, (4)

where bG ∈ R6×c is the grasp matrix in body frame [14],
c =

∑p
i=1 ci is the total number of contact constraints, and

foh ∈ Rc is a vector collecting all the hand/object interaction
forces.

An alternative description of the external wrench can
be obtained using generalized forces after a suitable
parametrization for the object configuration has been intro-
duced. To this aim, we consider a virtual kinematic chain
linking together the inertial frame {A} and the object frame
{B}. An intuitive choice is to consider three prismatic joints,
aligned with X , Y and Z respectively, followed by three
rotational joints, with the same disposition. It is now easy to
describe the twist of the object frame by virtue of the body
Jacobian [13] of the virtual kinematic chain bJv(u) ∈ R6×6,
thus obtaining

ξba = bJv(u)u̇. (5)

By kineto-static duality, defining the vector w ∈ R6 as the
vector collecting the joint forces/torques of the virtual chain,
it can be written that

w = bJv(u)Twbe. (6)

From (6) it follows that the virtual chain can be employed to
parameterize the external wrench in body frame. Combining
(6) and (4), we get

w = bJv(u)T bGfoh := vG(u)foh , (7)



that describes the equilibrium of the object in terms of
contact forces and joint torques of the virtual kinematic
chain.

B. Equilibrium of the Hand

On the ith contact point we consider the frame {Hi}
attached to the hand. We can describe its twist using the
spatial Jacobian matrix, according to the law

ξaahi = aJi(qi)q̇i, (8)

where qi ∈ R]qi is the vector collecting the joint variables
that affects the motion of {Hi}. According to (7), where we
used contact forces expressed in a local frame attached to
the object, similarly we need to express the twist in (8) in
the frame {Oi}. To this aim, we make use of the adjoint
operator, that acts on twists and wrenches as described
in [13]. Thus, defining oiJi(qi, u) = Adgoia(u)

aJi(qi), it
immediately follows that

ξoiahi =oiJi(qi, u)q̇i. (9)

Since the hand is in contact with the object, some compo-
nents of the contact frame velocity move along directions
forbidden by the contact interaction. These components can
be extracted from the complete twist in (9) by the use of a
proper selection matrix BTi ∈Rci×6 as

voiahi = BTi ξ
oi
ahi
. (10)

As discussed in [13], the particular expression of the selec-
tion matrix in (10) depends on the nature of the contact.

Considering the whole system, we define voah ∈ Rc as the
vector containing all contact velocities, and q ∈ R]q as the
vector containing all the joint variables. From these, properly
combining the expression for each contact points in (10), we
can finally write

voah =oJ(q, u)q̇, (11)

where oJ(q, u) ∈ Rc×]q is the hand Jacobian matrix.
From eq. (11), again by duality arguments, we write the

equilibrium equation for the hand, resulting in

τ =oJ(q, u)T foh , (12)

where τ ∈ R]q is the vector of the joint torques of the hand.

C. Equilibrium of the Contact Virtual Springs

As in multifingered grasping the contact force distribution
problem is statically indeterminate, we introduce a penalty
formulation of the contact. To proper describe this model,
for the ith contact point, we consider a virtual spring, whose
extremities are attached to the hand contact frame {Hi}, and
to the object contact frame {Oi}. Without loss of generality
we assume that the configuration of the two contact frames
is such that they are parallel when no contact force exists.
Thus, indicating with p̃oioihi ∈ R6 a vector describing the
configuration of {Hi} with respect to {Oi}, with components
in {Oi}, the contact interaction force can be expressed as

foihi = KciB
T
i p̃

oi
oihi

:= Kcip
oi
oihi

, (13)

where Kci ∈Rci×ci is the stiffness matrix1 for the ith contact.
In eq. (13) we defined poioihi = BTi p̃

oi
oihi
∈ Rci , that is the

selected configuration vector, containing only the terms of
the mutual configuration of the contact frames able to strain
the virtual spring.

Considering all the contacts, introducing the contact stiff-
ness matrix Kc ∈Rc×c, the equilibrium law for the virtual
contact springs can be globally expressed as

foh = Kc p
o
oh. (14)

D. Equilibrium of the Elastic Joints

The elasticity of the ith joint can be properly described
considering a spring with stiffness kqi ∈ R, acting between
the actual value of the joint variable, and the value of a
joint reference variable qri ∈ R. Globally, the equilibrium of
the elastic joint actuation can be written as τ = Kq(qr − q),
where qr ∈ R]q is a vector collecting all the joint references,
and Kq ∈ R]q×]q is the joint stiffness matrix, such that
Kqij ∈ {kqi , 0}, where the latter is chosen for i 6= j.

E. Equilibrium of the Synergistic Underactuation

A synergistic underactuation is a correlation between
reference joint angles, that is

qr = Sσ, (15)

where S ∈ R]q×]σ , with ]σ ≤ ]q, is the synergy matrix2.
Introducing the vector η ∈ R]σ describing the generalized

actuation forces at the synergy level, by kineto-static duality,
from (15) it follows

η = ST τ, (16)

that describes the equilibrium condition for the underactua-
tion.

F. The Equilibrium Manifold

The equilibrium of the whole system is achieved if the
conditions (7), (12), (14), (15) and (16) are together verified.
The consequent system of equations can be written as

w + vG(u)foh = 0
τ − oJT (q, u)foh = 0
foh −Kc p

o
oh = 0

τ −Kq(Sσ − q) = 0
η − ST τ = 0,

(17)

which is an algebraic nonlinear system of the form E(ϕ)=0,
where ϕ =

[
uT, foTh , τT, qT, ηT, wT, kTq , σ

T
]T ∈ R]ϕ is the

augmented configuration of the system. In other words, as
follows from the definitions in previous sections, a configu-
ration of the system ϕ̄ is such that E(ϕ̄) = 0 if and only if
it is an equilibrium.

1Note that the configuration vector needs a parametrization for its
rotational part. This choice has influence on the expression of the contact
stiffness matrix.

2We consider here to use a constant synergy matrix, as the one resulting
from [15]. However, the treatment can be easily extended to the case in
which the synergy matrix is a function of the configuration of the system.



IV. TANGENT SPACE OF THE EQUILIBRIUM MANIFOLD

As pointed out in (1), the grasp compliance matrix relates
small variations of external forces and object displacements.
In this section, we will show how to compute the grasp
compliance matrix studying the tangent space of the equi-
librium manifold in (17). For later use, we remind that, for
a generic function F (α, β), and for ᾱ, β̄ : F (ᾱ, β̄) = 0, a
small variation of the variables implies a first order variation
of the function in the form

F (ᾱ+ δα, β̄ + δβ) ' F,α(ᾱ, β̄)δα+ F,β(ᾱ, β̄)δβ (18)

A. Perturbation of the Object Equilibrium
Applying (18) to (7), we obtain a description of the

perturbation of the equilibrium law for the object as

δw + vḠδfoh + Ūgδu = 0, (19)

where we introduced matrix Ūg :=
[
∂u
vG(u)f̄oh

]
ϕ̄
∈R6×6.

B. Perturbation of the Hand Equilibrium
Similarly to what previously done, applying (18) to (12),

we arrive at

δτ − Q̄jδq − Ūjδu− oJ̄T δfoh = 0, (20)

where we introduced the following matrices Q̄j =[
∂q
oJT (q, ū)f̄oh

]
ϕ̄
∈ R]q×]q and Ūj =

[
∂u
oJT (q̄, u)f̄oh

]
ϕ̄
∈

R]q×6.

C. Perturbation of the Contact Springs
As described in section III-C, the contact model is ob-

tained by considering a virtual spring whose ends are at-
tached to the hand and to the object, respectively. In order
to describe the perturbation of the contact forces around
an equilibrium configuration, we look for an analytical
description of the contact frame displacements. Considering
the hand Jacobian, we can easily observe that, from the
equation describing the contact frame velocity

voh = oJ(q, u)q̇, (21)

multiplying each member for dt, we obtain

δCoah = oJ(q, u)δq, (22)

where δCoah ∈ Rc is a vector collecting the displacements
of the hand contact frames. Considering (4), by kineto-static
considerations, it immediately follows that the transpose of
the grasp matrix is the map from the object frame twist ξba ∈
R6, and the contact frame velocities voab ∈ Rc, obtaining

voab = bGT ξba. (23)

However, for a description of the object twists ξba in terms
of variation of true coordinates it is necessary to introduce
a parametrization of SE(3). This can be made considering
again the virtual kinematic chain linking together the inertial
frame {A} and the object frame {B}. In fact, substituting
(5) in (23) and multiplying each member for dt, we obtain

δCoa = bGT bJv(u)δu = vGT (u)δu. (24)

Thus, considering (22) and (24), we can write the differential
form of (14) as

δfoh = Kc

(
oJ̄δq − vḠT δu

)
. (25)

D. Perturbation of the Elastic Joints
Taking into account the possibility to control the joint

stiffness, evaluating the differential of the joint constitutive
equations, we obtain

δτ = K̄q (δqr − δq) +
[
∂kqKq(q̄r − q̄)

]
ϕ̄
δkq. (26)

Remembering that, by definition, Kq = diag(kq), it easily
follows that [

∂kqKq(q̄r − q̄)
]
ϕ̄
= diag (q̄r − q̄) . (27)

Thus, defining the matrix D̄kq=diag (q̄r − q̄)∈R]q×]q , from
(27) and (26), the first order perturbation of the equilibrium
of the hand can be written as

δτ = K̄q (δqr − δq) + D̄kqδkq. (28)

E. Perturbation of the Synergistic Underactuation
The joint and the synergistic configuration variables are

related by (15). By differentiation we obtain that the config-
uration perturbations can be written as

δqr = Sδσ. (30)

Similarly, the joint torque and the synergistic force variations
are related by the differential of (16), that is

δη = ST δτ. (31)

F. The Fundamental Grasp Equation and the Grasp Com-
pliance Matrix

Considering together equations (19), (20), (25), (28), (30)
and (31), we obtain a constraint for the first order perturba-
tion of the grasp variables, with respect to an equilibrium
configuration. The result, called fundamental grasp equa-
tion (FGE), is a linear and homogeneous, system of equa-
tions (29). From the previous considerations it follows that
any variation of the augmented configuration, with respect
to the equilibrium point, δϕ ∈ R]ϕ, satisfying (29) lies on
the tangent space of the equilibrium manifold, evaluated at
the equilibrium configuration ϕ̄. Eq. (29) can be written in
compact form as Φ?δϕ = 0, where Φ? ∈ RrΦ×cΦ , with
cΦ =]ϕ, is called fundamental grasp matrix (FGM).

From the properties of the system (29) it follows that a
basis of its solution space is described by a basis for the
nullspace of the FGM, that is by a matrix Γ∈RrΓ×cΓ , with
rΓ = cΦ, such that Φ?Γ = 0. From direct inspection of (29),
the following relationships hold rΦ = ]w+]f+2]q+]σ, and
cΦ = 2]w + ]f + 3]q + 2]σ. This implies that, if the FGM
is full row-rank, as it happens for the most common con-
figuration of practical interest, its nullspace has dimension
cΓ =cΦ−rΦ =]w+]q+]σ. As a consequence, a perturbation
of the system is completely described when a number of
variables equal to cΓ is given. In this case, we consider to
know the external wrench, the joint stiffness and the synergy
variation, and we will refer to them as the independent vari-
ables of the system, δϕi =

[
δwT, δkTq , δσ

T
]T∈ R]ϕi , where

]ϕi = cΓ. Conversely, the vector of dependent variables is
defined as δϕd =

[
δuT, δfoTh , δτT, δqT, δηT

]T∈ R]ϕd , where
]ϕd=rΦ. Therefore, eq. (29) can be written as

Φ?δϕ =
[
Φ?d Φ?i

] [δϕd
δϕi

]
= 0, (32)




Ūg

vḠ 0 0 0 I]w 0 0
−Ūj oJ̄T I]τ −Q̄j 0 0 0 0
Kc

vḠT I]f 0 −Kc
oJ̄ 0 0 0 0

0 0 I]τ K̄q 0 0 D̄Kq −K̄qS
0 0 −ST 0 I]σ 0 0 0





δu
δfoh
δτ
δq
δη
δw
δkq
δσ


= 0 (29)

where, by construction, Φ?d ∈ Rrφ×rφ and Φ?i ∈ Rrφ×cΓ .
From linear algebra it is known that N(A) = N(MA), if M
is a full-rank square matrix [16]. This implies that we can
pre-multiply (32) by a suitable matrix without affecting its
solution space. In particular, choosing M = Φ?−1

d we obtain

Φδϕ =
[
Irφ Φi

] [δϕd
δϕi

]
= 0, (33)

where Φi = Φ?−1
d Φ?i ∈ Rrφ×cΓ . The new coefficient matrix

Φ is said the canonical form of the fundamental grasp matrix
(cFGM). From (33) it immediately follows that

δϕd = −Φiδϕi. (34)

More explicitly, a variation of a generic dependent variable
δxd ∈

{
δuT, δfoTh , δτT, δqT, δηT

}
can be written in the form

δxd = Ωxdδw + Xxdδkq + Ψxdδσ, (35)

where Ωxd ∈ R]xd×6, Xxd ∈ R]xd×]q and Ψxd ∈ R]xd×]σ
are the blocks composing −Φi in (34).

From (35), the explicit relationship for the object displace-
ment variable appears as

δu = Ωuδw + Xuδkq + Ψuδσ. (36)

By inspection of (36), it is evident that matrix Ωu is the map
between the external forces on the object and the consequent
object displacement, when no actuation is commanded to
the hand. Therefore, the grasp compliance matrix is Cg =
Ωu. It is important to note that the grasp compliance was
obtained using the block elements composing the FGM. As
a consequence, we will obtain Cg = Cg(ϕ). From direct
inspection of the FGM, stricter conditions can be found about
the dependence of the compliance matrix upon the variables
of the system. However, this discussion is avoided here for
space limitations.

V. GRASP COMPLIANCE REGULATION ALGORITHM

Given a configuration of the system ϕ̂, we define the
equilibrium residual vector as re = E(ϕ̂) ∈ RrΦ . Consid-
ering the independent variables of the system as fixed, it is
possible to find the dependent ones such that the configu-
ration is an equilibrium point. This problem can be framed
as a nonlinear least-squares one and its solution found by
minimizing the quadratic misfit l(ϕd)= 1

2r
T
e (ϕd)Were(ϕd),

where We ∈ RrΦ×rΦ is a weight matrix able to accord
physical dimensions. The minimum of l(ϕd) can be searched
by adopting a trust-region strategy [17], [18]. To this aim, we
consider a linear approximation of the equilibrium residual
as

rL(δϕd) ' re(ϕ̂d) +
∂re
∂ϕd

∣∣∣∣
ϕ̂

δϕd, (37)

and search for a solution by minimizing the quadratic model
constructed locally

min
δϕd

= lQ(δϕd) =
1

2
rL(δϕd)

TWerL(δϕd). (38)

Observing that, by definition (32), it holds that Φ?d :=
∂re
∂ϕd

∣∣∣
ϕ̂

, taking into account (37), the function to be mini-

mized can be expressed as

lQ(ϕd) =
1

2

[
re(ϕ̂d)

T + δϕTd Φ?Td
]
We

[
re(ϕ̂d) + Φ?dδϕd.

]
(39)

Direct inspection of (39) reveals that the gradient and the
Hessian matrix of the quadratic model are easily built from
the FGM respectively as

∇lQ = Φ?Td Were(ϕ̂d), (40)

HlQ = Φ?Td WeΦ
?
d. (41)

The minimum of the quadratic model (aka Gauss-Newton
step) is directly available. However, the chosen trust-region
approach imposes to constrain the solution step within a
reduced region, where the quadratic model used is descriptive
of the behavior of the nonlinear function we are interested
in minimizing. With the new value of the dependent variable
vector, the residual re is evaluated again and the procedure
is iterated until predefined convergence criteria are met.

The same idea can be used also to set up an iterative
method to regulate the grasp compliance. Instrumental to this

Algorithm 1 Compliance Regulation

Input: {ϕ(0), Cdes, εc, εeq}
j = 0;
while lc > εc do
ϕ(j)→ {ϕd(j), ϕi(j)} ;
k = 0;
while l(ϕd(k)) > εeq do
lQ(δϕd(k)) evaluated by eq. (39)
∇lQ(ϕd(k)) evaluated by eq. (40)
HlQ(δϕd(k)) evaluated by eq. (41)
compute ϕd(k + 1) with a Trust-Region Method;

end while
Φi(ϕ(j)) = [Φ?d(ϕ(j)) | Φ?i (ϕ(j))];
cg(ϕ(j))⇐ Φi(ϕ(j));
lc = rTc Wcrc
compute ϕ(j + 1) with a Trust-Region Method;
j + +;

end while
Output: ϕ(j), Cg



is a measure of the distances between two matrices. Many
choices are possible, but in this context we use the Frobenius
norm, according to [19]. Indicating with the lower case the
vectorial form of a matrix, such that c• = vec(C•) ∈ R36,
defining the vector rc = cdes − cg(ϕ̄), we can consider the
non linear function to minimize

lc =
1

2
rTc Wcrc, (42)

where the matrix Wc∈ R36×36 has the same function of the
We. A trust-region method can be applied again to find a
configuration minimizing the compliance distance function
(42).

In algorithm 1, a pseudo-code shows the two nested min-
imization loops. The external loop changes the hand input
variables, in order to achieve the desired grasp compliance.
At each step of the external loop, the internal one iteratively
updates the dependent variables to find an equilibrium con-
figuration.

VI. NUMERICAL EXAMPLES

In Fig. 2 a planar gripper, composed by two RRR fingers,
is shown. This configuration is used as the initial one in
all subsequent examples. On the first joint, J1, we place
the origin of the inertial frame {A}. Attached to the center
of the object, we place the object frame {B}, parallel to
the inertial one. For each joint we consider a reference
variable, connected through a spring to the actual link, as
shown for joint J2. The length of the links and the diameter
of the sphere is L = 50 mm. The contacts are hard
fingers, and their linear stiffness is kc = 10 N/mm. The
starting value of the (variable) joint stiffness is kq = 300
Nmm/rad: in the examples 200 ≤ kqi ≤ 400. A correlation

{A}

{B}

kq

qr

J1J2

J3

J4 J5

J6

Fig. 2: Sketch of a 2-RRR gripper grasping a ball. This corresponds to the
initial configuration of the grasp compliance regulation algorithm in all the
examples.

between joint reference angles is introduced via a synergy
matrix S = [sT1 sT2 sT3 ]T where s1 = (1, 0, 0,−1, 0, 0),
s2 = (0, 1, 0, 0,−1, 0), and s3 = (0, 0, 1, 0, 0,−1). With this
settings, the compliance matrix in the initial configuration
results in

Cg0 = [8.38, 6.31, 0.01, 0, 0.16, 0], (43)

where the matrix is flattened according to the rule
[(1, 1), (2, 2), (3, 3), (1, 2), (1, 3), (2, 3)].

In Fig. 3, we show the configuration where we com-
puted the desired grasp compliance. The object position
is identified by udes = [0, 100, 0], and contact forces are
fcdes = [1, 0,−1, 0].

100

fc1
fc2

{B}

τ1

τ2

τ3

τ4

τ5

τ6

0.47

1.14

0.95

Fig. 3: Configuration corresponding to the target compliance.

The other variables, for the first finger, have the following
values
τ = [−100, −77.03, −27.09], q = [−0.48, 0.43, 0.62],

σ = [−0.76, 0.21, 0.54],
(44)

where the joint parameters indicate relative variations with
respect to the initial joint configuration. Using kq = 350 for
all joints, in this configuration (Fig. 3), the grasp compliance
matrix results

Cgdes = [56.15, 3.64, 0.03, 0, 1.07, 0]. (45)

A. Varying Joint Stiffness
Our first test considers the problem of the grasp com-

pliance regulation varying only joint stiffness. Initially, we
use as target a grasp compliance matrix obtained in the
configuration depicted in Fig. 2, but with kq = 350 for all
joints. This ensures that the target compliance is reachable by
the system at hand. The target grasp compliance is therefore

Cgkq = [7.19, 5.42, 0.01, 0, 0.14, 0]. (46)

Employing algorithm 1, the grasp compliance is correctly
found, together with the correct joint stiffness values.

Instead, imposing to follow the compliance matrix in
(45), the method converges to a minimum correspond-
ing to a joint stiffness vector of the form kq =
[200, 200, 400, 200, 200, 400], hitting the boundary limits
and the obtained compliance results in

Cgkq = [12.55, 6.31, 0.01, 0, 0.25, 0]. (47)

B. Varying Synergy Variables
Let us consider now the regulation problem using only

synergistic variations. Similarly to what seen before, if a
compliance target is generated without changing the joint
stiffness, the method succeeds in obtaining the target grasp
compliance, and the solution perfectly matches the configu-
rations used to define the target.

On the other hand, imposing the matrix (45) as desired,
the system can not perfectly achieve the target, arriving to a
compliance of the form

Cgkq = [56.16, 3.7, 0.03, 0, 1.09, 0]. (48)

The system configuration obtained is characterized by the
geometry shown in Fig. 4, and, for the first finger, by the
following values

fc = [0.75, 0, 0.75, 0], τ = [−68.00, −60.41, −23.36],
q = [−0.20, 0.01, 0.86], σ = [−0.42, −0.19, 0.78].

(49)
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Fig. 4: Configuration found using just the synergistic displacements to obtain
the desired compliance.

C. Varying Joint Stiffness and Synergy Variables

Finally, we consider the possibility to both vary joint stiff-
ness and synergistic references. In this case, the desired grasp
compliance (45) is perfectly achieved, with the configuration
depicted in Fig. 5, and with

fc = [0.98, 0, 0.98, 0], τ = [−87.02, −75.82, −26.85],
q = [−0.23, 0.09, 0.71], σ = [−0.56, −0.11, 0.64].

(50)
It is interesting to note that the corresponding configuration
found, differs from Fig. 3.

This fact suggests the existence of multiple global solu-
tions, which are not local minima, since the target grasp
stiffness has been exaclty achieved (with residual equal to
zero up to numerical tolerances). The existence of multiple
global solutions allows to specify additional requirements to
influence the nature of the solution, for the same reachable
grasp stiffness. To this aim, we define a configuration resid-
ual, and use it as an additional term in the cost function
to be minimized (in the external loop of the algorithm 1).
Denoting with ϕm the vector collecting the variables we need
to set up, and calling ϕdes the desired value of this vector,
the configuration residual can be written as

rϕ = ϕm − ϕdes. (51)

Taking into account (51), eq. (42) can be substituted with
the following

lcϕ =
1

2
rTc Wcrc +

1

2
rTϕWϕrϕ. (52)

In the case of our example, numerical tests revealed that
by introducing the desired object configuration udes, or the
desired contact forces fcdes , is not enough to recover also
the true configuration at which the target compliance was
computed. To this aim, a combined use of positions and
forces informations is needed, for example setting ϕdes =
[qdes, fcdes ]. The investigation of additional goals for biasing
the solution configuration towards preferred configurations is
the subject of ongoing research.

D. Grasp Compliance Regulation with the DLR/HIT hand II

As an example of a more realistic scenario, we consider
the DLR/HIT hand II grasping a ball, as in Fig. 6. For
limitation space we do not provide the details of the kine-
matic model that has been implemented in ADAMS [20]. A
synergistic correlation is imposed such that all the reference
variable relative to the flex-extension joints have to move of
the same quantity. The starting configuration, fig. 6, without
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Fig. 5: Configuration found using both the synergistic displacements and
joint stiffness control to obtain the desired compliance.

contact forces, is characterized by a grasp compliance that,
in the translational part, appears as

Cg0
= [13.26, 11.61, 2.71, 1.28,−4.85,−0.75] (53)

Imposing a variation both to the joint stiffness values of
δkq = 100N/mm and to the synergistic reference δσ = 0.6,
we arrive at a loaded configuration (Fig. 7) characterized by
the compliance

Cgl = [1.33, 0.05, 0.07, 0.25, 0.29, 0.06]. (54)

Using this one as the input for algorithm 1, the solution is
perfectly matched in terms of both configuration and joint
stiffness values.

{A}

{B}

197

62

Fig. 6: Starting configuration of the DLR/HIT hand grasping a ball. The
red hand represents the reference that attracts the real one. In this case, the
contact forces involved are almost null.

From a practical point of view, it is interesting to consider
the problem of the physical reachability of the solution
proposed. In fact, it is worth observing that the algorithm
of compliance regulation gives, as result, an equilibrium
solution. However, it does not provide informations about
the transition between the starting and the final equilibrium
point. To verify the feasibility of the path, the grasping prob-
lem was implemented in the multi-body dynamics simulator
ADAMS. The resulting mismatch is negligible, especially
considering differences in the contact models used. In fact,
ADAMS can also consider the contact surface shapes, and
the rolling contact, and this can lead to small differences of
the final configuration. However, the behavior of the system
basically confirm that our results are a good approximation
of the steady-state solution of the dynamic simulation.
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Fig. 7: The present configuration is obtained starting from the tangent one
(Fig. 6) and increasing both synergistic references and joint stiffness values.
The mismatch between the reference hand and the actual one reflects the
force increment.

VII. CONCLUSION

A general framework to numerically compute and track a
predefined grasp compliance is presented. The approach is
general enough to consider synergistic underactuated hands,
with arbitrary kinematics, endowed with variable stiffness
actuators. The method is based on the analytical description
of the equilibrium manifold, and of its tangent space at
an equilibrium point. While the first one is necessary to
guarantee the feasibility of the hand/object configurations,
the second one is key for the computation of the grasp
compliance matrix. These quantities are the building blocks
of an algorithm able to find a new system configuration,
where the grasp compliance is automatically steered to a
predefined one.

Despite the fact that quasi-static techniques are used,
the exploration is not limited to lie to the tangent space
and/or to a local neighborhood of the initial equilibrium.
This allows to find also solutions far from the initial point,
but also to ensure that a path on the equilibrium manifold
exists connecting the initial configuration to the desired
one. A first numerical test, with a planar 2-RRR hand,
posed the problem of achieving a desired grasp (i) changing
only the joint compliance values, (ii) changing only the
synergistic configuration, (iii) changing both joint stiffness
and synergistic configuration. Results show that, when the
target compliance is reachable, the methods steers the system
towards a solution, where the compliance errors is practically
zero. The possibly to have more solutions, in terms of
system configurations, for the same target grasp stiffness,
suggests the chance to introduce additional specifications
to bias the hand/object configurations and/or forces/torques
towards preferred behaviors. The presence of multiple global
minima (same compliance matrices but different system
configurations) requires additional investigations, and will be
a subject of future research.

Finally, a dynamic simulation in ADAMS where the
DLR/HIT hand II is commanded with the solution found,
confirming that the simplifications introduced by the iterative
quasi-static approach do not constitute a limiting factor of the
method.
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