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Abstract

Sensor-guided robotic locomotion in different media oftakes inspiration
from natural examples, e.g. from fishes, birds, and humansrfderwater, aerial,
or walking robots, respectively. Interestingly, severatunalistic observations
show that even very different species exhibit some sintiéarin their locomotion
patterns: a notable one perhaps being the spiraling nafysatbs that in some
cases can be observed in sensory-guided tasks. As ofteectungd in naturalistic
studies, a common optimality principle may underpin suchiondbehaviors. We
show in a robotics framework that spiraling motions appaahé solution of the
problem of minimum path length. In particular, we study oyl paths for a simple
model of finned, winged, and legged robotic vehicles, undéerdnt constraints
on the field-of-view of the available sensory inputs. Afteowing that logarith-
mic spirals are indeed extremals of a sensory-constraihedest path problem,
we provide a complete synthesis of the optimal control fdfied2nt robotic ve-
hicles. Applications of these results to robotics can redhe length of paths to
be followed by underwater, aerial or legged robots to reacpets in their envi-
ronment. The work also provides some interesting, althqughminary, insights
into how sensory field-of-view limitations may influence motpatterns in natural
systems.

1 Introduction

Biological observations show that many different speaierature, including fishes,
birds, and humans, exhibit surprisingly similar behavidartheir locomotion. Indeed,
it has been known for long time ([Lyon, 1899; Schaeffer, 192@at in the locomo-
tion of animals it is possible to discern the presence ofadipig components. This
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Figure 1: Fish vision system and lateral sensors.

has been observed in a range of organisms going from the esinghicellular organ-
isms ([Bullington, 1925]) to mammals ([Dunkelberger, 192td humans ([Schaeffer,
1928]). For example, in [Kleerekoper et al., 1973] a studtheflocomotor patterns of
nurse sharks indicated that the approach by these animalsaorce of diffusing odor
or light was alondogarithmic spirals i.e. equiangular spirals in which the lengths of

radii at 9C¢ are in the golden rati® = PT\E’ (see figure 1). Authors of [Kleerekoper
et al., 1973] state that “bilateral sense organs may playeaimosteering logarithmic
spiral movements”, although evidence is inconclusive aghtich “the mechanisms by
which spiral movements are brought about” are. A conclugha laterality of sense
organs (both visual and olfactory) and the limited apertirheir receptive fields de-
termine logarithmic spiral movements is not warranted hyeexnental observations:
indeed, e.g. goldfishes continue moving in spirals even vidliended ([Kleerekoper
et al., 1973]). However, the same authors conclude thatsidpaficance of logarith-
mic spiralling in directed locomotion toward a stimulus smugains importance” in
relation to a model (credited to F. Brouwer in [Kleerekopteale 1973]), which states
that “any target—seeking device which approaches thettargadirect pathway which,
at all times, deviates with a constant angle from a straigltdonnecting the vehicle
with the target, will describe a logarithmic spiral arouhd target.”

Similarly, spiral paths have been observed in flying aninoaisnting themselves
with respect to a light source [Fraenkel and Gunn, 1961].eéxample, several insects
with compound eyes consisting of many ommatidia (singlerdight detectors) have
been observed to fly trajectories such that the same groupofatidia remain acti-
vated, which requires keeping a constant angle betweerthaifd direction and the
beams of light. This behaviour serves the purpose of foliovgitraight paths whenever
the light source is far enough that the light beams are mayals e.g. when using the
sun or the moon for orientation. However, when the light seus close, a logarithmic
spiral towards the source results, as confirmed e.g. by wdis@ns of moth flight (see
[Boyadzhiev, 1999]). Fundamentally the same behaviourbmaobserved in raptors
during hunting activities ([Tucker, 2000], reported abitgan [Salaris et al., 2010]). As



raptors possess no accurate front sight, to approach a preghavelocity they dive
along a logarithmic spiral with their head straight and oye leoking sideway at the
prey, rather than following the straight path to the preyhvteir head inefficiently
turned sideways (see figure 2).

Human locomotion and the optimizing principles underlythg shape of trajec-
tories performed have been studied again recently with a&eraorlytical approach.
In [Arechavaleta et al., 2008b], authors show the direaioature of human locomo-
tion by analyzing trajectories recorded in 7 subjects dyvialking tasks in an empty
space toward a goal defined both in position and orientatiomever, in [Arechavaleta
et al., 2008a], experimental results show that the sulsjaetad points most of the time
toward the target, thus suggesting a role of the limited fidldiew on the shape of
the trajectories (see figure 3). Subsequently, in [Mombaal. £2010] authors present
a more refined inverse optimal control approach to undeddtaa cost functional that
humans minimize during a rest-to-rest task, and eventtralhsfer biological motions
to robots. An objective function was considered consisitmg weighted sum of five
terms depending on the total time, the forward, angular ateddl acceleration compo-
nents, and the bearing angle, respectively. Based on expetal data, authors calcu-
lated the best-fitting weights, and showed that the locasndiiehavior corresponded
to minimizing a cost functional in which the bearing angleigi is largest (optimal
weights for the five terms wer@,1.2,1.7,0.7,5.2), respectively). This observation is
suggestive that results on shortest paths with limited FGyy provide relevant and
interesting insight also in human locomotion.

Moving on to consider robotic applications, autonomousaleh of different kinds
often share two important characteristics with their rataounterpart, i.e. direction-
ality of motion and limitation (and often laterality) of ssory Field—Of-View (FOV).
These characteristics deeply influence the accomplishofemssigned tasks, which
often imply that some environment objects or landmarks ap k sight — be it for
localization or tracking.

For example, many Autonomous Underwater Vehicles (AUV)duseunderwater
surveying and navigation are designed with a preferenitiettion of motion (the fore)
to reduce drag, and are equipped with sonar scanners ta degkcecognize objects
(e.g. mines, wrecks, archeological findings) on the sea Bddee types of sonars
are usually used ([Hayes and Gough, 2009]): forward ([J28A8]), side—looking
([Langner et al., 2009]), and squint ([Caprais and Guyah8§7]) sonars, differing for
the angle between the vehicle heading and the main axis acémner beam. Sonars
are used for mapping the sea bed for a wide variety of purpassading creation of
nautical charts and detection and identification of undemabjects and bathymetric
features. Once salient features of the sea bed are obsanader to reach, localize
and/or recognize them, AUVs are required to move keepinmtimside the limited
FOV of the scanner.

Furthermore, an ever increasing number of wheeled (or édjcground vehicles
use visual-based control. These vehicles, which are adsoest about their preferential
motion direction (perpendicular to the wheel axis), arewfquipped with on-board
monocular camera(s) with limited FOV. Again here the probie to maintain in the
features sight. This is necessary e.g. for visual servoiming robot trajectories: the
problem is mentioned for instance in [Mariottini et al., Z0@nd in [Lopez-Nicolas



(a) Raptor vision system and trajectories fol- (b) Trajectories followed by moths to
lowed to approach a prey. approach an electric light.
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Figure 2: Raptor’s trajectories during hunting activitydeéBide—looking sensors.

et al., 2008], although proposed solutions are valid onlglaurrather favorable as-
sumptions. FOV constraints are explicitly taken into actdar the parking problem
for a unicycle—like vehicle in [Murrieri et al., 2004], [Garand Hutchinson, 2007b],
and [Gans and Hutchinson, 2007a], and for a rendez-vousgmmah [Yu et al., 2011].
However, the resultant path is not optimal, and indeed fanfefficient. Although in
many robotic applications cameras are mounted in front@fveshicle and point for-
ward in the direction of motion, lateral sensing is sometimsed. In [Kawano et al.,
2009] authors propose a vehicle equipped with side—lookargera for more effec-
tive generation of panoramic images of building walls. Imdhd Shimomura, 2008]
a fisheye camera is mounted on the side of a vehicle in ordesteztiane markings,
thus avoiding occlusions due to other vehicles proceedirfigont, a typical drawback
of frontal and omnidirectional cameras mounted on top of/#tgcle.

Regarding optimal (shortest) paths in absence of sensatreamts, the seminal
work on unicycle vehicles, [Dubins, 1957], provides a clk#gzation of shortest
curves for a car with a bounded turning radius. In [Bui et2894], authors determine
a complete finite partition of the motion plane in regionsrelcterizing the shortest
path from all points in the same region, i.e. a synthesis. milar problem with the
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Figure 3: Human locomotion and Asymmetric Frontal sensors.

car moving both forward and backward has been solved in [Read Shepp, 1990]
and refined in [Sussmann and Tang, 1991]. The global systifiesthe Reeds and
Shepp vehicle has been obtained combining necessary worsdgiven by Pontrya-
gin’'s Maximum Principle (PMP) with Lie algebraic tools indg8eres and Laumond,
1996]. More recently, [Balkcom and Mason, 2006], [Wang et 2009] determined
time optimal trajectories for differential—drive robotscanonholonomic bidirectional
robots, respectively, while [Chitsaz et al., 2009] solvied iminimum wheel rotation
problem for differential-drive robots.

The optimal pursuit of targets taking into account limitethsor aperture is a clas-
sical problem in the field of guidance and control of airgaRor example, in [Salama
and Hamza, 1978] an analysis to determine the optimal t@jes in three dimen-
sional space for a point mass pursuer is performed. The stiidyrious cases shows
that in general the optimum trajectory consists of spiratsstraight lines and lies in a
single plane. More recently, in intelligence, reconnaisgsaand surveillance missions,
Unmanned Aerial Vehicles (UAVS) equipped with limited afteeoptical and infrared
cameras are used. These vehicles which have a preferewti@mdirection, are ca-
pable of surveying the environmentin order to localize gegrproviding the operator
with real-time visual information rapidly and inexpensivEhe main challenging in
target localization include maintaining the target in timeited field—of—view and de-
veloping a UAV trajectory such that the target localizatoror is minimized ([Rysdyk,
2003; Ponda et al., 2009]). As for previous applications,\isibility limitations de-
pend also on the way the camera is mounted on-board the UAWe@dorakopoulos
and Lacroix, 2008]).

Motivated by these robotic applications and biologicapirations, in this paper



we propose a systematic study of optimal (shortest) patha feehicle moving in a
plane with a preferential direction of motion, to reach @&amposition while making
sure that a single given landmark fixed in the plane is kejdéna limited FOV sensor
modeled as a planar cone moving with the robot. After showiaglogarithmic spirals
are indeed extremals of a sensory-constrained shortésppailem, we provide (under
some simplifying assumptions) a complete optimal synthfesithe considered prob-
lem, i.e. a finite language of optimal control words, and dgl@artition of the motion
plane induced by shortest paths, such that a word in the eplémguage is univocally
associated to a region and completely describes the coredrshortest path from any
starting point in that region to the goal point. Regions assbaiated optimal control
words are at most 15, and the number depends on the sensaiatide with respect
to the forward direction.

A first step toward the optimal solution of this problem hagrbéeone in [Bhat-
tacharya et al., 2007] where a local shortest path synthasibeen provided for frontal
FOV (i.e. the robot forward direction is included in the seneone, not necessarily
symmetric). In [Salaris et al., 2010], a global shorteshpginthesis was found for
frontal and symmetric FOV. However, for lateral sensor eyst, like in the fish or
AUV examples, the forward direction of motion is not inclddia the FOV. For side
sensor systems, like in the raptor or UAV examples, neitherforward direction nor
its perpendicular lie inside the FOV. In this paper, we pnésesynthesis of shortest
paths, which includes as particular solutions both theerarsults of [Bhattacharya
et al., 2007] (within their local validity limitations) anaf [Salaris et al., 2010], but
generalizes upon those and provides a global solution feergeFOVs, including side
and lateral sensors.

The impracticality of paths that point straight to the featieads to a substantially
more complex analysis of the reduction to a finite and suffidi@mily of optimal paths
with respect to previous work. Furthermore, all the symiastthat characterized the
symmetric and frontal FOV do not hold, and results in [Salatial., 2010] simply do
not apply. For example, while studying optimal paths in theer half of the motion
plane was sufficient in [Salaris et al., 2010], the study mecgiires analyzing the full
plane.

Applications of these results to robotics can reduce thgtlenf paths to be fol-
lowed by underwater, aerial or legged robots to reach tarigetheir environment.
However, this work also provides an interesting, althouggtiminary, insight into how
limited sensory FOV may influence motion patterns in natsyatems.

2 Problem Definition

Consider a body moving on a plane and a right-handed referfeame(W) with origin
in Oy and axesy,Zy. The configuration of the moving body (hereafter referredgo
“vehicle”) is described by (t) = (x(t),z(t), 6(t)), where(x(t), z(t)) is the position in
(W) of the reference central point in the vehicle, &hd) is the vehicle heading with
respect to theX,, axis (see figure 4). The forward and angular velocitie$) and
w(t) respectively, are the control inputs to the kinematic mdde! assume that the
dynamics are negligible). Choosing polar coordinates tiertehiclen = [p ¢ B]"
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Figure 4: Autonomous vehicle and systems coordinates. &hiele’s task is to readh
while keepingO,, within a limited sensor range modeled as a planar cone (higied
in color).

(see figure 4), the assumed kinematic model is therefore

p] [ O
y|=| % of[v] ®
B e -1

We consider vehicles with bounded velocities which can tumrthe spot. In other
words, we assume
(v,w)eU, )

with U a compact and convex subset of,Rontaining the origin in its interior.

The vehicle is equipped with a rigidly fixed sensor systenhwitreference frame
(C) = {O¢, X, Ye, Zc}. The centerO, corresponds to the robot’s centet), z(t)]"
and the forward sensor ax% forms an angld” w.r.t. the robot’s forward direction.
Moreover, letd be the characteristic angle of the cone characterizingrthited Field—
Of-View (FOV) and let us consider the most interesting peabin whichd < /2.
Without loss of generality, we will assume<0' < Z, so that, wher” = 0 theZ; axis
is aligned with the robot’s forward direction (i.e. the peutar case solved in [Salaris
etal., 2010]), whereas, whén= 7, theZ; axis is perpendicular to the robot’s forward
direction. Consideq, =T — g andg =T + g the angles between the robot's forward
direction and the right or left sensor’s border wZgaxis, respectively. The restriction
on0<TI = Mz“’z < Z will be removed at the end of this paper, where an easy proeedu
to obtain the synthesis for any valuelofvill be given.

We also assume that the feature to be kept within the FOV isedl@an the axis
through the origirDO,, and perpendicular to the plane of motion. Moreover, thetjposi
of the robot target poirf is on theX, axis, with coordinatesp, ¢) = (pp, 0).

The planar FOV, with characteristic angde= |@ — @], generates the following



constraints:

B-®>0, 3)
B-®»<0. (4)

Note that we place no restrictions on the vertical dimensibtine sensor. There-
fore, the height of the feature on the motion plane, whichesponds to it¥; coordi-
nate in the sensor fram€), is irrelevant to our problem. Hence, for our purposes, it is
necessary to know only the projection of the feature on theanglane, i.eO.

The goal of this paper is to determine, for any pahe R? in the robot space,
the shortest path fro® to P such that the feature i@, is maintained in the FOV of
the sensor. In other words, we want to minimize the lengttheftath covered by the
center of the vehicle under tlieasibility constraintg1), (2), (3), and (4).

From the theory of optimal control with state and controlstoaints and Pontryagin
Maximum Principle (PMP) (see [Pontryagin et al., 1962],y{&n and Ho, 1975]) it
is possible to show that, when constraints (3) and (4) arexcidte, extremal curves
(i.e. curves that satisfy necessary conditions for opiiyjakre straight lines (denoted
as$S) and rotations on the spot (denoted«sOn the other hand, when constraints (3)
and (4) are active, necessary conditions for optimalitylymp

B—@=0 = tanf = tang
B—@®=0 = tanB =tang,

and, by (1),
. P d
Y = tanqu = —tan(pla (Inp), whenf =@ (5)
. p d
Y = tanqozE = ftan@a (Inp), when = @. (6)
Integrating, we obtain
Y = tangln <p£> , whenf =@, (7
0
Y = tanglIn <p£> , whenf = @, (8)
0

wherepy is a constant that depends on initial conditions.
Equations (7) and (8) represent two logarithmic spiral&witaracteristic anglg and
@, respectively, rotating around the landmark locate@jn Logarithmic spirals with
characteristic anglgg > 0 rotate counterclockwise aroui@,, whereas withg < 0
they rotate clockwise aroun@,,. We refer to these two kind of spirals &sft and
Rightand by symbol&;" andTJR with i, j € {1,2}. The adjectives “Left” and “Right”
indicate the half-plane where the spiral starts for an carth@bserver aiming at the
landmark.

Notice that, forg, = 11/2 the left sensor border is perpendicular to the robot's
forward direction and by equation (8) we have= p,, and hence, the extremal arc is



a circle centered i®,, (denoted a€). For ¢ = 0 the right sensor border is aligned
with the direction of motion, and hence when right sensoistraint is active we have
B = 0: the extremal arc is an half-line throu@hy, (denoted a#d). In other words,
wheng = 1/2 spiralT, degenerates in a circle centereddy, whereas whegy =0
spiralT; degenerates in an half-line through.

Extremal arcs can be executed by the vehicle in either fah@ar- 0) or backward
(v < 0) direction: we will hence use superscript&nd— to make this explicit (e.d5~
stands for a straight line executed backward).

We will build extremal paths consisting of sequences of syisiorwords in the
alphabet = {x, S", S, E{", E; , E;, E, }, where the actual meaning of symbols de-
pends on anglels andd as in figure 5. Rotations on the spe) pave zero length, but
may be used to properly connect other maneuvers. In paticiijure 5(a) shows
the Frontal case, i.e. with < ' < g, figure 5(b) shows th8orderline Frontalcase,
i.e. with T = §, figure 5(c) shows th&idecase, i.e. withy < I < T2, figure 5(d)
shows theBorderline Sidecase, i.e. with™ = "%5, and, finally, figure 5(e) and fig-
ure 5(f) show theLateral and Symmetric Lateralase, i.e. with%‘s <TI < Z and
I = 7, respectively.

No other information on how extremals must be combined innogdt paths can
be obtained from the application of the PMP. Hence, the peapgloits physical and
geometrical constraints of the considered problem to @mrescthis. LetZr be the set
of possible words generated by the aforementioned symibedsfor each value of,
the rest of the paper is dedicated to showing that a suffigptitnal finite language
“o C 4t can be built such that, for any initial condition, it contsienword describing
a path to the goal which is no longer than any other feasile. ggorrespondingly, a
partition of the plane in a finite number of regions is desauliifor which the shortest
path is one of the words i¥o.

3 Shortest path synthesis

In this section, we introduce the basic tools that will allos/ to study the optimal
synthesis of the whole state space of the robot, beginnarg froints on a particular
subset of R such that the optimal paths are in a sufficient optimal firdteguage,
i.e. a finite language that contains words representingsghtt are no longer than any
other feasible path. Based on the geometrical propertiesteémals, we introduce the
following map,

Definition 1. Given the target point P- (pp, 0) in polar coordinates, and @ R?\ Oy,
Q = (pg, Yo) with pg # 0, let o : R2 — R? denote the map

Pk PP
Pk — > for pc # 0
fo (Px, Yk ) = < PQ ?
(0,0) otherwise.

(9)

The mapfq is the combination of a clockwise rotation by anglg — Yo, and a
scaling by a factopp/pq that map<Qin P.
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Figure 5: Sensor configuration depending on anglesd?d.

Remark 1. The alphabets is invariant w.r.t. rotation and scaling. However, it is not
invariant w.r.t. axial symmetry, as it happened in the partar case (i.e. the Frontal
case withl” = 0) considered in [Salaris et al., 2010], where the mapwas defined
as a combination of rotation, scaling and axial symmetry.r &gample, logarith-
mic spirals are self-similar and self-congruent (underlst@and rotation they are



mapped into themselves). On the other hand, left (rightjaigpiare mapped into
right (left) spirals through an axial symmetry and alphalietariancy can be lost.
Indeed, for example, considering the Side case alphabet figare 5(c)).osige =
{*,S", S, TR, T}, TR, TR}, and applying an axial symmetry we havf T
Tt ¢ ofsige the same occurs for the Frontal alphabet with> 0.

Based orfg, which maps points in points, we now introduce a new fgpending
paths in paths, which will be instrumental in reducing tharsk domain for optimal
solutions. Lety be a path parameterized by [0,1] in the plane of motiory(t) =
(p(t), Y(t)). Denote withZ’q the set of all feasible extremal paths froif0) = Q to
y(1) =P.

Definition 2. Given the target point P- (pp, 0) and Q= (pq, Yo) With pg # 0, let the
path transforniunction kp be defined as
FQ . ng — ngQ(p)
y(t) = fo(y(1-t)), vt el.
Notice thaty(t) = Fo (y(1—t)) corresponds tg(t) transformed byfq and followed
2
in opposite direction. Indeedis a path fromy(0) = fo(P) = (g—g, —wQ) to (1) =
fo(Q) =P.

We will denote the circle with center i®, and radiugp by C(P) and the closed
disk withinC(P) by D(P). C(P) has an important role in the proposed approach since
properties offg will allow us to solve the synthesis problem from points ©(P),
and hence to extend the synthesiX@) and to the whole motion plane. Indeed,
vQ € C(P) andVy € Zq, Fo(y) € Z14(p) With fo(P) € C(P), i.e. a path from a point
Q = (pp, Yo) on C(P) to P is mapped in a path from poirip(P) = (pp, —g) ON
C(P) toP.

Furthermore Fq transforms an extremal in/ in itself but followed in opposite
direction. Hencef-g maps extremal paths i&#t in extremal paths itiZ-. For example,
letw= S xH~ %S"+ X" be the word that characterize a path fr@no P, the

transformed path is of type= T)*~ + S~ H* x S*. With a slight abuse of notation, we
will write z= Fg(w).

(10)

Proposition 1. Given Qg R? and a pathy € Pq of length |, the length of the trans-
formed pathy = Fo(y) is| = g—gl.

The proof is based on the fact that scaling transformatiatesof the same quan-
tity the lengths of both straight and spiral arcs. Indeed,léngthd of a spiral arc
betweenA = (pa, Ya) andB = (ps, Ys) is linear inp, i.e.d = P28, see [Salaris
et al., 2010] for a formal proof.

Based on the propertiesB), optimal paths from points db(P) completely evolve
insideC(P). To prove this statement we first report the following result

Theorem 1. Given two points A= (pa, Ya) and B= (pg, Ys), with Ya > Ys and
P = pa = Ps, and an extremal patly from A to B such that for each point G ¢f
pc > p, there exists an extremal paghfrom A to B such that for each poifi of ¥,
pg < p and/{(y) < £(y) (see figure 6).



Figure 6: An example for theorem 1: patk= \»y1 (- followed by ;) of typeTzR*SL *
TR from Ato Bis shortened by a pafh= 4 {» of type T« TX™S™ by applying path
transformatiori; to pathy.

Figure 7: Forward and backward straight path Regions ftaffior the Frontal case,
i.e.0<T < 9. SFG) (SEG)) is the set of points reachable froBwith a forward
(backward) straight line without violating the sensor daaists, see remark 2.

In other words, this theorem states that the shortest pdtteke two points with
same distance from the feature evolves completely alongtgoloser to the feature
w.r.t. initial and final configurations. The proof of theoréhtan be found in sec-
tion A.1 of the Appendix.

An important but straightforward consequence of the thedsethe following

Corollary 1. For any path in%q with Q € C(P) there exists a shorter or equal-length
path in #q that completely evolves in(B).

4 Optimal paths for points on C(P)

Our study of the optimal synthesis begins in this sectionr@sking optimal paths from
points onC(P). We first need to establish an existence result of optimépat



Figure 8: Forward and backward straight path regions f@for the Side, Borderline
Side andLateralcases, i.e‘—; <r< ”%5. SF(G) (SB(G)) is the set of paints reachable
from G with a forward (backward) straight line without violatinggt sensor constraints,
see remark 3.

Proposition 2. For any Qe C(P) there exists a feasible shortest path to P.

Proof. Because of state constraints (3), and (4), and the resfriofioptimal paths in
D(P) (corollary 1) the state set is compact. Furthermore, it ssfigle to give an upper-
bound on the optimal path length for &llc [0, Z]. Indeed, given a poir@ at distance

p from Oy, the optimal path td is shorter or equal to the following paths based on the
value ofl" andd:

e Frontal (0<T < $): S*+S~ orH* xH~ of lengthp + pe;

e Side § < < %2): TR «TE", of length (% +%), whereN is the

intersection point between spirél[% andT} throughQ andP respectively;

e Borderline Sidel[ = 75%: TR" xCp) of length (f:’;—;’i’ + (YN — LIJP)pp) , Where

N is the intersection point between spiri{% andCp;

o Lateral (50 < T < J): Ty = T3, of Iength(% + %), whereN is the

intersection point between spirdlg, andT§.

The system is also controllable because there always etsistersection point be-
tween two spirals (even if degenerated in half-lines orde#)cwith different charac-
teristic angle even if both clockwise or counterclockwiseumd the feature. Hence,
Filippov existence theorem for Lagrange problems can bekies [Cesari, 1983]. O

In the following we provide a set of propositions that cont@l describe a suffi-
cient optimal finite languag&’ for all values ofl” € [0, 7].



Definition 3. For any starting point G= (pg, Yc), let SHG) (SB(G)) be the set of all
points reachable from G with a forward (backward) straightl without violating the
sensor constraints.

Let Ci(G) denote the circular arcs frofa to O, such thatyV € G (G) with Yn €
(W6 — @i, we] (or gy € [Wis, Yo+ |@]]), GVOu = 11—, i € {1, 2}.

Remark 2. Based on simple geometric considerations, for any startiomt G=
(P, Yg), for0<T < ‘—g (Frontal Case), SFG) is the region between borde&SkH
anddSk, wheredSk(G) = C1(G) anddSk(G) = C»(G) (see figure 7). Notice that,
SF(G) lays completely in the circle with center inJ@nd radiuspg. In the particular
case in which™ = ‘% (Borderline Frontal Case)¢ Sk (G) degenerates in the segment
(GQy) between G and @

As a consequence of remark2(G) is tangent inG to T\ (or H) and TR

Remark 3. For any starting point G= (pg, ), and for% <T < Z (Side and Lateral
cases), let & = (pegpa: o + (@2 — @) € C2(G), i.e. such thaDwGGr = ¢ (cf.
figures 8 and 9, respectively). Naming with.GC C,(G) the arc between G andiG
SF(G) is the region between a@SF,(G) = Cs. and segmenGGe. Notice that, for
the Lateral case SFG) does not lay completely in the circle with centey &nd radius
pa. Inthe particular case in which = %‘5 (Borderline Side Casey Sk (G) becomes
the semicircle from G to 5= Oy with diameterpg.

As a consequence of remarkSE(G) is tangent irG to TR and TR (or C). More-
over,SF(G) is tangent inGg to TR and T} (or C), see figure 8.

A generalization of magq (see definition 1) is a map that transforms the whole
R? rotating and scaling the poi in a given generic poin® not necessarily i as

2
fo does. Lef : R?\(0,0) -+ R with F(Q) = fo(G) = (52, 2455 — yq). The map
F has some properties that make it very useful to the study opmblem in a way
which is to some extent similar to what described (for a défeF map) in [Salaris
et al., 2010]. Indeed, this map is continuous and is an iniaiui.e. F(F(Q)) = Q,
henceF ~1 = F. The invariant set oF is the circle centered i@,y throughG. Notice

also that, ifQ is inside this circleF (Q) is outside, and vice versa.

Remark 4. Notice that, F maps points of a forward straight line pathfr& in points
of a backward straight line path from G. As a consequencegdrgrdefined in re-
marks 2 and 3 are mapped in borders of(&Bregions of definition 3 as described in
the following proposition.

Proposition 3. Map F transforms arcs of a circle;G3) in half-lines from G and
forming an anglays — @ with the X, axis.

Proof. Points ofCi(G) have coordinatespssin(@ — ¢ + Ys)/sin@, Y) with ¢ €

(W6 —|@], Y] (or ¥ € U, Y +|@[]). Such points are mapped(pg sin@/ sin(@ —
Y+ Ys), 20 — ). On the other hand, the straight line fragaforming an angle

Ye + @ with the X, axis is described by the equation
sing

y =tan(yc — (H)X_PGm-
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Figure 9: Forward and backward straight path Regions ftaror "—55 <r<ia.
SK(G) (SB(G)) is the set of points reachable frd&with a forward (backward) straight
line without violating the sensor constraints, see remark 3

Rewriting this equation in polar coordinates, it is strafighward to check that it is
satisfied by the image @ (G) underF, hence the thesis. O

Remark 5. For0< T < ‘—g (Frontal Case), let ifG) denote the half-lines from G
forming an angleyc — @ with the X, axis (cf. figure 7). SB5) is the cone delimited
bydSB;(G) =r1(G) anddSB,(G) =r,(G), outside circle with center in and radius

pc. Moreover, forg < T < Z (Side and Lateral cases), consider the rotation and scale
that map G in G and G in G = F(G) we have SB5) = SF(Gg), hencedSB;(G) =
0Sh(Gg) and dSB(G) = dSF(Gg). Moreover, for all points V on the circular arc
Cg; from Gg to G, angleGm = 11— |@], and angl@@G =q@.

This remark is a straightforward consequence of propasgio

Proposition 4. If an optimal path from Q to P includes a segment of typd$ ) with
extremes in G, K, then either ¥ P € SF(G) (K =P € SBG)) or K € dSR(G) U
dSRK(G) (K € dSB(G) UISB(G)).

Proof. Consider the case of a segment of tyjle if K ¢ SF(G) the straight line vio-
lates either one of sensor constraints. Furthermot€,dfSFG) butK ¢ dSkH(G)U
0SSk (G) andP ¢ SF(G) the sub-path frorK to P intersect®Sk (G) UdSkK(G) in K'.
Hence,y could be shortened by replacing the sub—path f@mo K’ throughK with
the segmenGK'. If P € SF(G), then by the optimality principl& = P. For a segment
of typeS~ a similar proof can be followed. O
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E. Xy
Figure 10: Construction of a path shorter tHah = E; for g <r< "%5 (cf. theo-
rem 3).

4.1 The Sufficient Family of Optimal Paths

Based on all the above properties, we are now able to obtaiffieisnt family of opti-
mal paths by excluding particular sequences of extremaiticdlthat results obtained
in this section are not a direct consequence of theoremddaovn [Salaris et al.,
2010]. Indeed, the asymmetry of the FOV with respect to thectibn of motion leads
to a more complex analysis of paths that may be excluded fnerfiniite sufficient op-
timal family. For example, in the Side case paths along wihiehvehicle points toward
the feature are no more feasible. Furthermore, with resp¢8alaris et al., 2010], new
extremal sequences must be evaluated and possibly exdhatedhe finite family.

Theorem 2. Any path consisting in a sequence of a backward extremalcdimied
by a forward extremal arc is not optimal.

The proof of this theorem, whose details can be found in @ecii.2 of the Ap-
pendix, is based on the fact that for continuity of pathsafoy sequence of a backward
extremal followed by a forward one, there exist poiAtand B along the path that
verify hypothesis of Theorem 1.

Theorem 3. Any path consisting in a sequence of extremal arcarfe 5 followed in
the same direction is not optimal for anyj i {1, 2} with i # j.

Proof of this theorem can be found in section A.3 of the Appeadd it is based
on the fact that for any values bfandd and for any patly consisting in a sequence of
extremal arcd; andE; followed in the same direction,( € {1, 2} with i # j) there
exists a sub—path of that can be shortened by a straight line. For example, reterr
to figure 10, in the Side casg r< %‘5), there always exists a poi@ alongE;
betweenA andN such thatSK(G) intersectsE, betweenN andB. Hence,y can be
shortened b5Gr.

Notice that the feasible sequences consisting of two exi®that we still need to
be discussed, and eventually excluded, are those startieigding withS followed in
any direction E*E;” andE; E*, with i € {1, 2}, are obviously not optimal).



Figure 11: Shortest paths in the Symmetric Frontal case dvithrt.

Proposition 5. From any starting point A, any patpof type S *EJ (S *E;) and
S"«E; to B can be shortened by a path of typeE (S E; ), S" (S7) or EJ E;.

Proposition 6. For ‘% < T < 7 (Side and Lateral cases), from any starting point A,
any pathy of type S «E;" (S «E,) or S" xE, can be shortened by a path of type S
(S),EfS"(E;S)orE; *E,.

Proposition 7. For 0 <T < g (Frontal case), from any starting point A, any path
of type S *E;” or St xE, can be shortened by a path of type, $*E;” or E{ +E, .
Furthermore, for any patly of type S «E; or S~ xE; can be shortened by a path of
type S, E; S orE; «E;.

Proposition 8. For 0 < T < g (Frontal case), from any starting point A, any path
of type S * S~ can be shortened if the angle between arced arc S is less than

W 2 (pﬁ—@—k% [ZIn(%) +Insing +Insing|.

Proofs of previous propositions are reported in Appendigtisn A.4.

Remark 6. Notice that, based on proposition 8, whér> yx the switching point
between S and S is not necessarily . For example, id = T from any point Q on
the motion plane to P the optimal path is of typesS~ as shown in figure 11 and the
switching point is on the border of $F).

Remark 7. Notice that if a sequence of extremals from A to B is not optialao
the path from B to A following extremals in reverse order apgdasite direction is not
optimal. For example, ExS™ is not optimal since it is the inverse path of types&,
that is not optimal for proposition 5.

Proposition 9. For g <T < 7 (Side and Lateral cases);$ S~ path can be shortened

by paths of type £xS~, St «E;, Ef *S" and B S*".

The proof of this proposition is reported in Appendix, sectA.4.
By using all previous results, a sufficient family of optinpalths is obtained in the
following important theorem.

Theorem4. ForO<T < ‘%, i.e. Frontal case, and for any @ D(P) to P there exists a
shortest path of type'E; *E, S~ or of type SE; xE; S™. For g << 73, ie. Side
and Lateral cases, and for any @D(P) to P there exists a shortest path of type
Ef «E; S E; oroftype §'STE] «E; .
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(;,\)) Side and Lateral case§ K I' < (b) Frontal case (& T < 9).
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Figure 12: Representation of finite optimal languate from points inD(P) based
on extremals (nodes) and feasible concatenations (ed@shbol (x) on the edge
represents a non—smooth concatenation.

Proof. According to all propositions above several concatenatiminextremal have
been proved to be non optimal. Considering extremals as aodepossibly optimal,
concatenations of extremal as edges of a graph, the suffiggimal languages/o
from Qin D(P), for different values of andd, are described in figure 12. Indeed, it is
straightforward to observe that the number of switches betvextremals is finite and
less or equal to 3, for any value bfandd. Hence, the thesis. O

Remark 8. Notice that, previous theorem describes a sufficient famfiyptimal paths,
i.e. path of type SE" *E, S~ or of type SE; «E; S~ for the Frontal case and path
of type B xE, SE; or of type §"STE; xE; for the Side and Lateral cases. Of
course, in those family are included also all its degenecatees, i.e. paths obtained
from previous ones with one or more zero length arcs.

We now study the length of extremal paths fr@tP) to P in the sufficient family
above. Based on properties of miag it is sufficient to study the length of paths only
from pointsQ = (pp, Yo) on the semicircle o€(P) in the upper-half plane (denoted
by C9. Indeed, up to a clockwise rotation g, optimal paths fronQ' = (pp, — i)
in the lower-half plane is easily obtained, and hence alsddbi of switching points
between extremal arcs.

In order to simplify the analysis, we will consider sepahataree cases: Frontal
Case, Side Case, and Lateral Case. Moreover, optimal siathECSwill be deter-
mined for each case in following sections. The optimal sgsifon the whol€(P)
can be obtained applying mé&p to path starting from points oS

4.2 Frontal Case

Based on theorem 4, let us consider a path of Sb‘éf* * Tf’S‘ from pointsQ =
(pr, Yo) onCS Referring to figure 13, let the switching points along o@timath
be denoted byN, M; andM,. Moreover, in order to do the analysis, it is useful to
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Figure 13: Path of typ&*'T|" * TS~ or the degenerate case of typg" * T)1 ",
St+S,andTiH+TRS fromQeCS

parameterize the family by the angular valmg, of the switching poiniM; along the
arc C1(Q) betweenQ and Oy and the angular valuey, of the switching pointy
along the ar€;,(P) betweerP andOy,.

Theorem 5. For any point Qe CS, length L of a patly € &g of type S‘TlLJr *TZR’S
is:

COSCYMl COSGMZ
L = pp +
Ccos@y Cos®,
t
cospy+cosg [ _sin(gr — aw,) | 7%
P COS(L COSP P singy
) b
[t )] 2 ooy
sing

where bothp, and¢, assume values i]O, Z [ andwith§ =1/tang andt = 1/tang,.
In the extreme case@ = ¢ = 0 and |@1| = [@| = 5, we have L= 2pp and L=

2ppsin % , respectively.

The analytical expression for the lendthis based on a direct computation, using
similar arguments to those used to prove Theorem 3 in [Sadadl., 2010].

Having an analytical expression for the length of the patla &snction of three
parametersiy,, am, and (g, we can minimize the length within the sufficient fam-
ily. Notice that we need only to consideiy, € [0, @], andaw, € [0, —¢] for the
geometrical considerations above®i{Q) (see remark 2).

Theorem 6. Given Q= (pp, Yio) € CS, and bothp, and ¢ belong to]0, 17/2], refer-
ring to figure 14,

o fOr0< Yo <iym=2 f(fg;(xl;ggz In (Sigg@ﬂ%x)), the optimal path is of type
T TR



Figure 14: Frontal (& T < g): optimal path fromQ € CSbetweerf andV. The locus

of switching points between extreme®s and TlLJr is arcCy(Gy) = Cyg,, Whereas
between extremal§- " and T} is arcCy(my) = Com, -

o forym <YQ<UYr=@-@+yYn— ;‘,22?;‘2’22 In (sigéms(ﬂ&;;zm), the optimal
path is of type F™ + TR S~

o for Yr < Yo < Yv 2 21 + Yr, the optimal path is of type'S- * TS,

e for Yy < Yo < m, the optimal path is of type’S« S~

Previous results have been obtained computing first aneshdetsrivatives of length
L and by using nonlinear minimization techniques.

We are now interested in determining the locus of switchings between ex-
tremals in optimal paths frol8S Based on a similar procedure followed in [Salaris
et al., 2010], the loci of switching points are (see figure 14)

e For Q € C(P) with 0 < yig < Y, i.e. betweerP and M, the switching lo-
cus is the arc off)}, within the extreme point® andmy = (ppw

cos@ +cos@,
1 COS( +Cos@ .
= In (7%(@“&) Sm@)) (included).



e ForQ e C(P) with Ym < Yo < Y, i.e. betweeM andF, the loci of switching
pointsMy, N are the arc€;(P), Co(my), respectively.

e For Q € C(P) with Yr < (o < Y, i.e. betweerF andV, the loci of switch-
ing pointsMz, N, andM are the arc€;(G1), Ca(my), andCy(P) with G; =

(e :2237 W — o — @) outsideCS respectively.

e Finally, forQ € C(P) with g < Yo < rrthe loci of switching points is poir®y,.

Remark 9. Notice that, whemp, = —@ = ¢, I = 0 and the synthesis proposed in [Sa-
laris et al., 2010] is obtained.

Remark 10. Points P, G and & = fg,(P) = (ppi:ﬂ—%, —g,) belong to a circle
denoted by CM in figure 14, passing through Fhis circle is centered in a point
whose cartesian coordinates ai@, o) where

_ sif@-sife
N pPZSinE sing sing’
and radius
pp  [sif@ sif@
R=— —2c082¢),
2sing \/sinzqoz * Sir? gy €20
where

+ 1 In(sin|@u|) — tl In(sing) .
2

£ t1+t N <cos<pl+cosqoz) t
1

ity sin(|@| + @)

Moreover, ifgp = —@ = ¢ circle CM becomes circle ().

4.2.1 Borderline Frontal Case (see figure 15)

In this casel’ = ‘—g and anglep, = 0. Hence, spiraTlL becomes a straight line through
Ow, denoted byH. The subdivision ofCS can be obtained replacing = 0 in the-

orem 6. Notice thatF =V andyy = @ + Y Where iy = —tangIn (%)

Moreover,m, = (pp%, —tangIn (l‘i'igzpz)) Gy > G,=m=0,. As a

consequence, forQ Yo < Yy the optimal path i1 = *TZF,‘; and the locus of switching

point is the arc of spiral}}, betweenP andmy (included); forgm < Yo < Yy = Y,

the optimal path iH* *TZR*SL and the loci of switching points between extremals

H* andT,*~ and betweefl,"~ andS~ areC,(my) andC;(P), respectively. Finally, for

Y < Yo < mthe optimal path i$" * S™, hence, the locus of switching pointsGs,.
Notice that, in this case, circleM degenerates oKy, i.e. a circle with infinity

radius, as shown in figure 15.
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Figure 15: Borderline Frontal (= g): optimal path fronQ € C(P) betweerM andV
(M andV). OnCS the optimal path i$1 " T)*~ * S~, and the locus of switching points
between extremals + andeR’ is arcCy(my), whereas between extremé’l§* and
S is arcCy(P). On the lower-half plane, fa € C(P) betweerM andV, the optimal
path isS*TZR+ xH™ and the locus of switching points between extrenﬁlsandeRJr

is spiral arcH, whereas between extrem@&" andS- is the segmer®Oy,.

4.3 Side Case

Let us consider the length of extremal paths of tﬂ'ﬁ * T, S T;" from points
Q = (pp, Yo) on the semicircle o€(P) in the upper-half plane, i.€S Referring to
figure 16, let the switching points of the optimal path be deddyN, M; andM, orN,
M; andM;, = P, respectively, depending on the angular valags or ay,- Moreover,
in order to do the analysis, it is useful to parameterize #meilfy by the angular value
oy, of the switching poinM; along the arc,(P) betweenP andP: or the angular
valueay, of the switching poiniM; along the extremét; betweerP:= andOy,.

Theorem 7. For any point Qe CS, length L of a patly € &g (see figure 16) of type
T TR S TR s

o forO<ay, <@—a,ie.fromP to P (notice that the last arc has zero length):

cosay; 1
L=pp L4 +
cos@;  cospy

51

sin( — Oy ) e
_ Ccosgy +cosg e(""Q*"m) 2 @ — o,
COS(, COSE sing ’

(12)

o foram, > @ — @, i.e. from B to Oy:



Figure 16: Path of typ&;" «E; S E; or the degenerate case of typg «E, S~ from
QeCsS

L= PP{ 2 +e*aM111 {COS(QDZ - q)l) _ 1 +
cosp cos, cosp
_ COS1 +COS@ [yo—(¢o-n) Pz sing o
COS(; COSE sing, ’

(13)
witht; = 1/tang and b = 1/tang.

The proof of this theorem is reported in Appendix, sectiof.Adaving an analyti-
cal expression for length of the path as a function of two parameters or ay, and
Yo, we are now in a position to minimize the length within thefisignt family.

Theorem 8. Given a point Q= CS (see figure 17),

o for 0< ¢ig < Y, = ;"S((pl@;)‘ggz In (Siﬁ?pzs‘gli:(xi‘%)), i.e. between P and;Ropti-

mal path is of type " « TR~

o for g, < g < YR, With Yr, := (@2 — @1) + Yr, +tangzIn (%) 6. between
Ry and R, optimal path is of type T + TR-S~;

e for yr, < Yo < 1, the optimal path is #* « T through Qu.

Moreover, for g = Yr,, any optimal path of type [I" * T"S T~ turns out to
have the same length of optimal patfi'T« T~. Hence, foryip = Yr, also T~ «
T S TR is optimal.



Figure 17: Side case§(< < ";25): optimal synthesis o€(P) and withinD(P).
From pointsQ on spiral arcTR betweerR, andme, paths of typelX" * TR"S~ and
TR« TR"S T have the same length and hence both optimal paths.

Previous results have been obtained computing first anchdetarivatives of. and
by using nonlinear minimization techniques.

We are now interested in determining the locus of switchinipis between ex-
tremals in optimal paths.

Proposition 10. For Q € CS with0 < (g < Yr,, the switching locus is the arc obE

TR between P and m (pp%w, Ywm) (included), wheraiy, = tang In (g—;).
Proof. From theorem 8, the optimal path frafne CSto P is of type TR + TR~ (see
figure 17), withTX~ = T}, hence the switch occurs oFfy . For Yo = YR, the
intersection betweeRX" andT,* ism. O

Proposition 11. For Q € CS withyr, < Yo < Yr,, the loci of switching point#1;
andN are thedSk(P) anddSk(m).

Proof. ForQ € CSwith Y, < Yig < Yr,, from theorem 8 we havidl, € ISK(P) (see
figure 17). Furthermore, substituting the optimal valuesgf, obtained computing
first and second derivatives &f coordinates in equations (20) and (21) of the inter-
section pointN betweenE; = TlRJr throughQ andE, = T, throughM; we obtain

N € dSk(m) (see section A.5 in the Appendix). O

Finally, for Q € CSwith @, < ¢ < 1, the switching locus reduces to the origin
Ow since two extremdt; intersect only in the origin for=1,2.

4.3.1 Borderline Side Case

In this casd” = %‘5 and anglep, = 7. Hence, spira]l'2R degenerates in a circle cen-
tered inOy, denoted byC. The subdivision of£Scan not be obtained directly from



the Side case replacing = 7 in all previous results although, as shown in figure 18,
the subdivision o£(P) is quite similar. Indeed, let us consider the length of extik
paths of typeTlRJr *C*SLTlR* from pointQ € CS Moreover, in order to do the anal-
ysis, let the switching points of extremal path be denotedibil; andM, or N, M
andM; = P, respectively, depending on the angular valogs or ay,» similarly to
figure 16 withE, = C.

Theorem 9. For any point Qe CS, length L of a patly € &g of type 'f* *C*S“TlR’
is:

o for0<ay, < 2 — @, i.e. from P to P (notice that the last arc has zero length):

1 cosoy,
cosg

+ cosog, ((,UQ —tang; In(cosay;, ) — aml) ,

L=pp {sinorm1 +

(14)
o foray, > 7 — @, i.e. from B to Oy:
_ 2 . (aM 7n+(pl)t11+5in§0l
L_pp{—cosfpl +sing, e\"M172 70054)1
+o— o — g+tan(plln(sin(pl)} ,
(15)

with t; = 1/tang;.

The lengthL can be computed using techniques similar to those used éor th
rem 7. Having an analytical expression for the length of thth@s a function of two
parametersiy, or oy, andyg, we are now in a position to minimize the length.

Theorem 10. Given a point Q= CS (see figure 18),

o for 0< gio < Y, = 1?5;‘01@, i.e. between P andRoptimal path is of type C
until P;

o for Yr, < Yo < YR, With YR, == (5 — @) + YR, +tan@ In(sing), i.e. between
Ry and R, optimal path is of type 1" *C~S;

o for Y, < Yo < mthe optimal path is f « TR~ through Q.

Moreover, foryio = Yr,, any optimal path of type/f" +C~S T turns out to have
the same length of optimal patffT+ T*~. Hence, fonyig = Y, also TRF «C~S T~
is optimal.
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Figure 18: Borderline Side cas€ & %‘5): optimal synthesis oi€(P) and within
D(P). From pointsQ on spiral archR betweerR, andmg,., paths of type‘l’lR+ xC~ S~
andT*" *C~S TJ% have the same length and hence both optimal paths.

Previous results have been obtained computing first anchdetarivatives of. and
by using nonlinear minimization techniques.

We are now interested in determining the locus of switchingns between ex-
tremals in optimal paths. By using a similar argumentataiofved in propositions 10
and 11, we have

e for 0 < yig < YR, the locus of switching point is arc of circleS betweernR,
andP;

o for Yr, < Yo < Yr,, the loci of switching points between extremalg" and
C™ is arcdFR(Ry), whereas between extrem&s andS- is arcdR(P).

Finally, for r, < (g < 1, the locus of switching points By, (see figure 18).

4.4 Lateral and Symmetric Lateral Cases

; =) ; i =) b
In this case/52 < T < 7. Spirals have characteristic anglps= /52 andg, = 152,

and equations are
P1=P1o eVt
P2 = p20€¥?,

wheret; = 1/tan("—§5), whereag, = 1/tan(%5) = —ty, i.e. two logarithmic spi-

rals, right and left respectively, with the same charastieranglep = ";25. The sub-
division of the motion plane can be obtained following theegrocedure of the Side
and Borderline Side cases. Nevertheless, unlike previasisscand as a consequence
of remark 3, forQ € CSwith 0 < Yo < YR, = 2¢» — 1, the optimal path is a straight
line untilP (i.e.S7).



5 Shortest paths from any point in the motion plane

The synthesis 0@(P) induce a partition in regions & (P). Indeed, for anyQ € D(P),
there exists a point € C(P) such that the optimal pathfromV to P goes througi®.
The Bellmann’s optimality principle ensure the optimalitiithe sub—path fron® to

P. For points outsid€(P), functionFg has been defined in (10) in order to transform
paths starting fron® insideC(P) in paths starting fronfg(P) = (%,wa) outside
C(P).

From other properties dfg, such as Proposition 1, we have also that an optimal
path is mapped into an optimal path. Hence, the optimal gigHrom points outside
C(P) can be easily obtained mapping through nfgpall borders of regions inside
C(P).

Proposition 12. Given a bordeB and Qe B map k transforms:
1. B=C(P) into itself;
2. B=0Sk(Q) in 0SB (fo(P))
3. B=0Sk(Q) in dSB(fo(P))
4. B =Ej in arcs of the same type+£ 1,2)

The proof of this proposition is based on the properties eftfapFq, which con-
sists of rotations and scalings, which transform spira$ émcspiral arcs, and arcs of
circles through the origin in straight lines (and vicevgrgd remark 1. A detailed
proof can be found in [Salaris et al., 2010].

Based on Proposition 12, the optimal synthesis of the entwdon plane is re-
ported in figure 19 and figure 20 for the Frontal and Borderinental cases. In fig-
ure 21 and figure 22 are reported the optimal synthesis faithe and the Borderline
Side cases. Finally, figure 23 and figure 24 shown the partitfahe motion plane for
the Lateral and Symmetric Lateral cases.

The subdivision of the motion plane in casepk I' < 1T can be easily obtained
by using that for 0< I' < 7 considering optimal path followed in reverse order, i.e- fo
ward arc in backward arc and vice versa. Finally, a symmetry. 4, axis of each
subdivision of the motion plane for eaEhe [0, 1] allows to obtain the corresponding
subdivision forl” € [—T, 0].

Finally, it is useful to point out that borders of all regicare arcs of circle, straight
lines or logarithmic spirals. Hence, conditions@nandyg determining the inclusion
of a pointQ in each region can be obtained in terms of a finite number ofehary
inequalities. As a consequence, given any initial roboitmrsQ, an algorithm that
returns the Region in which robot lays can be easily obtained

6 Conclusions and future work

A complete characterization of shortest paths for movindié® with a preferential
direction of motion equipped with a general, limited FOV sensystem has been



Figure 20: Partition of the motion plane fbr= 9/2, i.e. Borderline Frontal (the right
border is aligned with the robot motion direction).

proposed. A finite sufficient family of optimal paths has beketermined based on
geometrical properties of the considered problem. Finallgomplete shortest path
synthesis to reach a point keeping a given feature in sightlean provided. While
the problem of keeping in sight, during motion, at least caddre can be considered
solved by these results, to obtain the current robot posiab least three features are
needed. As a consequence, a generalization of the optim#iesis would be nec-
essary, providing the shortest paths to a goal keeping it sigpre (at least three)
features. This is an open problem for future works.

A possible extension of this work is to consider a more réelgensor, as a camera,
with both horizontal and vertical FOV limits pointing to adjrection with respect to



Figure 21: Partition of the motion plane f§r< M< %5, i.e. Side case.

the direction of motion. Another possible extension woutdcbnsidering a different
minimization problem such as minimum time.
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A Appendix

A.1 Proof of Theorem 1

Theorem 1. Given two points A= (pa, Ya) and B= (pg, Ys), with Ya > Ys and
p = pa = ps, and an extremal patly from A to B such that for each point G ¢f
pc > p, there exists an extremal pafhfrom A to B such that for each poi@ of y,

pg < pand{(y) < {(y).

Proof. Consider a poinZ = (pz, Yiz) such thatpz; = maxseypc > p. Lety; andy
the sub—paths of from Z to B and fromZ to A.
The sub—patly, is rotated and scaled (contracted of fac§§r< 1) such that is

transformed irA obtaining a patly; from Ato Z = (g—i, Yn+ Ws— Yz). Similarly, ys,
can be rotated and scaled with the same scale factor butadiffeotation angle w.r.t4
such thatZ is transformed irB, see figure 6. After geometrical considerations, it is
easy to notice that the obtained pétstarts inB and ends irZ.

The obtained paths are a contractionypfand y» respectively and hence shorter.
Moreover, any poinG of y; or y» haspg > p hence is scaled ifs of {4 or §» with

ps =2 <p.
Conzcluding, we have obtained a shorter path fidmo B that evolves completely
in the disk of radiup. O

A.2 Proof of Theorem 2

Theorem 2. Any path consisting in a sequence of a backward extremalcdi@mied
by a forward extremal arc is not optimal.

Proof. Observe that the distance fro@y, is strictly increasing along backward ex-
tremal arcs (i.e.S™, E;, E; with E; # C) and strictly decreasing along forward ex-
tremal arcs (i.eS", E", E; with E, # C). For continuity of paths, for any sequence of
a backward extremal followed by a forward one, there exigitgs@ andB that verify
hypothesis of Theorem 1, hence it is not optimal.

Any sequence consisting in an extrer8ébr E;) of length? and an extremdt, =C
(in any order and direction) is inscribed in two circumferes centered i@, Hence,
the shortest sequence is the one vith= C along the circle of smaller radius neces-
sarily preceded by a forwaisl(or E;) of same lengtH.

Concluding, in an optimal path a forward arc cannot follonaakward arc. [

A.3 Proof of Theorem 3

Theorem 3. Any path consisting in a sequence of an extremal arené E followed
in the same direction is not optimal for anyj ic {1, 2} with i # j.

Proof. By proving the non—optimality of;" EJ-+ the non—optimality oEj* *E; fol-
lows straightforwardly. Without loss of generality, we pogei = 1 andj = 2. LetA
andB be the initial and final points of the pagtof typeE; « E;” andN the intersection
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Figure 25: Construction of a path shorter tHgh« E; for0<T < g.
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Figure 26: Construction of a path shorter tiigh« E; for § < T < 9.

points betweerE;” andE;. We now show for any value df and d there exists a
sub—path of/ that can be shortened with a straight arc.

For0<TI < ‘—g, referring to figure 25SF(A) intersects the extremd, in two
pointsV; € dSK(A) andV, € SR (A) and three cases occur:Bfe SF(A), i.e.B=B;
betweenv; andV;, alongE,, y is obviously longer tha\B; if B = B, is betweerV,
and Oy, y can be shortened bA\s; finally, if B = B3 is betweer; andN, consid-
ering SB(B) and the intersection poivg betweendSB; (B) = r1(B) andE;, y can be
shortened by/3B.

For the Side cas%(< < "%5), there always exists a poi alongE; between
A andN such thaSF(G) intersect€; betweerN andB. Hence,y can be shortened by
GGr (see figure 26). O

A.4 Proofs of Propositions 5, 6, 7, 8, and 9
To prove proposition 5, 6 and 7 and 9 the following techniesalit is needed.

Proposition 13. Consider any two points G and H on a spiral ar¢(E= 1,2). LetE
be the set of points betweendnd its symmetric w..GH. A shortest path between G
and H that evolves completely outside regiois the arc of Ebetween G and H.

"The proof of this proposition follows straightforwardlyfn the convexity property
of E.



Figure 27: Construction used in the proof of Proposition Stort pathS™ « E; .

Proposition 5. From any starting point A, any patpof type S «EJ (S =E;) and
St +E; to B can be shortened by a path of typeE§ (S E;), St (S7) or EJ *<E; .

Proof. To be optimal, a path of typ®8" «E; (S~ = E;) can be shortened by a path of
type S'E; (SE;) or S™ (S7). Indeed, ifB € SF(A) (B € SBA)), y is shortened by
St = AB(S = AB). However, letN be the intersection point between extremal arcs
S" andE,, from proposition 4 necessarily € dSF(A) UJdSFK(A). In this case, for
geometrical propertie§" andE; are tangent iN. Hence, patts' = E; is shortened
by S or S'E; . Equivalently,S™ «E; is shortened b~ or S'E; .

Let now consider the path of tyf®" « E;” and the non trivial case & ¢ SF(A).
From proposition 4, the intersection poktetweerS" andE;” must lay ordSk(A).
Considering now an ar€;(B) passing througB, two cases occur (see figure 27):

e if arc E; intersect9)SK(A) in Vi andS' in Vs, by using Proposition 13, ai€,
shortens pats" « E; between/, andB. A path fromAto B of typeS" < E; has
been obtained, that in turn can be shortene&tﬂzr throughV; € dSK(A);

e otherwise, let us consider the d&gthroughA. ItintersectE; betweerB andO,,
in V3. By Proposition 13, the sub—path pbetweenA andV3 can be shortened
by E,. Hence, a shorter path of tyjgg « E; is has been obtained.

O

Proposition 6. For ‘% < T < 7 (Side and Lateral cases), from any starting point A,
any pathy of type S «E;” (S «E, ) or S"«E, can be shortened by a path of type S
(S),EfST(E;S) orEff +E,.

Proof. If B € SF(A), yis shortened by" = AB (S~ = AB). However, let us consider
first a pathy of type S" « E;” whose switching poinN € dSF(A) for proposition 4.
There always exists a straight line froBntangent to the extremal ak€; from A in

V1 betweerA andO,,. LetV, be the intersection point of this straight line and border
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Figure 28: Construction used in the proof of Proposition éttort patrS* « E;.

JdSFK(A) (dSB(A)). The unfeasible piecewise straight path frénto B throughV,
shortens patly (see figure 28). In turn, the unfeasible polygonal path igésrthan
pathE;"S" throughVy. EquivalentlyS™ = E, can be shortened Hy;, S.

For a pathy of typeS™ « E;” whose switching poinil € dSF (A) for proposition 4.
Let us consider an extremal &g throughB. Two cases can occur (see figure 29):

e if Eq for Aintersects ar€&, inV butB lays onE, betweerV andOy, by using
the same construction of the unfeasible polygonal pathelyman be shortened
by E;"S';

e otherwise the extrem# lays betweeB andO,, and for proposition 13, path of
typeE] «E, throughV is shorter thars™ = E, .

O

Notice that, as an extension of proposition 4 for the Sidelaatdral cases only, if
an optimal path fron@ to P includes a segment of ty & (or S°) from G, then it ends
ondSk(G).

Proposition 7. For0< T < g (Frontal case), from any starting point A, any path
of type S *E;” or St xE, can be shortened by a path of type, S*E;” or E{ +E, .
Furthermore, for any patly of type S «E; or S~ xE; can be shortened by a path of
type S, E; S orE; «E;.

Proof. Any pathy of typeS" « E;" can be shortened by a path of type or S'E;" for
proposition 4. For pathS™ « E; a similar procedure used for the path of type«E;”
in the second part of proof of proposition 5, can be followwofs for path&™ xE,
orS™ xE; are equivalent to proof of proposition 6. O

Proposition 8. For any starting point A, any patf of type S * S~ can be shortened
if the angle between arc'Sand arc S is less than

sin(@ + ¢2) {ZIn < sin(g + ¢»)

N
W7Q+@+cos<plc05@ COS@; + COSgy

> +Insing +Insing, | .
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Figure 29: Construction used in the proof of Proposition étort patrS* « E; .

Proof. The proof of this proposition follows straightforward fraimeorems 7 and 6;
indeed they show that path" x S~ is optimal when the starting poil@ lays onCS
betweerV andPs (see figure 13). O

Proposition 9. For % <T < Z (Side and Lateral cases),’$ S~ path can be shortened
by paths of type ExS™, S"«E;, E; *S" and B/ S'.

Proof. The procedure used to prove this proposition is similar & tised in the proof
of Proposition 5, 6 to short pat8” « E; andS™ «E;” (S" «EJ), respectively. Con-
structions are similar to that shown in figure 27 replacingEr with arcS™, and in
figure 28 (29) replacing arf;” (E;") with arcS'. O

A.5 Proof of Theorem 7

Theorem 7. For any point Qe CS, length L of a patly € &g (see figure 16) of type
T TR S TR is:

e forO< oy, <@®—@,ie. fromP to P (notice that the last arc has zero length):

cosoy; 1
L=pp L4 +
cos@  cosg

f

i _ -ty
cosoucos (ug-a,) 2 (9N( %)
COS(p COSE, sing

(16)

o foram, > @ — @, i.e. fromR to On:



L= PP{ 2 +e*aM111 {COS(QDZ - q)l) _ 1 +
cosp, Cos®, cosp,
_ COsy +Ccosg, e[,pQ,((pr(pl)]% sing "o
COS(; COSE sing, ’

(17

witht; = 1/tang and b = 1/tang.

Proof. Recalling thatP = (pp,0), Q = (pp, Yg), when 0< oy, < @ — ¢, M; €
J0SF(P) (see proposition 4), by the law of sines we have

sin(g — oy, )
Pm, = PPWNIl ) (18)
and the length of segmerss is
B sinay,
1=pPpP Sin@ 3 (19)

(cf. figure 16).
From (7), setting, = %, the right logarithmic spiral passing throuyh, (de-
noted withTszl) is given by

. M, Yt
Tszl . (pmle(aMl )274’) .

Similarly, settingt; = gf’rf‘(gll the right spiral througi® (denoted a3}, is given by

Tl% . (er(LxUQ*LxU)tl7 L,U) .
The intersection point between the spir'ﬁ!%1 andTf, is N = (pg, Y), where

4

yt, [ Sin (q)z— O ) T
Uo—0m, |55 1
PN = PP e( Q aMl)t2 t1 (W) (20)
B ty t, 1 sin(qozf aml)
U= thzftl _aMltzftl _tZ*tl In ( sing, ' (1)

The length of the spiral arégRml andTl% from M, andQto N, respectively, are:



PrP— PN

LQ .
cost
Adding up, after some simplifications, the total lenftis therefore as reported in (16).

Whenay, > @ — @, the optimal path is of typd X" * T, S"T, where the
last arc is a spiral arc passing throug.e. Tl'_‘;*. As a consequence, the switching
pointM, belongs tonéf (cf. figure 16). Moreover, from results of theorem 3 (see also
figure 26),M1 = Myr and for simple geometrical consideratioM, € T1'§1:. For this
reasons, coordinates of poMb = (pm,, Y,) are

Mz (pee® @M% oy, — (@ — @) (22)

and coordinates of poitly = (pwm,, Ym, ) are

: SINGL (g-g1—am, a
My : (ppsin@e SN (YA I (23)

The right logarithmic spiraTZ'?\,Il passing througMj is given by
T, (p uy €M, l’u) '
Similarly, the right logarithmic spiral throug®, denoted aﬂ'fé is given by
Tio: (Pp e(waw)tlvq") :

The intersection point between spiral§, and T,y is pointN = (pn, ¢n), where

2 . _ b
on = pp RELE oty (@@ phy (m) (24)
sing,
t; ty 1 sing
—a _ — In( = . 25
Un = am, + (@ (pl)tz—tl Yo ¢, T g, <sm@ (29)

The length of the arc of spirdly~ betweerP andM; is

Lom, = PP — Pwm, _ pp (1_6(@740170!»41)&) ,

cosg cos@
the length of ar6S~ from Mz to M is

MM, = Sin(@ — 901) e((pz—wl—aMl)tl

sing,
and the length of the spiral ar&'§g andeF,f,I1 from My andQ to N, respectively, are
PP — PN
MiN = )
cosg
Loy = PV — PN
QN cos@

Adding up, after some simplifications, the total lengtis obtained, as reported in (17).
O



