
1

Distributed Multi–level Motion Planning for
Autonomous Vehicles in Large Scale Industrial

Environments
Lorenzo Cancemi1, Adriano Fagiolini2, Lucia Pallottino1

Abstract—In this paper we propose a distributed coordination
algorithm for safe and efficient traffic management of het-
erogeneous robotic agents, moving within dynamic large scale
industrial environments. The algorithm consists of a distributed
resource–sharing protocol involving a re–planning strategy. Once
every agent is assigned with a desired motion path, the algorithm
ensures ordered traffic flows of agents, that avoid inter–robot
collision and system deadlock (stalls). The algorithm allows
multi–level representation of the environment, i.e. large or
complex rooms may be seen as a unique resource with given
capacity at convenience, which makes the approach appealing
for complex industrial environments. Under a suitable condition
on the maximum number of agents with respect to the capacity
of the environment, we prove that the algorithm correctly allows
mutual access to shared resources while avoiding deadlocks. The
proposed solution requires no centralized mechanism, no shared
memory or ground infrastructure support. Only a local inter–
robot communication is required, i.e. every agent must commu-
nicate with a limited number of other spatially adjacent robots.
We finally show the effectiveness of the proposed approach by
simulations, with application to an industrial scenario.

I. INTRODUCTION

The adoption of automated systems for transportation and
warehouse storage within the logistics of a factory has become
one of major leverages by which the factory itself can be
competitive in the market. As a consequence, the problem of
conflict resolution for a system of mobile vehicles moving
within the same environment and sharing resources, such
as corridors or rooms, has received an extensive attention
in the literature. Safety (in terms of collision avoidance),
robustness, and efficiency of operations in material handling
systems are critical. Moreover, stalling situation resolution
and fluent navigation of the agents are to be guaranteed.
Stalling situations occur when agents are unable to move from
a particular configuration (i.e. deadlock) or when they are
constrained to move along a finite number of paths without
reaching their final destinations (i.e. live–lock).

In the existing literature, coordination of multi-vehicle
systems has been exhaustively discussed, especially for Au-
tonomous Guided Vehicles (AGVs). Most of these works may
be classified in two categories, centralized or decentralized
control policies. Centralized control policies ensure optimal

1 Interdepart. Research Center “E. Piaggio” and Department of Information
Engineering, University of Pisa, email: l.pallottino@centropiaggio.unipi.it

2 Department of Energy, Information Engineering, and Mathematical Mod-
els, University of Palermo, email: fagiolini@unipa.it

This work was supported by E.C. contracts n. 257462 HYCON2 (Network
of Excellence) and n.2577649 PLANET.

Fig. 1. Large scale industrial environment with its multi–level graph
representation. Larger circles represent macro nodes that consist of a sub–
level graph.

control for agents navigation and prevent collisions and stall
situations, by assigning an a-priori determined paths to each
agent. Even thought this approach is very powerful for what
it concerns robustness, safety, and collision avoidance, it
is strictly constrained by the computational time requested
for real-time motion of the agents, that increases with the
number of the agents involved. Moreover, the faster must be
executed the coordination algorithm, the more expensive must
be the hardware used for computing the paths, and this is
strictly connected to the cost of the hardware used to run
the coordination protocol. Another disadvantage of centralized
control policies is that if the central control unit fails, the
whole system is out of control. Many works focus on important
aspects of collision avoidance and deadlock avoidance, see e.g.
[1], [2], [3]. In many cases Petri net–based control policies are
adopted [4], [5], to avoid deadlocks through a path re–planning
or using a master–slave approach [6]. Other strategies [7], [8]
avoid deadlocks by trying to detect a cyclic–waiting situation,
using graph theory for planning paths such that deadlock is a-
priori avoided [9] or using a matrix–based deadlock detection
algorithm [10].

Decentralized control policies resolve the issue of high com-
putational costs, by considering the problem as divided into
two phases: during the first phase, an optimum path is assigned
to each agent, by minimizing a suitable cost functional; during
the second phase, every agent locally resolve any arising
conflicts with other neighboring agents, according to a shared
coordination policy. Among the family of decentralized solu-
tions there is a large variety of approaches: hybrid centralized–
decentralized control schemes [11], [12]; decentralized shared
control policy [13]; discretization of the operative space into a
finite spatial resource space [14], [15], which are “contended”

2

among a set of agents using a distributed mutual exclusion
policy [16], [17], [18], [19]; optimal path assignment and re-
planning strategies in order to recover from deadlocks [20].

The contribution of this paper w.r.t. these works is many-
fold: a multi–level approach is used to handle complex and
heterogeneous large scale scenario; a rule–based protocol for
coordination shared among heterogeneous agents is designed
to handle different goals and cost functions of different agents
and that is applicable with different collision avoidance poli-
cies; a smart re–planning algorithm ensuring safe and fluid
navigation of agents, avoiding deadlocks is presented; a simple
and easy to implement communication system, that causes less
network overheads w.r.t. message passing and that is more
efficient for communication among agents. Finally, in our
approach agents operate autonomously based on local com-
munication with other agents inside a defined communication
radius: no centralized mechanism, shared memory or ground
support is needed.

II. PROBLEM DEFINITION

The problem we intend to solve is the management of a
large number of autonomous vehicular robots in an industrial
environment, while ensuring safety of the system (i.e. the
absence of collisions) and the accomplishment of robots’ tasks.
Other main requirements are the scalability of the system in
the number of autonomous robots, the reconfigurability of the
system upon possible environmental changes, the management
of heterogeneity of robots involved, see e.g. [21].

A. Industrial environment

In this paper we consider a wide industrial environment
consisting of different (macro) areas with different scopes
such as warehouses, production or assembly site, open air
areas, logistics sites etc. In turn, each building may then
consist of several floors, corridors, rooms, narrow passages
etc. Different industrial areas have also different peculiarities.
Large open air areas may be less populated with respect to
the production site area and autonomous vehicles may move
without being constrained to follow predefined path. Indoor
environments may be covered with wired or wireless sensor
network that may support autonomous vehicles in their task
accomplishment. In warehouse or outdoor areas the obstacles
may change the environment for a consistent amount of time
and an up–to–date information may guarantee a more efficient
motion planning.

In general, the environmental constraints for safety purposes
may change based on the area characteristic. Constraining the
whole environment for the presence of congested or small
regions is a penalizing approach. Heterogeneity in the environ-
ment specification and characteristics must hence be taken into
account. Indeed, our goal is to have autonomous agents that
are able to plan their motion and to coordinate its motion with
other agents. A motion planning in a large environment may
be based on a coarse representation of the environment and
refinements may be used only when necessary. Such approach
is typical of approximate cells decompositions methods, see
e.g. [22]. Similarly to this approach we model the environment

based on the concept of micro and macro areas where macro
areas consist, in turn, of smaller micro and macro areas. Such
a nested approach allows a streamlined management of the
world representation. Micro areas adjacent to macro areas
are corridors or doorways and play the role of entrance/exit
gateway for the macro area.

A dedicated supervising unit may be present at each of these
gateways and be responsible for guaranteeing correct access
control only to authorized vehicles and to dispatch them with
the necessary initialization commands and data while moving
within the supervised area. The unit may authorize the vehicle
access to the area upon the download of the map of the area
and possibly useful services (e.g. localization service, rekeying
protocol for secure communication etc, see e.g. [23]). In case
of multiple gateways for a single macro area, these gateways
require synchronization and can provide the entering agents
with the correct information on the associated macro area.
Notice that thanks to the gateways different communication
protocols or collision avoidance rules may be defined in
different macro area and communicated to vehicles when
entering the area. For example, in outdoor environments the
communication may require higher levels of security to avoid
eavesdropping, see e.g. [23]. For what it concerns the collision
avoidance, for example, the policy described in [24] may
used in outdoor areas while another policy may be used in
structured indoor environments, such as with corridors, rooms
etc.. With the proposed approach is possible to adapt and
reconfigure the autonomous vehicles depending on the area it
intends to reach or cross (e.g. an outdoor area versus a indoor
structured area).
A simple example of an industrial layout discretized in re-
sources is reported in Fig. 1.

B. Nested model of the industrial environment

Based on the environmental subdivision in adjacent macro
and micro areas, a graph is straightforwardly obtained. Each
micro node represents a micro area of the environment and
is characterized by the position (x, y) of a given point of
the associated area (e.g. the center) in the global reference
system. An edge between nodes exists if the associated regions
are adjacent. A macro node represents a macro complex
area and hence consists of a set of micro and macro nodes
(and associated edges) and it is connected to other micro or
macro nodes through micro nodes that will play the role of
entrance/exit gateways. Each macro node is associated to a
level represented by a graph of micro (possibly gateways)
and macro (of lower levels) nodes. Once in a gateway, each
agent obtains, through the network infrastructure, the graph
associated to the macro node with its arcs and costs. Notice
that in a graph, the cost from a macro to a (gateway) micro
node will take into account the cost of crossing the whole
sub–level associated to the macro node.

In the first level, named 0–level, all nodes n are identified
by a triple (UIDn, 0, M) where UIDn is a unique identifier,
0 represents that the node belongs to the graph of the 0–level
and M = 1 if it is a macro node, M = 0 otherwise. For any
sub–level each node k is identified by a triple (UIDk, lk, M)

3

where lk = UIDh is the unique identifier of the macro node
h = (UIDh, lh, 1) whose graph contains k. Also in this case,
UIDk is a unique identifier and M = 1 if it is a macro node,
M = 0 otherwise.

To each micro and macro node k a maximum capacity
MaxCap(k) is assigned a priory. The maximum capacity of
a macro node can be changed only when the node its not at
its maximum capacity. This may be useful when, for several
reasons, we are interested in limiting access to a plant zone to
fewer agents. The capacity is communicated to the agents by
the gateways together with the graph. A micro node capacity
larger than one will allow more than one agent to have access
to the same region associated to the node. In this case, the
collision avoidance protocol, associated to the macro node the
micro node belongs to, will be used to manage the potential
conflict as explained in Section IV-B.

III. THE HETEROGENEOUS AUTONOMOUS AGENTS

One of the main contribution of this paper is that the
protocol is designed to handle heterogenous agents. Agents
may differ in their kinematic constraints (holonomy, maximum
speed, limited turning radius, etc.), in their mission specifi-
cation (crossing given regions, in reaching a final destina-
tion, patrolling among different points of the environment),
in their personal cost functions (minimize time to complete
the mission, minimize traveled distance, minimize energy
consumption, etc.). In particular, each agents plans its own
trajectory based on its personal costs through an appropriate
algorithm. For example, a simple Dijkstra algorithm can be
used to determine a minimum path on the given graph toward
the final destination, a salesman travel problem can be solved
in case of agents that must patrol different areas in the
environments or an A∗ algorithm can be used to minimize
the time to reach the final destination, see e.g. [22] for details
on such algorithms.

A. Agent internal state

Depending on the personal costs and goals, each agent
determines the path on the graph that it intends to use.
Furthermore, each agent i has the possibility to set its own
speed vi in a given known interval [0, vmax] especially for
collision avoidance purposes.

Each agent i is characterized by its own UIDi unique
identifier and a priority Pi that is preassigned to the agent
based on the task criticalities or time constraints and that can
be changed through the gateways if necessary. For example,
in case of urgent requirement of a certain type of material, the
vehicle handling the good can be set as a higher priority agent.
The agent has also an internal clock t that is synchronized with
other agents clocks.

To manage the presence of different levels, i.e. macro nodes
in macro nodes, each agent must keep in memory the node
it is occupying and the final desired node for each involved
level. An identifier of the currently occupying level is also
useful to manage the passages between levels. We denote the
micro node that agent i intend to reach in the plan as FNi.

B. Inter agents communication

Each agent sends and receives a communication packet that
is a quintuple CPi = (UIDi, Pi, CNi, PNi, SNi) with the
following information: its own unique identifier UIDi, the
current priority Pi, the node currently occupied CNi, the first
node in the desired path (that follows the currently occupied
node) named primary node PNi, a secondary desired nodes
SNi different from PNi whose role and determination will
be cleared in the following.

Definition 1: Agents i and j are neighbours if
{CNi, PNi, SNi} ∩ {CNj , PNj , SNj} 6= ∅. We will
denote with Ni the set of neighbours of agent i. Node
k ∈ {CNi, PNi, SNi} ∩ {CNj , PNj , SNj} are shared
nodes between agents i and j.

Based on the current capacity of node PNi and the com-
munication packets received from neighbours, each agent i
evaluate the access to node PNi as described in the following.
Notice that the communication is required among agents that
are interested in the same nodes and hence are close to each
other.

C. Access to a micro node

To access a micro node, each agent i checks the com-
munication package received by the neighbours. Based on
those packages each agent may reconstruct the following
information:
• Current capacity of node CurCap(Ni) = #{j ∈
Ni|CNj = PNi}1.

• Current number of requests of access to node Req(Ni) =
#{j ∈ Ni|PNj = PNi}+#{j ∈ Ni|SNj = PNi}.

If agent i has a next node PNi such that CurCap(Ni) +
Req(Ni) ≤ MaxCap(Ni), i.e. the number of requesting
agents plus the number of agents currently on the node does
not exceed the maximum capacity, the agent may have access
to the node. Otherwise, a priority–based ranking is determined.
On a FIFO–like (First–In–First–Out) flavour, the ranking is
first based on the time of request. The oldest requests will be
processed based on the priority value. Furthermore, in case of
equal priority the order is decided based on the UID’s values.
With this FIFO–like approach we will be able to ensure that
agents will reach PNi (or SNi) in a finite number of steps.
Moreover, we penalize agents to request the same node after
few time steps.

All agents requesting access to n with ranking value
ranki(n) ≤ MaxCap(n) − CurCap(n) may have imme-
diate access to the node. Hence, the effective ranking (in
the following, for simplicity referred to as ranking) of other
agents is ERi(n) = ranki(n)−MaxCap(n)+CurCap(n).
Notice that each agent can easily compute the effective ranking
position of all its neighbours.

Each agent will require access to the PNi only when it
is close enough to the region associated to PNi in order to
have access to it and release node CNi shortly after. On the
other hand, the agent must also be able to stop its motion
if needed before entering PNi. This strictly depends on the

1We denote with # the cardinality of the set.

4

kinematics and dynamics model of the agent and hence each
agent decides the correct time to request the next node based
on its model, the dimension of the region associated to CNi,
its position and current speed.

D. Planning alternative paths

Based on the available graph, each agent i plans its most
convenient trajectory toward the desired node FNi, or the
desired exit/entrance gateway of current level. Once such
primary path has been found, the first node of the path is
removed by agents’ graph together with all the incoming
arcs. A new optimal path planning is run and an alternative
secondary path is found.

Such alternative path is introduced to try to reduce the
waiting time spent by agents to have access to node. This
occurs when the agent’s ranking implies a foreseen long
waiting time before agent will be able to have access to the
first node of the primary path. Moreover, it may be possible
to authorize the possibility to choose between primary and
secondary paths to a limited number of agents or only to a
specified subset of specialized agents based on their ability
in accomplishing critical tasks. This is done to manage high
traffic plant sectors and to avoid that all agents, with a common
primary and secondary next node, choose the secondary one.
For simplicity, in our implementation we chose to authorize
only the first half of ranked agents to use their secondary paths.

Whenever authorized, agent i requests access to both PNi

and SNi. Notice that also for the secondary node k = SNi

a ranking is required in case CurCap(SNi) + Req(SNi) >
MaxCap(SNi). In this case, agents with SNj = k may be
ranked based on a scaled priority to possibly penalize the
choice of the secondary path with respect to the primary one.
The effective total cost ETCi(PNi) (ETCi(SNi)) of each
agent i to reach the final desired node through the primary
(secondary) path is hence a function of the cost of the primary
(secondary) path and the position ERi(PNi) (ERi(SNi))
in the ranking list associated to PNi (SNi). Based on that
total costs, the agent will chose which path to follow between
primary and secondary. Indeed, in case of a ranking on PNi

and the possibility to access to SNi, the secondary path can
have such a larger cost with respect to the primary one that
ETCi(PNi) < ETCi(SNi) and the agent prefers to wait for
PNi while avoiding to have access to SNi.

Moreover, in case of long waiting an agent i may prefer to
try another path that does not cross PNi or SNi. This can be
handled updating at each time step the cost c(CNi, n) of the
arc from CNi to n = PNi or n = SNi based on the ranking
position as follows

c(CNi, n) := c(CNi, n) + di(ERi(n) + 1) (1)

where di is a parameter representing the inverse of the agent
waiting tolerance. Higher is the value di more the path is
penalized. When a long waiting is foreseen another path may
hence been found by the agent’s planning algorithm.

We are now able to provide the final state machine that
describes the proposed coordination protocol. For simplicity
of description we suppose that each macro node consists only

of micro nodes and hence two levels are available in the plant
model. In this case, for each agent i we consider the vector
li = [c0, f0, c1, f1] where c0 and c1 are currently occupied
nodes, f0 and f1 are the final nodes in the 0–level and the
current level respectively.

IV. THE COORDINATION PROTOCOL

A well know approach to model the agent motion, based
on environmental information and intra–agent information
exchange, is a finite state machine. Each state of the machine
is associated to the agent state while arcs represent events
occurrence that imply a modification of the agent state. More
formally consider three agent states:

1) Waiting (W) can not have access to neither PNi nor
SNi.

2) Requesting (R) the agent requests access to PNi and
possibly to SNi.

3) Moving (M) the agent has gained the access to PNi or
SNi and is moving to reach the new node, or the agent
is moving in CNi.

For space limitations is is not possible to report all the
switching conditions between agent states as logical propo-
sition of variables defined above. However, the state flow for
the three states is reported in Fig. 2 and Fig. 3. Notice that
each state flow is computed in a time step. In the W and M
state flows, the speed and the position in the motion space are
modified accordingly to the motion protocol associated to the
node level. In case of the W state, this is done taking into
account the presence of other agents and the fact that no other
node has been authorized to the agent yet.

As already mentioned, agent will require the access to PN
and SN based on the CN physical dimension and on the
time foreseen to reach PN . Finally, notice that CN is updated
and the resource released when the agent will not occupy the
physical region associated to it while moving toward PN or
SN .

A. Deadlock free properties

For the sake of simplicity in the exposition of this section,
we suppose that when an agent enters its desired final node it
is excluded from the coordination protocol and not taken into
account anymore in the system evolution.

A basic hypothesis is that the collision avoidance policy in
each node of capacity larger than 1 and the dimension of the
region are such that the agent is able to exit the node in finite
time. Those aspect will be further analyzed in section IV-B.

Notice that the state flow is such that for agents in states
W and R after a time step the agent switches to a different
state, R and W or M respectively. On the other hand, agents
in state M may stay on the state M for more than a time step.
However, the following holds.

Proposition 1: Given an agent in state M , after a finite
number of steps the guards toward state R are verified and
the agent changes its state.

Proof: An agent in state M may be moving within CN
(i.e. CN = n) and hence, based on the hypothesis on the
collision avoidance policy, after a finite time it is able to

5

Fig. 2. State flow for agent i with PNi = n and SCi = m when requesting access to n and m.

Fig. 3. State flow for agent i with PNi = n and SCi = m when waiting for having access to a node or moving toward a new node.

request access to PN and SN . Hence a transition to state
R occurs. Otherwise, the agent is moving from CN toward
another node (PN or SN , i.e. CN 6= n). For hypothesis
on the collision avoidance policy, agent will then reach n
and release CN in a finite time, i.e. CN is updated to n.
Concluding, from M a switch to R occurs in finite time and
hence the thesis.

We now introduce a condition on the total number of agents
in the environment to guarantee that no deadlock occurs. A
deadlock is a condition in which no agent will ever change its
current node CN and the system is in a stall configuration.

Condition 1: The number N of agents in the environment
is smaller than the sum of the capacity of macro and micro
nodes of the 0-level. In other words, given L0 = {j|j =
(k, 0, 1) ∧ j = (k, 0, 0), k ∈ Z}

N <
∑
j∈L0

MaxCap(j) (2)

Proposition 2: If condition 1, i.e. (2) holds, there always
exists at least an agent that will reach its desired next node
PN or SN in a finite number of time steps.

Proof: Condition (2) ensures that at any time T there
exists at least a node j with CurCap(j) < MaxCap(j).
Hence, there exists an agent i with PNi = j or SNi = j that

obtains the access to the new node in a finite time. Indeed, even
if no agent is interested in j at time T , after a finite number
of steps the costs of arcs of agents requiring other occupied
resources will be such there exists an agent i with PNi = j
or SNi = j. Moreover, after another finite number of steps,
see proof of Proposition 1, the node k = CNi is released and
the same reasoning can be applied to agents requesting k that
is not at its maximum capacity.

From above proposition we may conclude that no deadlock
occurs with the proposed approach. Obviously we are not
able to guarantee livelock occurrence, i.e. agents move on the
graph without reaching the final destination. However, in the
conducted simulations such livelock occurs in small ad-hoc
crowded environments with a small total capacity with respect
to agents.

B. Collision Avoidance

To manage the heterogeneity of a large scale industrial
environment, every macro node is assigned with a possibly
different collision avoidance strategy, being developed to ef-
ficiently handle the operating conditions of the node itself.
While moving within all the micro nodes comprised in a higher
level macro node, agents are supposed to adopt the associated

6

macro–node collision avoidance policy. Such protocol must
ensure that every vehicle can reach in finite time their next
nodes without colliding agains other vehicles.

The definition of each macro–node collision avoidance pro-
tocol, which is out of the scope of the paper, depends on many
aspects, including the nature of the environment represented by
the node, the type of coexisting vehicles, some special safety
super requirements due to e.g. coexistence with humans in
specific corridors or rooms. Furthermore, to correctly handle
the motion of vehicle from one node to another, while allowing
to use possibly different motion protocols, we introduce the
notion of a macro node capacity as follows.

A suboptimal yet conservative choice is to define the
capacity of a macro node based on the maximum capacity
of the correspondent region’s dimension. Suppose e.g. that
heterogeneous agents are able to stop (otherwise we may use
the idea of reserved region proposed in [24]) and have a
maximum safety disk (representing e.g. the dimension of the
robot) of radius R. In worst case we must need to stop agents
and move them only one at a time (in FIFO order) toward
the desired node. The maximum number of agents that can
be handled with this very conservative approach depends on
R and the region under consideration and can be set as the
maximum capacity of the node associated to the region.

Note that an agent of dimension R moving in a region may
overlap part of another adjacent region. Based on a similar
approach to the one proposed in [25], two adjacent regions are
characterized by the overlapping region, in which the agent’s
safety disk partially overlaps both regions (represented by the
grey region in Fig.4). The dimension of the region used to
determine the maximum capacity is at net of the overlapping
regions and this is the region in which agent must move when
waiting to access to a new node. When an agent i in a node n
has gained access to node m starts moving toward the region
associated to m. The capacity of node n is decreased only
when the agent lays in the region associated to m and its
safety disk does not overlap with the region associated to n,
see Fig.4. It is true that, with this approach, the node that is
currently occupied can be represented by a couple of nodes but
this is omitted in the state representation of agents to simplify
the protocol explanation.

V. SIMULATION RESULTS

For simplicity in the simulation reported in this section we
considered the case of nodes of maximum capacity equal to
1. The environment considered in this set of simulation is
reported in Fig. 5 where a node is associated to each corridor,
each room and door. Nodes associated to regions in which
a dashed map is represented are macro nodes. The graph
associated to the environment considered is reported in Fig. 7
with its arc costs that take into account the length of corridors
or dimension of rooms.

In the simulation reported in Fig. 6, two robots want to reach
the point on the other side of the plan with a crossing point
corresponding to the node 13 in the center of the environment.
The robot navigating from East to West (from 11 to 15) has
higher priority and the robot navigating from South to North
(from 3 to 23) waits until the resource is made available.

Fig. 4. Consider agent in position A its current node CN is node 1, when
gained access to 3 and moving toward it, e.g. in position B the agent is
occupying both 1 and 3 in terms of capacity. When an agent reaches position
C it releases node 1.

Fig. 5. Environment representation, dashed areas are macro node

The second simulation, reported in Fig. 8, is similar to
the first one. However, in this case a fixed robot has been
considered in node 13 while a robot in 3 would like to reach
node 23 (from South to North). When the algorithm starts,
the non–fixed robot chooses its best path toward the goal
and this crosses node 13 (the center of the plant). The robot
starts moving toward 13 but, since the node is at its maximum
capacity, the robot can not have access to it. After a waiting
time the increased arcs cost, as in (1), allows the robot to find
another path that eventually bring it toward its destination, i.e.
node 23 without crossing node 13.

In the last simulation we show an agent moving form 0-level
to 1-level. In Fig. 9 on the left the evolution in the 0-level is
reported while on the right the evolution in the macro node
20 1-level is represented. Circled points in the top left image
correspond to robot fixed on nodes 11 and 40 that will force
the other robots to find alternative paths.

More complex simulations have been conducted with up to

7

Fig. 6. Two robots in a crossing scenario the lower priority robot waits until
the resource is made available. In this scenario for the lower priority robot is
not convenient to look for another longer path.

Fig. 7. Graph associated to the environment of Fig. 5

10 agents and with different node capacities and arc costs. A
simulation with 5 agents is reported in Fig. 10 where node 11
has capacity 2 and indeed two agents cross it simultaneously.
Moreover such agents have different speed and exit the node
in different steps.

VI. CONCLUSIONS AND FUTURE WORK

In this paper a decentralized protocol for multi–robot co-
ordination has been proposed. The main characteristic of the
protocol is that it can be adapted to large scale environments
(structured and unstructured, e.g. open space environment with
few obstacles) to a non fixed number of heterogeneous robots

Fig. 8. Evolution of an agent that encounters another agent blocked on a
node and after waiting to access that node decides to go toward the goal by
replanning.

Fig. 9. Evolution of an agent through macro node 20, left: evolution in the
0-level, right: evolution in the 1-level.

with different kinematic or dynamic constraints. Moreover,
the protocol is able to handle different collision avoidance
policies to be used in different part of the environment. More
simulation will be conducted in more complex environments
taking into account also different policies. A probabilistic
approach will be used to determine under which conditions
all the vehicles eventually reach their final destination.

REFERENCES

[1] M. P. Fanti. Event–based controller to avoid deadlock and collisions in
zone–control AGVS. Int. J. of Production Res., vol. 40, no. 6, pp. 1453–
1478, 2002.

[2] S.A. Reveliotis. Conflict resolution in AGV systems. IIE Trans., vol.
32(7), pp. 647–659, 2000.

8

Fig. 10. Simulation with 5 agents.

[3] S.A. Reveliotis and P.M. Ferreira. Deadlock avoidance policies for
automated manufacturing cells. IEEE Transactions on Robotics and
Automation, vol.12, n.6, pp. 845–857, 2002.

[4] N. Wu and M. Zhou. Shortest routing of bidirectional automated guided

vehicles avoiding deadlock and blocking. IEEE/ASME Transactions on
Mechatronics, vol. 12, no. 1, pp. 63–72, Feb. 2007.

[5] M. Fanti. A deadlock avoidance strategy for agv systems modelled by
coloured petri nets. Sixth International Workshop on Discrete Event
Systems, pp. 61–66, 2002.

[6] S. Yuta and S. Premvuti. Coordinating autonomous and centralized
decision making to achieve cooperative behaviors between multiple mobile
robots. IEEE/RSJ International Conference on Intelligent Robots and
Systems, vol. 3, pp. 1566–1574, Jul 1992.

[7] R.L. Moorthy, W.Hock-Guan, Ng Wing-Cheong and T. Chung-Piaw.

Cyclic deadlock prediction and avoidance for zone–controlled AGV system.
International journal of Production Economics 83 (2003) 309–324.

[8] M. Singhal. Deadlock Detection in Distributed Systems. Computer Vol.
22, Numb. 11, Pages 37-48, 1989.

[9] J.W. Yoo, E. S. Sim, C. Cao and J. W. Park. An algorithm for deadlock
avoidance in an AGV system. Int. J. Adv. Manuf. Technology 26: 659-668,
2005.

[10] M. Lehmann, M. Grunow and H. O. Gunther. Deadlock handling for
real–time control of AGVs at automated container terminals. OR Spectrum,
Springer, 28:631-657, 2006.

[11] S. LaValle and S. Hutchinson. Path selection and coordination for
multiple robots via nash equilibria. IEEE International Conference on
Robotics and Automation, vol. 3, pp. 1847–1852, May 1994.

[12] S. LaValle and S. Hutchinson. Optimal motion planning for multiple
robots having independent goals. IEEE Transactions on Robotics and
Automation, vol. 14, n. 6, pp. 912–925, 1998.

[13] S. Kato, S. Nishiyama and J. Takeno. Coordinating mobile robots by
applying traffic rules. IEEE/RSJ International Conference on Intelligent
Robots and Systems, vol. 3, pp. 1535–1541, Jul 1992.

[14] J. Wang. Operating Primitives Supporting Traffic Regulation and
Control of Mobile Robots under Distributed Robotic Systems. IEEE
International Conference on Robotics and Automation, vol. 2, pp. 1613–
1618, 1995.

[15] J.Wang and S.Premvuti. Distributed Traffic Regulation and Control for
Multiple Autonomous Mobile Robots Operating in Discrete Space. IEEE
International Conference on Robotics and Automation 1995, pp. 1619-
1624.

[16] J. Wang. DRS Primitives based on Distributed Mutual Exclusion.
IEEE/RSJ International Conference on Intelligent Robots and Systems,
June 26-30, Yokohama, Japan, pp. 1085-1090, 1993.

[17] Leslie Lamport. The Mutual Exclusion Problem: Part I - A theory of
interprocess communication. Journal of the ACM, Vol. 33 n. 2, pp. 313–
326, April 1986

[18] Leslie Lamport The Mutual Exclusion Problem: Part II - Statement and
solutions. Journal of the ACM, Vol. 33 n. 2, pp. 327–348, April 1986.

[19] S. Manca, A. Fagiolini, L. Pallottino. Decentralized Coordination System
for Multiple AGVs in a Structured Environment. 18th World Congress of
the International Federation of Automatic Control (IFAC 2011), vol.18, n.
1, pp. 6005–6010, 2011.

[20] N. Wu and M. C. Zhou. AGV routing for conflict resolution in AGV
systems IEEE International Conference on Robotics and Automation, Vol.
1, pp. 1428–1433, Taipei-Taiwan, Sept. 14-19, 2003.

[21] A. Bicchi, A. Fagiolini, L. Pallottino. Towards a Society of Robots
IEEE Robotics & Automation Magazine. doi: 10.1109/MRA.2010.938839,
vol.17, no.4, pp.26,36, Dec. 2010.

[22] S. LaValle. Planning algorithms. Cambridge university press, 2006.
[23] A. Bicchi, A. Danesi, G. Dini, S. La Porta, L. Pallottino, I. M Savino,

R. Schiavi. Heterogeneous wireless multirobot system IEEE Robotics &
Automation Magazine, vol.15 n.1, pp.62-70, 2008.

[24] L. Pallottino, V.G. Scordio, A. Bicchi and E. Frazzoli. Decentral-
ized Cooperative Policy for Conflict Resolution in Multivehicle Systems.
IEEE Transactions on Robotics, vol. 23, n. 6, pp. 1170–1183, 2007, doi
10.1109/TRO.2007.909810.

[25] E. Roszkowska and S. Reveliotis. A Distributed Protocol for Motion
Coordination in Free-Range Vehicular Systems- Automatica, to appear.

