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Abstract— In this paper, a novel synergy driven teleimpedan-
ce controller for the Pisa–IIT SoftHand is presented. Towards
the development of an efficient, robust, and low-cost hand
prothesis, the Pisa–IIT SoftHand is built on the motor control
principle of synergies, through which the immense complexity
of the hand is simplified into distinct motor patterns. As the
SoftHand grasps, it follows a synergistic path with built-in
flexibility to allow grasping of objects of various shapes using
only a single motor. In this work, the hand grasping motion
is regulated with an impedance controller which incorporates
the user’s postural and stiffness synergy profiles in realtime.
In addition, a disturbance observer is realized which estimates
the grasping contact force. The estimated force is then fedback
to the user via a vibration motor. Grasp robustness and
transparency improvements were evaluated on two healthy
subjects while grasping different objects. Implementation of
the proposed teleimpedance controller led to the execution of
stable grasps by controlling the grasping forces, via modulation
of hand compliance. In addition, utilization of the vibrotactile
feedback resulted in reduced physical load on the user. While
these results need to be validated with amputees, they provide
evidence that a low-cost, robust hand employing hardware-
based synergies is a viable alternative to traditional myoelectric
prostheses.

I. INTRODUCTION

Although global amputation statistics are difficult to esti-

mate, one in 200 people in the United States has lost a limb

[1], whether due to trauma, disease, or war. Amputation

requires an individual to adapt to significant physical and

psychological loss in functional ability, independence, and

appearance. Prostheses have been used for centuries to help

restore function and cope with this loss. Body-powered

prostheses saw great advancements in the middle of the

last century and these hook-style prostheses are still often

used today for their functionality, robust design, and modest

sensory feedback. The next generation prosthetic devices are

myoelectric: they are controlled using residual muscle signals

and offer a more aesthetically pleasing appearance and can

provide greater control of the hand.

The vast majority of myoelectrics are one degree of free-

dom (DOF) grippers with various levels of control complexi-

ty. Many offer basic on/off control for those with limited con-

trol over residual muscles. Others include proportional con-

trol by relating stronger electromyographic (EMG) signals

to faster closing and/or higher grip force (eg: the Hosmer

myoelectric hand by Centri or the Otto Bock DMC Plus R©).
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A few of these myoelectrics also feature anti-slip technolo-

gy that automatically adjusts grip force upon detection of

slippage (eg: the Otto Bock Sensor HandTMSpeed). From

these basic myoelectrics, there is a large gap in technology

to the most advanced, and also most expensive, hands. These

hands, including the i-limbTMultra from Touch Bionics, Inc

and the Bebionic 3 from RSL Steeper, are anthropomorphic

and are capable of adopting multiple realistic hand postures

and grips. To accommodate the increased DOFs, however, the

hands are more complex to control, often requiring sequential

contractions or cocontractions to select and then operate a

particular grip pattern.

In research, many solutions to the above challenges are

being explored. For example, to allow more natural control

of the prosthesis, complex machine learning algorithms are

being employed [2], [3]. While capable of good classification

in a lab setting, these methods are dependent on large

training sets and few have been evaluated with day-to-day,

real-world signal variation. In response to the difficulties

faced in building and controlling anthropomorphic hands,

the Pisa–IIT SoftHand [4] was developed as a joint venture

between the Centro Piaggio of the University of Pisa and

the Advanced Robotics Department of the Italian Institute

of Technology. In the above machine learning examples, the

burden of driving complex movement patterns falls on the

controller. The SoftHand, however, shifts this burden to the

hardware, with mechanics designed to follow natural paths.

In order to control the many DOFs of the human hand, the

brain builds sets of movement patterns, known as synergies

[5], [6], [7], [8], thus the SoftHand was designed to actuate

along the first synergy, with built-in compliance to allow

for better molding to target objects. In addition to the basic

position and force control currently available in prostheses,

various features are being explored to increase ease of use

and enhance the user’s experience. Two of these features,

that will be explored in this paper, are impedance control,

which may provide more natural control of the hand [9],

and vibrotactile feedback, which may minimize fatigue by

allowing users to control the hand with less force [10].

With the goal of exploiting the efficiency and robustness

of synergistic grasping, a novel myoelectric teleimpedance

controller is developed. The concept of teleimpedance con-

trol has been previously presented as a practical approach for

transferring human impedance-regulation skills and equili-

brium position profiles to robots, in realtime. These previous

works focused on impedance control in the proximal upper

limb [11], [12] and lower limb [13]. In this work, an active

impedance controller incorporating the user’s hand stiffness

and postural synergy profiles in realtime is presented. Exploi-



ting the concept of synergies that drive concurrent muscle

activation, only one pair of antagonistic muscles (two EMG

channels) was necessary for the musculoskeletal modeling

of the grasp. The resultant model outputs were then used

to command the stiffness and postural synergy references

tracked by the developed impedance controller.

While visual feedback with a prosthesis can make up

for some of the lack of proprioception, knowledge of task

interaction forces is difficult to acquire. To that end, we deve-

loped a grasping contact force or finger interaction observer

which incorporates the pre-identified disturbance model of

the hand. Resulting interaction forces are then converted and

applied to the user as vibrotactile feedback, providing real-

time information on the contact forces in response to user-

modified hand compliance and posture. The efficiency of the

novel synergy-driven teleimpedance approach for dexterous

manipulation has been evaluated through experiments with

two subjects.

The rest of the paper is structured as follows: the SoftHand

design considerations and the synergy reference models are

described in sections II and III, respectively. Development

of the interaction torque observer is discussed in section IV.

The design of the teleimpedance controller is provided in

section V, while experimental setup is presented in section

VI. Results of the implementation of the novel synergy-based

teleimpedance controller are shown in section VII. Finally,

section VIII presents the conclusions.

II. THE PISA-IIT SOFTHAND

The Pisa-IIT SoftHand [4] was developed in a partnership

between the Centro E. Piaggio of the University of Pisa and

the Advanced Robotics department of the Italian Institute

of Technology in Genoa, Italy. The goal was to build a

robust and safe hand at low cost, while simplifying some

of the immense complexity of the hand through the use of

synergies. Two design strategies were combined to achieve

this result: soft synergies and underactuation. As previously

mentioned, synergies are a motor control strategy that coor-

dinates the articulation of the many joints of the hand into

coherent movement patterns. By incorporating synergies into

the hardware design, there is a risk of poorly approximating

the object to be grasped and providing uneven force at

the contact points. In soft synergies, introduced in [8], the

synergy serves as a reference position for a virtual hand, thus

enabling better control of the interaction forces between the

hand and the grasped object through variation of the virtual

hand position or the stiffness matrix connecting the virtual

and real hands. A fully actuated robotic hand (e.g. [14])

introduces one actuator per degree of freedom (DOF), thus

increasing weight, cost, and control complexity of the final

device. Underactuation [15], however, reduces the number

of actuators without reducing the number of DOFs and also

imparts a quality of shape adaptability to the device. These

two strategies were combined to produce an “adaptive syner-

gy” design strategy incorporating the neuroscientific basis of

soft synergies with the shape adaptability of underactuation.

Using the adaptive synergy approach, an anthropomorphic

hand was designed with 19 DOFs, 4 on each of 4 fingers,

and 3 on the thumb. At rest, the hand measures roughly 23

cm from the tip of the thumb to the tip of the little finger,

23.5 cm from the wrist interface to the tip of the middle

finger, and 4 cm thick at the palm. The fingers are capable of

flexion/extension as well as ab/adduction. For ab/adduction

of the fingers and at the equivalent of the carpometacarpal

joint of the thumb (responsible for rotating the thumb from

lateral pinch to C grasp, for example), traditional revolute

joints were employed. One of the most important conside-

rations in the design was safety: the hand must be robust

enough to be of use to humans but also compliant enough

to ensure safe interactions with humans. For this reason, a

soft robotics approach was taken for the rest of the joints

by incorporating rolling contact joints with elastic ligaments.

The rolling contact joints ensure anatomically correct motion

when actuated, but easily disengage on impact to allow

safe interaction with humans while preserving the hand. The

elastic ligaments also allow deformation while ensuring the

hand returns to its original configuration. A single tendon

runs through all joints to simultaneously flex and adduct the

fingers upon actuation.

The hand is actuated by a single DC motor which moves

the fingers on the path of the first synergy as described in [6]

allowing the physical hand to mold around the desired object.

The motor employed is a 6 Watt Maxon motor RE-max21

with an 84:1 gear reduction and a 12 bit magnetic encoder,

resolution of 0.0875o (Austrian Microsystems). With the

current motor, maximum motor holding torque is 2 Nm and

maximum holding force is roughly 20 N perpendicular to the

palm.

III. SOFTHAND SYNERGY REFERENCES

Hand postural synergies have long been recognized as

a motor control method to simplify hand complexity [5]

and have been more recently broken down via principal

component analysis to better understand this control strategy

[6], [8]. Such patterns are deemed to be coded in the space of

muscular activations [16], [17]. These observations promote

the idea of exploring the minimum number of muscles

necessary to decode and extract the information related to

stiffness and equilibrium position references. In this work to

estimate the required hand controller inputs and adopt the

minimum required number of electromyography signals, we

acquired and processed only one major antagonistic group

of muscles acting on the hand. The extensor digitorum

communis (EDC) and flexor digitorum superficialis (FDS)

muscles are used in our experimental setup.

In order to map the EDC and FDS muscular activations

to the stiffness and postural synergy commands in the most

physiologically accurate way, a musculoskeletal model of the

hand must be developed following procedures described in

[18]. The musculotendon length and moment arm variations

must be modeled as functions of finger movements along the

first synergy. Eventually, parameters of the muscle model

must be identified based on the user’s physiological and



anatomical data. However, since the main application of

the hand is for amputee use as a prosthesis, this parameter

identification, if possible, will result in complex and invasive

experiments. For this reason, here we propose a simpler

and fairly reliable modeling of the SoftHand postural and

stiffness synergy references.
To establish the mapping between the processed EMGs

and the desired SoftHand postural and stiffness synergies, we

used two single-neuron neural networks with the activation

function of a modified hyperbolic tangent [19]. Therefore we

can write:

qs =
aq[1− e−bq(FDS−EDC)]

[1+ e−bq(FDS−EDC)]
,

with aq and bq denoting constant gains which adjust the

output range and the shape of the curve of the output,

qs, motor position synergy reference. FDS and EDC are

the processed EMG signals of the corresponding muscles.

Similarly for the stiffness:

Ks =
ak[1− e−bk(FDS+EDC)]

[1+ e−bk(FDS+EDC)]
,

with ak and bk similar as above and Ks, denoting the stiffness

synergy reference, is allocated in the stiffness interval of the

robotic hand.
The parameters of the above mapping can be identified

to relate the processed EMG signals to a desired position

and stiffness interval of the corresponding device, eventually

permitting the implementation of different control strate-

gies including grasping motion assistance and/or hand/grasp

stiffness control and augmentation. The realization of such

control schemes could remarkably increase the efficiency of

the SoftHand grasp for users with weak EMG signals, such

as in amputees with muscle atrophy or short stump length.
To identify the parameters of the above single-neuron

networks, subjects were asked to open and close the hand,

trying to mimic the first synergy movement of the hand. As

a reference, the SoftHand was slowly opened and closed.

Meanwhile, FDS and EDC muscular activities were recor-

ded. Subjects performed 20 grasping trials. Following that,

subjects were asked to perform the grasp at 5 different FDS

and EDC cocontraction levels. Visual feedback of the sum-

mated FDS and EDC levels was provided during the trial to

assist the subjects in maintaining steady cocontraction levels.

Four trials were recorded for each level, resulting in 20 trials

in total. Eventually, parameter identification of the postural

model (qs) and stiffness model (Ks), and the corresponding

motor position reference and SoftHand stiffness interval,

respectively, was performed on even numbered trials while

using FDS and EDC inputs. The bounds on the SoftHand

stiffness parameter (outer controller loop gain, described

below) were chosen experimentally, to balance the trade off

between grasp compliance and good tracking performance.

The odd numbered trials were used for the evaluation of

the mappings. This led to the normalized root-mean-squared

error (NRMSE) values of %16.4 and %11.8 for the postural

and stiffness test trials, respectively, averaged across subjects.

IV. INTERACTION TORQUE OBSERVER

As mentioned previously, one DC motor is utilized to

pull the tendon and drive the hand joints according to the

first hand synergy. The equation of motor dynamics1 is then

defined by:

Jnq̈ = KtnIre f − τdist , (1)

with q̈, Ktn, and Ire f denoting the motor angular acceleration,

torque constant, and motor current, respectively. Jn = Jm+ Jh
N2

represents the total inertia (motor inertia plus hand intertia

reflected to the motor side). In our setup, due to the low

velocity profiles of the hand closure and the relatively high

gear ratio, the reflected inertia of the hand,
Jh
N2 , is neglected.

The disturbance torque, τdist , combines all the internal and

external disturbance torques and is assumed to be formed by

four components: the elastic torque generated by the hand

tendons during closure (τte), the gravitational effect (τgrav),

the frictional torque due to friction in the hand joints and

pulleys (τ f ), and the interaction torque (τint ). We can write:

τdist = τmodel + τint

= τte + τ f + τgrav + τint .
(2)

In the above equation, due to the lightweight design of the

hand, the effect of gravitational torque is neglected. The hand

closure elastic torque component is modelled as a function of

the motor shaft rotation angle. In addition, an antisymmetric

piecewise-linear function of the motor speed and tendon

tension is used to model the viscous and Coulomb friction

of the hand [20], as follows,

τ f (q̇) =
{

D1q̇+ns1
Kte(q−qo) q̇ > 0

D2q̇−ns2
Kte(q−qo) q̇ < 0,

(3)

with Di, nsi , Kte, and qo representing the viscous damping

and Coulomb friction coefficients, the reflected hand tendon

stiffness, and motor angular position at rest (hand open),

respectively. Incorporating the above assumptions in the

disturbance model of the hand will result in:

τmodeli = (1+nsi)Kte(q−qo)+Diq̇, (4)

with the index i referring to the antisymmetric Coulomb

and velocity dependent components of the friction model.

Therefore, the hand closure and opening models will be

identified separately, as described below.

Supposing that the hand has not come in contact with the

object to be grasped (i.e. τint = 0 in eq. 2), the hand model

torque (τmodel) can be computed from the motor current and

its motion response. Such calculation would require motor

current and acceleration sensing with the latter being sen-

sitive to noise if computed from position differentiation. To

achieve reliable hand model torque estimation while taking

into account the minimum hardware requirements, a robust

torque observation technique is used here. In particular, the

1In this paper, if not stated explicitly, all the variables and equations
are described on the motor side (including interaction torque). Therefore, a
gearbox ratio of N = 84 must be taken into account for the presentation of
the variables after the gearbox.
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hand model torque is estimated based on the angular velocity

as follows:

τ̂model = KtnIre f − Jnq̈

=
λ

s+λ
(KtnIre f − Jnsq̇)

=
λ

s+λ
(KtnIre f +λJnq̇)−λJnq̇.

(5)

Here, s is the Laplace operator and λ represents the filter

cutoff frequency which affects the disturbance rejection

capability [21]. The major design criterion is to choose λ
low enough to result in a robust system, while considering

the introduced filtering delay. Now, to estimate the reflected

interaction torque caused by the contact of the hand with

the environment, we take equations (1) and (5) into account

and subtract the identified hand model torque (equation (4)),

from the external torque effect as follows:

τ̂int =
λ

s+λ
(KtnIre f +λJnq̇− τ̂model)−λJnq̇. (6)

The block diagram of the interaction torque observer is

shown in figure (2). To identify the parameters of the hand

model (equation 4), the hand controller was driven with

low velocity (quasi-static) reference trajectories. Such motion

reference profiles were designed to result in complete hand

closure, starting from fully extended fingers. This process

was repeated in the reverse direction to identify the model

parameters for the opening of the hand. The antisymmetric

and velocity dependent properties of the friction model were

the main reasons for separate identification of the hand

closure and opening models.

Consequently, the resultant current, position, and velocity

profiles were used to estimate the components of the equation

(4), by means of conventional least squares identification

algorithm. The identification process led to two feed-forward,

velocity dependent estimates of the hand disturbance model,

τ̂model .

V. CONTROLLER DESIGN

The wearable prosthetic hand in contact with the human

forms a local master-slave system, the efficiency of which is

partially governed by the proper transmission of the signals

(force, position, velocity and etc) between the two. As an

alternative solution to the EMG based classical control of

the prosthetic/robotic hand [9], [22], our proposed teleimpe-

dance controller incorporates the user’s position and stiffness

synergy profiles in the control of a soft and robust grasp. The

overall block diagram of the proposed controller is shown in

figure (1). In this control scheme, the inner loop is a high

bandwidth current regulator while the outer loop implements

a position controller which incorporates a time varying gain

and is updated by the user’s hand stiffness synergy profile

in realtime. This value is adjusted by the realtime stiffness

synergy model developed in section III. The lower bound

of the stiffness gain was experimentally chosen to guarantee

good tracking performance as well as high grasp compliance.

Simultaneously, acquired muscular activities were used to

determine reference position profiles as described earlier in

section III.

The hand disturbance model block estimates the hand

model torque, relying on previously developed and identified

feed-forward models (equation 4). The estimated torque is

then converted to the current and fed to the inner current

controller as Idist . In the meantime, the estimated hand model

torque is used by the interaction torque observer (figure 2),

to estimate the interaction torques due to contact with the

grasped object. Subsequently, the resulting interaction torque

is converted and applied to the vibration motor in order to

provide the user with some indication of the grasp state and



force. Smooth and skillful grasp control can be achieved by

the user with the modulation of the interaction forces by

means of controlling the hand compliance.

VI. EXPERIMENTAL SETUP

Analog electromyography signals were measured and am-

plified with a Delsys-Bangoli 16 (Delsys Inc.) apparatus.

Acquired signals were band-pass filtered within the 20-450

Hz frequency range. Resulting signals were sampled at 2

kHz (PCI-6220, National Instruments) and full rectified for

further processing. A digital, non-causal FIR linear phase

low-pass filter was used for the detection of the envelope

of the signal, which approximately corresponds to muscle

activity. EMG normalization was performed automatically.

Each time the system was activated, subjects were given

5 seconds to perform maximal cocontactions. This input

was then used to normalize the EMG signals online. The

normalized signals were fed into the model described in

section III.

The hand unit controller and power driver for the motor

are custom control boards based on the Texas Instruments

Luminary DSP chip LM3S8962. The DSP control loop is

executed at 1KHz while the communication with the host

PC is achieved through a real time Ethernet link. Motor

current measurement is performed by a hall effect based

current sensor (ACS714, Allegro Microsystems Inc.) and

appropriate signal conditioning integrated in the motor power

driver module.

A small (24 × 7 mm), low-cost eccentric mass motor

(Precision MicrodrivesTM) was utilized to provide the user

with vibrotactile feedback. To that end, the observed inte-

raction torque was experimentally scaled and fit to the input

voltage range of the vibration motor. A USB-6009, National

Instruments board was employed to apply the desired analog

voltage to the actuator. The actuator was placed on the back

of the hand to minimize the effect of applied vibrations on

EMG signal acquisition.

The data acquisition and synchronization interfaces bet-

ween the motor controller board, the interaction torque

observer, the hand model torque, the EMG acquisition board,

the hand musculoskeletal model, and the vibration motor

were developed in C++. The acquisition, processing and

control ran at 1KHz sampling frequency.

Experiments were designed to evaluate the effectiveness

of vibrotactile feedback and user-modified compliance in

controlling the natural, robust grasp of the SoftHand. For this

reason, objects with different elastic properties were grasped

under the following hand controller parameters: i) fixed and

relatively high stiffness gain (Stiff), ii) fixed and relatively

low stiffness gain (Compliant), and iii) user modified hand

compliance (Teleimpedance), all with or without the effect

of vibrotactile feedback. Postural synergy commands were

derived from the model, described in section III, and were

consistent among all experiments. Subjects stood in front of a

table and reached to an object. Successful grasp was achieved

when the SoftHand held the object securely off the surface

of the table. Each grasp was attempted 3 times. Before the

experiments, subjects were provided with adequate training

trials to minimize the learning effect.

VII. RESULTS

A. Interaction Torque Observer

In order to validate the accuracy of the identified hand

model, the hand controller was provided with a sine wave

position trajectory. The trajectory led to the execution of

four SoftHand half-closure and full-opening movements. A

soft, deformable ball was grasped during the second and

third closures and removed on the first and the last. By

pre-determined placement of the soft obstacle along the

hand closure, the hand molded around the obstacle with

two (figure 4-c1) or three fingers (figure 4-c2) contacting the

object, causing small deformations on the ball’s surface. The

motor current (Iext ) was measured and used for the detection

of contact and estimation of the interaction torque during the

grasping of the ball.
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Fig. 3: Results of a grasping experiment with fixed stiffness gain.
A soft, deformable ball was used as an object to grasp during the
second and third closures and removed on the first and the last. The
top three plots demonstrate the position tracking, motor current and
motor voltage profiles, from the top down. Observed interaction
torques once the soft obstacle was squeezed by two (c1) or three
(c2) fingers are provided in the bottom plot.

Figure (3), illustrates the results of this experiment. The

top three plots demonstrate the position tracking, motor

current, and motor voltage profiles, from the top down.

Observed interaction torques once the soft obstacle was

squeezed by two (c1) or three (c2) fingers are provided

in the bottom plot. During the first and last closures, the

fingers did not contact the object, resulting in low interaction

torques. In addition, although a soft and deformable obstacle

was grasped by only two or three fingers, interaction torque

fluctuations were efficiently monitored.



c1 c2

Fig. 4: The SoftHand molds around the obstacle using two (c1) or
three (c2) fingers, during grasping.

B. Grasping Experiments

Subjects were able to grasp objects with different elastic

properties when the SoftHand was provided with Teleimpe-

dance or Stiff controllers (see section VI for details of the

setup). However, the Stiff controller caused undesired defor-

mations in the surface of soft objects. These deformations

were not observed in the experiments using the Teleimpedan-

ce or Compliant controllers. In the latter, subjects were able

to shape the SoftHand around all objects, but were unable to

lift heavy and low-friction objects (e.g. mug and ball) due

to low levels of hand force resulting in object slippage on

lift. Nevertheless, it is worth noting that, since the motor is

provided with the estimated hand disturbance current (Idist ,

see figure 1), fairly good tracking is achieved even when the

SoftHand is operated under the Compliant controller.

Typical results of an experiment, in which the subject gra-

sped a rigid object (mug) are illustrated in figure 5. Here, the

SoftHand was executed under Stiff (5.a), Compliant (5.b) and

Teleimpedance (5.c) controllers. The top and middle plots

contain the desired and measured postural synergy references

(upper portion of each) and the observed interaction torques

between the hand and the grasped object (lower portion of

each) for Stiff and Compliant controllers, respectively. The

third plot, fig. (5.c), illustrates the postural references, inte-

raction torques, and subject’s muscular activities while using

Teleimpedance control. The stiffness synergy reference, Ks,

as a result of subject cocontractions is normalized to the

chosen maximum stiffness gain (50 Nm/rad) and depicted

in the bottommost portion of fig. (5.c).

As shown in the plots, high interaction forces are realized

once the grasp is executed with the Stiff controller under hi-

gh, fixed gain. Such behavior is not desirable when grasping

fragile or soft objects and can cause damage or deformation,

either to the object or the prothesis itself. In addition, abrupt

changes of the interaction forces are seen due to the rigidity

of the hand. On the other hand, the Compliant controller with

reduced stiffness gain produced lower interaction forces but

was unable to provide the task forces required to complete

the task.

Unlike in the Complaint and Stiff cases, user-modified

compliance of the hand used in Teleimpedance control, toge-

ther with the postural synergy profiles, provide the possibility
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Fig. 5: Experimental results of the SoftHand grasping a hard object
(mug), with the controller under a) high, fixed stiffness gain (K=
40 Nm/rad), b) low, fixed stiffness gain (K= 10 Nm/rad), and c)
teleimpedance (aq = 1, bq = 5.03, ak = 1.87, and bk = 0.579, for
this subject).

of adjusting task-related grasp forces (figure 5.c). With this

controller, lower cocontractions resulted in high compliance,

allowing gentle grasping of fragile or deformable objects,

while higher stiffness values were generated with higher

cocontractions to grasp heavier or more rigid objects. This

feature enables smooth modulations of the hand forces, in

contrast with the Stiff controller, while still allowing task

completion. The SoftHand teleimpedance controller was also

tested with activities of daily living (e.g. opening and closing

a jar lid, etc). A video of the experiment is available at [23].

In figure (6), a subject used the SoftHand to demonstrate the

steps to make an espresso.

The effect of vibrotactile feedback on muscular activity

levels was tested on one subject; this feedback resulted

in lower muscular activity levels in Teleimpedance and

Stiff controllers. Muscular activities were averaged across

all trials either with or without feedback (grasping objects



Fig. 6: SoftHand making an espresso.

with different elastic properties) for a given control scheme.

The reduction (≈ %10) in the average EMG levels with

vibrotatile feedback, suggests a reduction in the subject’s

physiological load. As in the other grasping experiments,

the effect of vibrotactile feedback was tested following

adequate familiarization of the subject with the device and

the controller.

VIII. CONCLUSIONS

In this paper, a novel synergy-based teleimpedance con-

troller was developed to gather the user’s postural and

stiffness synergy references from two EMG channels. Two

single-neuron networks were utilized in order to establish the

mapping between the EMGs and the postural and stiffness

synergies. Resulting synergy commands were then tracked by

the developed SoftHand controller in realtime. The controller

provided the user with the possibility of modifying the

compliance of the grasp, via cocontractions. In addition,

a torque observer was developed in order to monitor the

interaction forces between the grasped object and the hand.

Observed torque was then converted and applied to the

user via an eccentric mass motor. The efficiency of the

novel synergy-driven teleimpedance controller for dexterous

manipulation was evaluated through experiments with two

subjects. Incorporation of the above features resulted in

robust and reliable grasps, regardless of the elastic properties

of the grasped object.
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