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Abstract

Sensor-guided robotic locomotion in different media oftentakes inspiration
from natural examples, e.g. from fishes, birds, and humans for underwater, aerial,
or walking robots, respectively. Interestingly, several naturalistic observations
show that even very different species exhibit some similarities in their locomotion
patterns: a notable one perhaps being the spiraling nature of paths that in some
cases can be observed in sensory-guided tasks. As often conjectured in naturalistic
studies, a common optimality principle may underpin such motion behaviors. We
show in a robotics framework that spiraling motions appear in the solution of the
problem of minimum path length. In particular, we study optimal paths for a simple
model of finned, winged, and legged robotic vehicles, under different constraints
on the field-of-view of the available sensory inputs. After showing that logarith-
mic spirals are indeed extremals of a sensory-constrained shortest path problem,
we provide a complete synthesis of the optimal control for different robotic ve-
hicles. Applications of these results to robotics can reduce the length of paths to
be followed by underwater, aerial or legged robots to reach targets in their envi-
ronment. The work also provides some interesting, althoughpreliminary, insights
into how sensory field-of-view limitations may influence motion patterns in natural
systems.

1 Introduction

Biological observations show that many different species in nature, including fishes,
birds, and humans, exhibit surprisingly similar behaviours in their locomotion. Indeed,
it has been known for long time ([Lyon, 1899; Schaeffer, 1920]) that in the locomo-
tion of animals it is possible to discern the presence of spiralling components. This
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(a) Nurse shark and goldfish vision
system.

(b) Underwater (Finned)
vehicle with lateral-looking
sensors.

Figure 1: Fish vision system and lateral sensors.

has been observed in a range of organisms going from the simplest unicellular organ-
isms ([Bullington, 1925]) to mammals ([Dunkelberger, 1926]) and humans ([Schaeffer,
1928]). For example, in [Kleerekoper et al., 1973] a study ofthe locomotor patterns of
nurse sharks indicated that the approach by these animals toa source of diffusing odor
or light was alonglogarithmic spirals, i.e. equiangular spirals in which the lengths of

radii at 90o are in the golden ratioΦ = 1−
√

5
2 , (see figure 1). Authors of [Kleerekoper

et al., 1973] state that “bilateral sense organs may play a role in steering logarithmic
spiral movements”, although evidence is inconclusive as towhich “the mechanisms by
which spiral movements are brought about” are. A conclusionthat laterality of sense
organs (both visual and olfactory) and the limited apertureof their receptive fields de-
termine logarithmic spiral movements is not warranted by experimental observations:
indeed, e.g. goldfishes continue moving in spirals even whenblinded ([Kleerekoper
et al., 1973]). However, the same authors conclude that “thesignificance of logarith-
mic spiralling in directed locomotion toward a stimulus source gains importance” in
relation to a model (credited to F. Brouwer in [Kleerekoper et al., 1973]), which states
that “any target–seeking device which approaches the target in a direct pathway which,
at all times, deviates with a constant angle from a straight line connecting the vehicle
with the target, will describe a logarithmic spiral around the target.”

Similarly, spiral paths have been observed in flying animalsorienting themselves
with respect to a light source [Fraenkel and Gunn, 1961]. Forexample, several insects
with compound eyes consisting of many ommatidia (single-axon light detectors) have
been observed to fly trajectories such that the same group of ommatidia remain acti-
vated, which requires keeping a constant angle between the forward direction and the
beams of light. This behaviour serves the purpose of following straight paths whenever
the light source is far enough that the light beams are parallel, as e.g. when using the
sun or the moon for orientation. However, when the light source is close, a logarithmic
spiral towards the source results, as confirmed e.g. by observations of moth flight (see
[Boyadzhiev, 1999]). Fundamentally the same behaviour canbe observed in raptors
during hunting activities ([Tucker, 2000], reported already in [Salaris et al., 2010]). As



raptors possess no accurate front sight, to approach a prey at high velocity they dive
along a logarithmic spiral with their head straight and one eye looking sideway at the
prey, rather than following the straight path to the prey with their head inefficiently
turned sideways (see figure 2).

Human locomotion and the optimizing principles underlyingthe shape of trajec-
tories performed have been studied again recently with a more analytical approach.
In [Arechavaleta et al., 2008b], authors show the directional nature of human locomo-
tion by analyzing trajectories recorded in 7 subjects during walking tasks in an empty
space toward a goal defined both in position and orientation.However, in [Arechavaleta
et al., 2008a], experimental results show that the subject’s head points most of the time
toward the target, thus suggesting a role of the limited field-of-view on the shape of
the trajectories (see figure 3). Subsequently, in [Mombaur et al., 2010] authors present
a more refined inverse optimal control approach to understand the cost functional that
humans minimize during a rest-to-rest task, and eventuallytransfer biological motions
to robots. An objective function was considered consistingin a weighted sum of five
terms depending on the total time, the forward, angular and lateral acceleration compo-
nents, and the bearing angle, respectively. Based on experimental data, authors calcu-
lated the best-fitting weights, and showed that the locomotion behavior corresponded
to minimizing a cost functional in which the bearing angle weight is largest (optimal
weights for the five terms were(1,1.2,1.7,0.7,5.2), respectively). This observation is
suggestive that results on shortest paths with limited FOV may provide relevant and
interesting insight also in human locomotion.

Moving on to consider robotic applications, autonomous vehicles of different kinds
often share two important characteristics with their natural counterpart, i.e. direction-
ality of motion and limitation (and often laterality) of sensory Field–Of–View (FOV).
These characteristics deeply influence the accomplishmentof assigned tasks, which
often imply that some environment objects or landmarks are kept in sight — be it for
localization or tracking.

For example, many Autonomous Underwater Vehicles (AUV) used in underwater
surveying and navigation are designed with a preferential direction of motion (the fore)
to reduce drag, and are equipped with sonar scanners to detect and recognize objects
(e.g. mines, wrecks, archeological findings) on the sea bed.Three types of sonars
are usually used ([Hayes and Gough, 2009]): forward ([Jean,2008]), side–looking
([Langner et al., 2009]), and squint ([Caprais and Guyonic,1997]) sonars, differing for
the angle between the vehicle heading and the main axis of thescanner beam. Sonars
are used for mapping the sea bed for a wide variety of purposes, including creation of
nautical charts and detection and identification of underwater objects and bathymetric
features. Once salient features of the sea bed are observed,in order to reach, localize
and/or recognize them, AUVs are required to move keeping them inside the limited
FOV of the scanner.

Furthermore, an ever increasing number of wheeled (or tracked) ground vehicles
use visual–based control. These vehicles, which are also steered about their preferential
motion direction (perpendicular to the wheel axis), are often equipped with on-board
monocular camera(s) with limited FOV. Again here the problem is to maintain in the
features sight. This is necessary e.g. for visual servoing during robot trajectories: the
problem is mentioned for instance in [Mariottini et al., 2007] and in [López-Nicolás



(a) Raptor vision system and trajectories fol-
lowed to approach a prey.

(b) Trajectories followed by moths to
approach an electric light.

(c) Winged vehicle with side-
looking sensors.

Figure 2: Raptor’s trajectories during hunting activity and Side–looking sensors.

et al., 2008], although proposed solutions are valid only under rather favorable as-
sumptions. FOV constraints are explicitly taken into account for the parking problem
for a unicycle–like vehicle in [Murrieri et al., 2004], [Gans and Hutchinson, 2007b],
and [Gans and Hutchinson, 2007a], and for a rendez-vous problem in [Yu et al., 2011].
However, the resultant path is not optimal, and indeed far from efficient. Although in
many robotic applications cameras are mounted in front of the vehicle and point for-
ward in the direction of motion, lateral sensing is sometimes used. In [Kawano et al.,
2009] authors propose a vehicle equipped with side–lookingcamera for more effec-
tive generation of panoramic images of building walls. In [Li and Shimomura, 2008]
a fisheye camera is mounted on the side of a vehicle in order to detect lane markings,
thus avoiding occlusions due to other vehicles proceeding in front, a typical drawback
of frontal and omnidirectional cameras mounted on top of thevehicle.

Regarding optimal (shortest) paths in absence of sensor constraints, the seminal
work on unicycle vehicles, [Dubins, 1957], provides a characterization of shortest
curves for a car with a bounded turning radius. In [Bui et al.,1994], authors determine
a complete finite partition of the motion plane in regions characterizing the shortest
path from all points in the same region, i.e. a synthesis. A similar problem with the



(a) Human reference
frames (see [Arechavaleta
et al., 2008a]).

(b) Human trajectories
and head direction (see
[Arechavaleta et al.,
2008a]).

(c) Wheeled (or Legged) robot
with Asymmetric Frontal sen-
sors.

Figure 3: Human locomotion and Asymmetric Frontal sensors.

car moving both forward and backward has been solved in [Reeds and Shepp, 1990]
and refined in [Sussmann and Tang, 1991]. The global synthesis for the Reeds and
Shepp vehicle has been obtained combining necessary conditions given by Pontrya-
gin’s Maximum Principle (PMP) with Lie algebraic tools in [Souères and Laumond,
1996]. More recently, [Balkcom and Mason, 2006], [Wang et al., 2009] determined
time optimal trajectories for differential–drive robots and nonholonomic bidirectional
robots, respectively, while [Chitsaz et al., 2009] solved the minimum wheel rotation
problem for differential-drive robots.

The optimal pursuit of targets taking into account limited sensor aperture is a clas-
sical problem in the field of guidance and control of aircrafts. For example, in [Salama
and Hamza, 1978] an analysis to determine the optimal trajectories in three dimen-
sional space for a point mass pursuer is performed. The studyof various cases shows
that in general the optimum trajectory consists of spirals and straight lines and lies in a
single plane. More recently, in intelligence, reconnaissance, and surveillance missions,
Unmanned Aerial Vehicles (UAVs) equipped with limited electro-optical and infrared
cameras are used. These vehicles which have a preferential motion direction, are ca-
pable of surveying the environment in order to localize a target, providing the operator
with real–time visual information rapidly and inexpensive. The main challenging in
target localization include maintaining the target in the limited field–of–view and de-
veloping a UAV trajectory such that the target localizationerror is minimized ([Rysdyk,
2003; Ponda et al., 2009]). As for previous applications, the visibility limitations de-
pend also on the way the camera is mounted on-board the UAVs ([Theodorakopoulos
and Lacroix, 2008]).

Motivated by these robotic applications and biological inspirations, in this paper



we propose a systematic study of optimal (shortest) paths for a vehicle moving in a
plane with a preferential direction of motion, to reach a target position while making
sure that a single given landmark fixed in the plane is kept inside a limited FOV sensor
modeled as a planar cone moving with the robot. After showingthat logarithmic spirals
are indeed extremals of a sensory-constrained shortest path problem, we provide (under
some simplifying assumptions) a complete optimal synthesis for the considered prob-
lem, i.e. a finite language of optimal control words, and a global partition of the motion
plane induced by shortest paths, such that a word in the optimal language is univocally
associated to a region and completely describes the constrained shortest path from any
starting point in that region to the goal point. Regions and associated optimal control
words are at most 15, and the number depends on the sensor orientation with respect
to the forward direction.

A first step toward the optimal solution of this problem has been done in [Bhat-
tacharya et al., 2007] where a local shortest path synthesishas been provided for frontal
FOV (i.e. the robot forward direction is included in the sensor cone, not necessarily
symmetric). In [Salaris et al., 2010], a global shortest path synthesis was found for
frontal and symmetric FOV. However, for lateral sensor systems, like in the fish or
AUV examples, the forward direction of motion is not included in the FOV. For side
sensor systems, like in the raptor or UAV examples, neither the forward direction nor
its perpendicular lie inside the FOV. In this paper, we present a synthesis of shortest
paths, which includes as particular solutions both the earlier results of [Bhattacharya
et al., 2007] (within their local validity limitations) andof [Salaris et al., 2010], but
generalizes upon those and provides a global solution for generic FOVs, including side
and lateral sensors.

The impracticality of paths that point straight to the feature leads to a substantially
more complex analysis of the reduction to a finite and sufficient family of optimal paths
with respect to previous work. Furthermore, all the symmetries that characterized the
symmetric and frontal FOV do not hold, and results in [Salaris et al., 2010] simply do
not apply. For example, while studying optimal paths in the upper half of the motion
plane was sufficient in [Salaris et al., 2010], the study hererequires analyzing the full
plane.

Applications of these results to robotics can reduce the length of paths to be fol-
lowed by underwater, aerial or legged robots to reach targets in their environment.
However, this work also provides an interesting, although preliminary, insight into how
limited sensory FOV may influence motion patterns in naturalsystems.

2 Problem Definition

Consider a body moving on a plane and a right-handed reference frame〈W〉 with origin
in Ow and axesXw,Zw. The configuration of the moving body (hereafter referred toas
“vehicle”) is described byξ (t) = (x(t),z(t),θ (t)), where(x(t),z(t)) is the position in
〈W〉 of the reference central point in the vehicle, andθ (t) is the vehicle heading with
respect to theXw axis (see figure 4). The forward and angular velocities,ν(t) and
ω(t) respectively, are the control inputs to the kinematic model(we assume that the
dynamics are negligible). Choosing polar coordinates for the vehicleη = [ρ ψ β ]T



Figure 4: Autonomous vehicle and systems coordinates. The vehicle’s task is to reachP
while keepingOw within a limited sensor range modeled as a planar cone (highlighted
in color).

(see figure 4), the assumed kinematic model is therefore
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ω

]

. (1)

We consider vehicles with bounded velocities which can turnon the spot. In other
words, we assume

(ν,ω) ∈U, (2)

with U a compact and convex subset of IR2, containing the origin in its interior.
The vehicle is equipped with a rigidly fixed sensor system with a reference frame

〈C〉 = {Oc,Xc,Yc,Zc}. The centerOc corresponds to the robot’s center[x(t),z(t)]T

and the forward sensor axisZc forms an angleΓ w.r.t. the robot’s forward direction.
Moreover, letδ be the characteristic angle of the cone characterizing the limited Field–
Of–View (FOV) and let us consider the most interesting problem in whichδ ≤ π/2.
Without loss of generality, we will assume 0≤ Γ ≤ π

2 , so that, whenΓ = 0 theZc axis
is aligned with the robot’s forward direction (i.e. the particular case solved in [Salaris
et al., 2010]), whereas, whenΓ = π

2 , theZc axis is perpendicular to the robot’s forward
direction. Considerφ1 = Γ− δ

2 andφ2 = Γ+ δ
2 the angles between the robot’s forward

direction and the right or left sensor’s border w.r.t.Zc axis, respectively. The restriction
on 0≤Γ= φ1+φ2

2 ≤ π
2 will be removed at the end of this paper, where an easy procedure

to obtain the synthesis for any value ofΓ will be given.
We also assume that the feature to be kept within the FOV is placed on the axis

through the originOw and perpendicular to the plane of motion. Moreover, the position
of the robot target pointP is on theXw axis, with coordinates(ρ , ψ) = (ρP, 0).

The planar FOV, with characteristic angleδ = |φ2 − φ1|, generates the following



constraints:

β −φ1 ≥ 0, (3)

β −φ2 ≤ 0. (4)

Note that we place no restrictions on the vertical dimensionof the sensor. There-
fore, the height of the feature on the motion plane, which corresponds to itsYc coordi-
nate in the sensor frame〈C〉, is irrelevant to our problem. Hence, for our purposes, it is
necessary to know only the projection of the feature on the motion plane, i.e.Ow.

The goal of this paper is to determine, for any pointQ ∈ IR2 in the robot space,
the shortest path fromQ to P such that the feature inOw is maintained in the FOV of
the sensor. In other words, we want to minimize the length of the path covered by the
center of the vehicle under thefeasibility constraints(1), (2), (3), and (4).

From the theory of optimal control with state and control constraints and Pontryagin
Maximum Principle (PMP) (see [Pontryagin et al., 1962], [Bryson and Ho, 1975]) it
is possible to show that, when constraints (3) and (4) are notactive, extremal curves
(i.e. curves that satisfy necessary conditions for optimality), are straight lines (denoted
asS) and rotations on the spot (denoted as∗). On the other hand, when constraints (3)
and (4) are active, necessary conditions for optimality imply

β −φ1 ≡ 0 ⇒ tanβ = tanφ1

β −φ2 ≡ 0 ⇒ tanβ = tanφ2 ,

and, by (1),

ψ̇ = tanφ
ρ̇
ρ
=− tanφ1

d
dt

(lnρ) , whenβ = φ1 (5)

ψ̇ = tanφ2
ρ̇
ρ
=− tanφ2

d
dt

(lnρ) , whenβ = φ2 . (6)

Integrating, we obtain

ψ = tanφ1 ln

(

ρ
ρo

)

, whenβ = φ1 , (7)

ψ = tanφ2 ln

(

ρ
ρo

)

, whenβ = φ2 , (8)

whereρo is a constant that depends on initial conditions.
Equations (7) and (8) represent two logarithmic spirals with characteristic angleφ1 and
φ2, respectively, rotating around the landmark located inOw. Logarithmic spirals with
characteristic angleφi > 0 rotate counterclockwise aroundOw, whereas withφi < 0
they rotate clockwise aroundOw. We refer to these two kind of spirals asLeft and
Rightand by symbolsTL

i andTR
j with i, j ∈ {1,2}. The adjectives “Left” and “Right”

indicate the half-plane where the spiral starts for an on-board observer aiming at the
landmark.

Notice that, forφ2 = π/2 the left sensor border is perpendicular to the robot’s
forward direction and by equation (8) we haveρ = ρo, and hence, the extremal arc is



a circle centered inOw (denoted asC). For φ1 = 0 the right sensor border is aligned
with the direction of motion, and hence when right sensor constraint is active we have
β = 0: the extremal arc is an half–line throughOw (denoted asH). In other words,
whenφ2 = π/2 spiralT2 degenerates in a circle centered inOw, whereas whenφ1 = 0
spiralT1 degenerates in an half–line throughOw.

Extremal arcs can be executed by the vehicle in either forward (ν > 0) or backward
(ν < 0) direction: we will hence use superscripts+ and− to make this explicit (e.g.S−

stands for a straight line executed backward).
We will build extremal paths consisting of sequences of symbols, orwords, in the

alphabetA = {∗, S+, S−, E+
1 , E−

1 , E+
2 , E−

2 }, where the actual meaning of symbols de-
pends on anglesΓ andδ as in figure 5. Rotations on the spot (∗) have zero length, but
may be used to properly connect other maneuvers. In particular, figure 5(a) shows
theFrontal case, i.e. with 0< Γ < δ

2 , figure 5(b) shows theBorderline Frontalcase,
i.e. with Γ = δ

2 , figure 5(c) shows theSidecase, i.e. withδ
2 < Γ < π−δ

2 , figure 5(d)
shows theBorderline Sidecase, i.e. withΓ = π−δ

2 , and, finally, figure 5(e) and fig-

ure 5(f) show theLateral and Symmetric Lateralcase, i.e. withπ−δ
2 < Γ < π

2 and
Γ = π

2 , respectively.
No other information on how extremals must be combined in optimal paths can

be obtained from the application of the PMP. Hence, the paperexploits physical and
geometrical constraints of the considered problem to overcome this. LetLΓ be the set
of possible words generated by the aforementioned symbols in A for each value ofΓ,
the rest of the paper is dedicated to showing that a sufficientoptimal finite language
LO ⊂LΓ can be built such that, for any initial condition, it contains a word describing
a path to the goal which is no longer than any other feasible path. Correspondingly, a
partition of the plane in a finite number of regions is described, for which the shortest
path is one of the words inLO.

3 Shortest path synthesis

In this section, we introduce the basic tools that will allowus to study the optimal
synthesis of the whole state space of the robot, beginning from points on a particular
subset of IR2 such that the optimal paths are in a sufficient optimal finite language,
i.e. a finite language that contains words representing paths that are no longer than any
other feasible path. Based on the geometrical properties ofextremals, we introduce the
following map,

Definition 1. Given the target point P=(ρP, 0) in polar coordinates, and Q∈ IR2\Ow,
Q= (ρQ,ψQ) with ρQ 6= 0, let fQ : IR2 → IR2 denote the map

fQ (ρK ,ψK) =











(

ρKρP

ρQ
,ψK −ψQ

)

for ρK 6= 0

(0,0) otherwise.

(9)

The mapfQ is the combination of a clockwise rotation by angleψK −ψQ, and a
scaling by a factorρP/ρQ that mapsQ in P.



(a) Frontal: 0 ≤ Γ < δ
2 , E1 =

TL
1 , E2 = TR

2 .
(b) Borderline Frontal: Γ = δ

2 , E1 =

H, E2 = TR
2 .

(c) Side: δ
2 < Γ < π−δ

2 , E1 =

TR
1 , E2 = TR

2 .
(d) Borderline Side: Γ = π−δ

2 , E1 =

TR
1 , E2 =C.

(e) Lateral: π−δ
2 < Γ < π

2 , E1 =

TR
1 , E2 = TL

2 .
(f) Symmetric Lateral: Γ = π

2 , E1 =

TR
1 , E2 = TL

2 .

Figure 5: Sensor configuration depending on anglesΓ andδ .

Remark 1. The alphabetA is invariant w.r.t. rotation and scaling. However, it is not
invariant w.r.t. axial symmetry, as it happened in the particular case (i.e. the Frontal
case withΓ = 0) considered in [Salaris et al., 2010], where the map fQ was defined
as a combination of rotation, scaling and axial symmetry. For example, logarith-
mic spirals are self-similar and self-congruent (under scaling and rotation they are



mapped into themselves). On the other hand, left (right) spirals are mapped into
right (left) spirals through an axial symmetry and alphabetinvariancy can be lost.
Indeed, for example, considering the Side case alphabet (see figure 5(c))ASide=
{∗, S+, S−, TR+

1 , TR−
1 , TR+

2 , TR−
2 }, and applying an axial symmetry we have TR

1 →
TL

1 /∈ ASide, the same occurs for the Frontal alphabet withΓ > 0.

Based onfQ, which maps points in points, we now introduce a new mapFQ sending
paths in paths, which will be instrumental in reducing the search domain for optimal
solutions. Letγ be a path parameterized byt ∈ [0,1] in the plane of motionγ(t) =
(ρ(t), ψ(t)). Denote withPQ the set of all feasible extremal paths fromγ(0) = Q to
γ(1) = P.

Definition 2. Given the target point P= (ρP, 0) and Q= (ρQ,ψQ) with ρQ 6= 0, let the
path transformfunction FQ be defined as

FQ : PQ → P fQ(P)

γ(t) 7→ fQ(γ(1− t)), ∀t ∈ I .
(10)

Notice thatγ̃(t)=FQ(γ(1− t)) corresponds toγ(t) transformed byfQ and followed

in opposite direction. Indeed,γ̃ is a path fromγ̃(0) = fQ(P) =
(

ρ2
P

ρQ
,−ψQ

)

to γ̃(1) =
fQ(Q)≡ P.

We will denote the circle with center inOw and radiusρP by C(P) and the closed
disk withinC(P) by D(P). C(P) has an important role in the proposed approach since
properties ofFQ will allow us to solve the synthesis problem from points onC(P),
and hence to extend the synthesis toD(P) and to the whole motion plane. Indeed,
∀Q∈C(P) and∀γ ∈ PQ, FQ(γ) ∈ P fQ(P) with fQ(P) ∈C(P), i.e. a path from a point
Q = (ρP, ψQ) on C(P) to P is mapped in a path from pointfQ(P) = (ρP,−ψQ) on
C(P) to P.

Furthermore,FQ transforms an extremal inA in itself but followed in opposite
direction. Hence,FQ maps extremal paths inLΓ in extremal paths inLΓ. For example,
let w = S− ∗H− ∗S+ ∗ TR+

2 be the word that characterize a path fromQ to P, the
transformed path is of typez= TR−

2 ∗S− ∗H+ ∗S+. With a slight abuse of notation, we
will write z= FQ(w).

Proposition 1. Given Q∈ IR2 and a pathγ ∈ PQ of length l, the length of the trans-
formed pathγ̃ = FQ(γ) is l̃ = ρP

ρQ
l.

The proof is based on the fact that scaling transformation scales of the same quan-
tity the lengths of both straight and spiral arcs. Indeed, the lengthd of a spiral arc
betweenA = (ρA, ψA) andB = (ρB, ψB) is linear in ρ , i.e. d = ρA−ρB

cosφ , see [Salaris
et al., 2010] for a formal proof.

Based on the properties ofFQ, optimal paths from points onC(P) completely evolve
insideC(P). To prove this statement we first report the following result,

Theorem 1. Given two points A= (ρA, ψA) and B= (ρB, ψB), with ψA > ψB and
ρ = ρA = ρB, and an extremal pathγ from A to B such that for each point G ofγ,
ρG > ρ , there exists an extremal path̃γ from A to B such that for each point̃G of γ̃,
ρG̃ < ρ andℓ(γ̃)< ℓ(γ) (see figure 6).



Figure 6: An example for theorem 1: pathγ = γ2γ1 (γ2 followed byγ1) of typeTR−
2 S−∗

TR+
1 from A to B is shortened by a path̃γ = γ̃1γ̃2 of typeTR+

1 ∗TR+
1 S− by applying path

transformationFZ to pathγ.

Figure 7: Forward and backward straight path Regions fromG for the Frontal case,
i.e. 0≤ Γ ≤ δ

2 . SF(G) (SB(G)) is the set of points reachable fromG with a forward
(backward) straight line without violating the sensor constraints, see remark 2.

In other words, this theorem states that the shortest path between two points with
same distance from the feature evolves completely along points closer to the feature
w.r.t. initial and final configurations. The proof of theorem1 can be found in sec-
tion A.1 of the Appendix.

An important but straightforward consequence of the theorem is the following

Corollary 1. For any path inPQ with Q∈C(P) there exists a shorter or equal-length
path inPQ that completely evolves in D(P).

4 Optimal paths for points onC(P)

Our study of the optimal synthesis begins in this section addressing optimal paths from
points onC(P). We first need to establish an existence result of optimal paths.



Figure 8: Forward and backward straight path regions fromG for theSide, Borderline
Side, andLateralcases, i.e.δ2 < Γ ≤ π−δ

2 . SF(G) (SB(G)) is the set of points reachable
fromG with a forward (backward) straight line without violating the sensor constraints,
see remark 3.

Proposition 2. For any Q∈C(P) there exists a feasible shortest path to P.

Proof. Because of state constraints (3), and (4), and the restriction of optimal paths in
D(P) (corollary 1) the state set is compact. Furthermore, it is possible to give an upper-
bound on the optimal path length for allΓ ∈ [0, π

2 ]. Indeed, given a pointQ at distance
ρ from Ow the optimal path toP is shorter or equal to the following paths based on the
value ofΓ andδ :

• Frontal (0≤ Γ ≤ δ
2 ): S+ ∗S− or H+ ∗H− of lengthρ +ρP;

• Side (δ2 < Γ < π−δ
2 ): TR+

1Q ∗TR−
2P , of length

(

ρ−ρN
cosφ1

+ ρP−ρN
cosφ2

)

, whereN is the

intersection point between spiralsTR
1Q andTR

2P throughQ andP respectively;

• Borderline Side (Γ = π−δ
2 : TR+

1 ∗C−
P ) of length

(

ρ−ρP
cosφ1

+(ψN −ψP)ρP

)

, where

N is the intersection point between spiralsTR
1 andCP;

• Lateral (π−δ
2 < Γ ≤ π

2 ): TL−
2Q ∗TR−

1P , of length
(

ρ−ρN
cosφ2

+ ρP−ρN
cosφ1

)

, whereN is the

intersection point between spiralsTL
2Q andTR

1P.

The system is also controllable because there always existsan intersection point be-
tween two spirals (even if degenerated in half–lines or circles) with different charac-
teristic angle even if both clockwise or counterclockwise around the feature. Hence,
Filippov existence theorem for Lagrange problems can be invoked [Cesari, 1983].

In the following we provide a set of propositions that completely describe a suffi-
cient optimal finite languageLO for all values ofΓ ∈ [0, π

2 ].



Definition 3. For any starting point G= (ρG, ψG), let SF(G) (SB(G)) be the set of all
points reachable from G with a forward (backward) straight line without violating the
sensor constraints.

Let Ci(G) denote the circular arcs fromG to Ow such that,∀V ∈Ci(G) with ψV ∈
[ψG−|φ1|, ψG] (or ψV ∈ [ψG, ψG+ |φ2|]), ĜVOw = π −|φi|, i ∈ {1, 2}.

Remark 2. Based on simple geometric considerations, for any startingpoint G=
(ρG, ψG), for 0 ≤ Γ ≤ δ

2 (Frontal Case), SF(G) is the region between borders∂SF1

and∂SF2, where∂SF1(G) =C1(G) and∂SF2(G) =C2(G) (see figure 7). Notice that,
SF(G) lays completely in the circle with center in Ow and radiusρG. In the particular
case in whichΓ = δ

2 (Borderline Frontal Case),∂SF1(G) degenerates in the segment
(GOw) between G and Ow.

As a consequence of remark 2,SF(G) is tangent inG to TL
1 (or H) andTR

2 .

Remark 3. For any starting point G= (ρG, ψG), and for δ
2 < Γ ≤ π

2 (Side and Lateral

cases), let GF = (ρG
sinφ1
sinφ2

, ψG +(φ2 − φ1)) ∈ C2(G), i.e. such thatÔwGGF = φ1 (cf.
figures 8 and 9, respectively). Naming with CGF ⊂C2(G) the arc between G and GF ,
SF(G) is the region between arc∂SF2(G) = CGF and segmentGGF . Notice that, for
the Lateral case SF(G) does not lay completely in the circle with center Ow and radius
ρG. In the particular case in whichΓ = π−δ

2 (Borderline Side Case),∂SF2(G) becomes
the semicircle from G to GF ≡ Ow with diameterρG.

As a consequence of remark 3,SF(G) is tangent inG to TR
1 andTR

2 (or C). More-
over,SF(G) is tangent inGF to TR

1 andTR
2 (or C), see figure 8.

A generalization of mapfQ (see definition 1) is a map that transforms the whole
IR2 rotating and scaling the pointQ in a given generic pointG not necessarily inP as

fQ does. LetF : IR2\(0, 0)→ IR2 with F(Q) = fQ(G) =
(

ρ2
G

ρQ
, 2ψG−ψQ

)

. The map

F has some properties that make it very useful to the study of our problem in a way
which is to some extent similar to what described (for a differentF map) in [Salaris
et al., 2010]. Indeed, this map is continuous and is an involution, i.e. F(F(Q)) ≡ Q,
henceF−1 = F . The invariant set ofF is the circle centered inOw throughG. Notice
also that, ifQ is inside this circle,F(Q) is outside, and vice versa.

Remark 4. Notice that, F maps points of a forward straight line path from G in points
of a backward straight line path from G. As a consequence, borders defined in re-
marks 2 and 3 are mapped in borders of SB(G) regions of definition 3 as described in
the following proposition.

Proposition 3. Map F transforms arcs of a circle Ci(G) in half–lines from G and
forming an angleψG−φi with the Xw axis.

Proof. Points ofCi(G) have coordinates(ρG sin(φi − ψ + ψG)/sinφi , ψ) with ψ ∈
[ψG−|φ1|, ψG] (orψ ∈ [ψG, ψG+ |φ2|]). Such points are mapped in(ρG sinφi/sin(φi −
ψ +ψG), 2ψG −ψ). On the other hand, the straight line fromG forming an angle
ψG+φi with theXw axis is described by the equation

y= tan(ψG−φi)x−ρG
sinφi

cos(ψG−φi)
.



Figure 9: Forward and backward straight path Regions fromG for π−δ
2 ≤ Γ ≤ π

2 .
SF(G) (SB(G)) is the set of points reachable fromGwith a forward (backward) straight
line without violating the sensor constraints, see remark 3.

Rewriting this equation in polar coordinates, it is straightforward to check that it is
satisfied by the image ofCi(G) underF , hence the thesis.

Remark 5. For 0 ≤ Γ ≤ δ
2 (Frontal Case), let ri(G) denote the half–lines from G

forming an angleψG− φi with the Xw axis (cf. figure 7). SB(G) is the cone delimited
by∂SB1(G) = r1(G) and∂SB2(G)= r2(G), outside circle with center in Ow and radius
ρG. Moreover, forδ

2 < Γ ≤ π
2 (Side and Lateral cases), consider the rotation and scale

that map GF in G and G in GB = F(G) we have SB(G)≡ SF(GB), hence∂SB1(G) =
∂SF1(GB) and ∂SB2(G) = ∂SF2(GB). Moreover, for all points V on the circular arc

CGB from GB to G, angleĜBVOw = π −|φ2|, and angleÔwGBG= φ1.

This remark is a straightforward consequence of proposition 3.

Proposition 4. If an optimal path from Q to P includes a segment of type S+ (S−) with
extremes in G, K, then either K= P ∈ SF(G) (K = P ∈ SB(G)) or K ∈ ∂SF1(G)∪
∂SF2(G) (K ∈ ∂SB1(G)∪∂SB2(G)).

Proof. Consider the case of a segment of typeS+, if K /∈ SF(G) the straight line vio-
lates either one of sensor constraints. Furthermore, ifK ∈ SF(G) but K /∈ ∂SF1(G)∪
∂SF2(G) andP /∈SF(G) the sub-path fromK to P intersects∂SF1(G)∪∂SF2(G) in K′.
Hence,γ could be shortened by replacing the sub–path fromG to K′ throughK with
the segmentGK′. If P∈ SF(G), then by the optimality principleK = P. For a segment
of typeS− a similar proof can be followed.



Figure 10: Construction of a path shorter thanE+
1 ∗E+

2 for δ
2 < Γ ≤ π−δ

2 (cf. theo-
rem 3).

4.1 The Sufficient Family of Optimal Paths

Based on all the above properties, we are now able to obtain a sufficient family of opti-
mal paths by excluding particular sequences of extremals. Notice that results obtained
in this section are not a direct consequence of theorems provided in [Salaris et al.,
2010]. Indeed, the asymmetry of the FOV with respect to the direction of motion leads
to a more complex analysis of paths that may be excluded from the finite sufficient op-
timal family. For example, in the Side case paths along whichthe vehicle points toward
the feature are no more feasible. Furthermore, with respectto [Salaris et al., 2010], new
extremal sequences must be evaluated and possibly excludedfrom the finite family.

Theorem 2. Any path consisting in a sequence of a backward extremal arc followed
by a forward extremal arc is not optimal.

The proof of this theorem, whose details can be found in section A.2 of the Ap-
pendix, is based on the fact that for continuity of paths, forany sequence of a backward
extremal followed by a forward one, there exist pointsA and B along the path that
verify hypothesis of Theorem 1.

Theorem 3. Any path consisting in a sequence of extremal arcs Ei and Ej followed in
the same direction is not optimal for any i, j ∈ {1, 2} with i 6= j.

Proof of this theorem can be found in section A.3 of the Appendix and it is based
on the fact that for any values ofΓ andδ and for any pathγ consisting in a sequence of
extremal arcsEi andE j followed in the same direction (i, j ∈ {1, 2} with i 6= j) there
exists a sub–path ofγ that can be shortened by a straight line. For example, referring
to figure 10, in the Side case (δ

2 < Γ < π−δ
2 ), there always exists a pointG alongE1

betweenA andN such thatSF(G) intersectsE2 betweenN andB. Hence,γ can be
shortened byGGF .

Notice that the feasible sequences consisting of two extremals that we still need to
be discussed, and eventually excluded, are those starting or ending withS followed in
any direction (E+

i E−
i andE−

i E+
i , with i ∈ {1, 2}, are obviously not optimal).



Figure 11: Shortest paths in the Symmetric Frontal case withδ = π .

Proposition 5. From any starting point A, any pathγ of type S+ ∗E+
2 (S− ∗E−

1 ) and
S+ ∗E−

1 to B can be shortened by a path of type S+E+
2 (S−E−

1 ), S+ (S−) or E+
2 ∗E−

1 .

Proposition 6. For δ
2 ≤ Γ ≤ π

2 (Side and Lateral cases), from any starting point A,
any pathγ of type S+ ∗E+

1 (S− ∗E−
2 ) or S+ ∗E−

2 can be shortened by a path of type S+

(S−), E+
1 S+ (E−

2 S−) or E+
1 ∗E−

2 .

Proposition 7. For 0 ≤ Γ < δ
2 (Frontal case), from any starting point A, any pathγ

of type S+ ∗E+
1 or S+ ∗E−

2 can be shortened by a path of type S+, S+E+
1 or E+

1 ∗E−
2 .

Furthermore, for any pathγ of type S− ∗E−
2 or S− ∗E−

1 can be shortened by a path of
type S−, E−

2 S− or E+
1 ∗E−

2 .

Proposition 8. For 0 ≤ Γ < δ
2 (Frontal case), from any starting point A, any pathγ

of type S+ ∗S− can be shortened if the angle between arc S+ and arc S− is less than

ψV , φ1+φ2+
sin(φ1+φ2)
cosφ1 cosφ2

[

2ln
(

sin(φ1+φ2)
cosφ1+cosφ2

)

+ lnsinφ1+ lnsinφ2

]

.

Proofs of previous propositions are reported in Appendix, section A.4.

Remark 6. Notice that, based on proposition 8, whenδ > ψV the switching point
between S+ and S− is not necessarily Ow. For example, ifδ = π from any point Q on
the motion plane to P the optimal path is of type S+ ∗S− as shown in figure 11 and the
switching point is on the border of SF(P).

Remark 7. Notice that if a sequence of extremals from A to B is not optimal, also
the path from B to A following extremals in reverse order and opposite direction is not
optimal. For example, E+1 ∗S− is not optimal since it is the inverse path of type S+∗E−

1
that is not optimal for proposition 5.

Proposition 9. For δ
2 ≤ Γ ≤ π

2 (Side and Lateral cases), S+∗S− path can be shortened
by paths of type E+2 ∗S−, S+ ∗E+

2 , E+
1 ∗S+ and E+1 S+.

The proof of this proposition is reported in Appendix, section A.4.
By using all previous results, a sufficient family of optimalpaths is obtained in the

following important theorem.

Theorem 4. For 0≤ Γ ≤ δ
2 , i.e. Frontal case, and for any Q∈ D(P) to P there exists a

shortest path of type S+E+
1 ∗E−

2 S− or of type S+E+
2 ∗E−

1 S−. For δ
2 < Γ ≤ π

2 , i.e. Side
and Lateral cases, and for any Q∈ D(P) to P there exists a shortest path of type
E+

1 ∗E−
2 S−E−

1 or of type E+1 S+E+
2 ∗E−

1 .



(a) Side and Lateral cases (δ
2 < Γ ≤

π
2 ).

(b) Frontal case (0≤ Γ ≤ δ
2 ).

Figure 12: Representation of finite optimal languageLO from points inD(P) based
on extremals (nodes) and feasible concatenations (edges).Symbol (∗) on the edge
represents a non–smooth concatenation.

Proof. According to all propositions above several concatenations of extremal have
been proved to be non optimal. Considering extremals as nodeand, possibly optimal,
concatenations of extremal as edges of a graph, the sufficient optimal languagesLO

from Q in D(P), for different values ofΓ andδ , are described in figure 12. Indeed, it is
straightforward to observe that the number of switches between extremals is finite and
less or equal to 3, for any value ofΓ andδ . Hence, the thesis.

Remark 8. Notice that, previous theorem describes a sufficient familyof optimal paths,
i.e. path of type S+E+

1 ∗E−
2 S− or of type S+E+

2 ∗E−
1 S− for the Frontal case and path

of type E+1 ∗E−
2 S−E−

1 or of type E+1 S+E+
2 ∗E−

1 for the Side and Lateral cases. Of
course, in those family are included also all its degeneratecases, i.e. paths obtained
from previous ones with one or more zero length arcs.

We now study the length of extremal paths fromC(P) to P in the sufficient family
above. Based on properties of mapFQ, it is sufficient to study the length of paths only
from pointsQ= (ρP, ψQ) on the semicircle ofC(P) in the upper-half plane (denoted
by CS). Indeed, up to a clockwise rotation ofψQ, optimal paths fromQ′ = (ρP,−ψQ)
in the lower-half plane is easily obtained, and hence also the loci of switching points
between extremal arcs.

In order to simplify the analysis, we will consider separately three cases: Frontal
Case, Side Case, and Lateral Case. Moreover, optimal synthesis ofCSwill be deter-
mined for each case in following sections. The optimal synthesis on the wholeC(P)
can be obtained applying mapFQ to path starting from points onCS.

4.2 Frontal Case

Based on theorem 4, let us consider a path of typeS+TL+
1 ∗TR−

2 S− from pointsQ =
(ρP, ψQ) on CS. Referring to figure 13, let the switching points along optimal path
be denoted byN, M1 andM2. Moreover, in order to do the analysis, it is useful to



Figure 13: Path of typeS+TL+
1 ∗TR−

2 S− or the degenerate case of typeTL+
1 ∗TR−

2 ,
S+ ∗S−, andTL+

1 ∗TR−
2 S− from Q∈CS.

parameterize the family by the angular valueαM1 of the switching pointM1 along the
arcC1(Q) betweenQ andOw and the angular valueαM2 of the switching pointM2

along the arcC2(P) betweenP andOw.

Theorem 5. For any point Q∈CS, length L of a pathγ ∈ PQ of type S+TL+
1 ∗TR−

2 S−

is:

L = ρP

(

cosαM1

cosφ1
+

cosαM2

cosφ2

)

+

− ρP
cosφ1+ cosφ2

cosφ1cosφ2

[

ρP
sin(φ1−αM1)

sinφ1

]

t2
t1+t2 ·

·
[

ρP
sin(φ2−αM2)

sinφ2

]

t1
t1+t2

e(
αM1+αM2−ψQ)

t1t2
t1+t2 , (11)

where bothφ1 andφ2 assume values in
]

0, π
2

[

, and with t1 = 1/ tanφ1 and t2 = 1/ tanφ2.
In the extreme casesφ1 = φ2 = 0 and |φ1| = |φ2| = π

2 , we have L= 2ρP and L=

2ρPsin
ψQ
2 , respectively.

The analytical expression for the lengthL is based on a direct computation, using
similar arguments to those used to prove Theorem 3 in [Salaris et al., 2010].

Having an analytical expression for the length of the path asa function of three
parametersαM1, αM2 andψQ, we can minimize the length within the sufficient fam-
ily. Notice that we need only to considerαM2 ∈ [0, φ2], andαM1 ∈ [0,−φ1] for the
geometrical considerations above onC2(Q) (see remark 2).

Theorem 6. Given Q= (ρP,ψQ) ∈CS, and bothφ1 andφ2 belong to]0, π/2[, refer-
ring to figure 14,

• for 0< ψQ ≤ ψM , − sin(φ1+φ2)
cosφ1 cosφ2

ln
(

sinφ2 sin(φ1+φ2)
cosφ1+cosφ2

)

, the optimal path is of type

TL+
1 ∗TR−

2P ;



Figure 14: Frontal (0< Γ< δ
2 ): optimal path fromQ∈CSbetweenF andV. The locus

of switching points between extremalsS+ and TL+
1 is arcC2(G1) ≡ C2G1, whereas

between extremalsTL+
1 andTR−

2 is arcC2(m1)≡C2m1.

• for ψM < ψQ ≤ ψF , φ2−φ1+ψM − sin(φ1+φ2)
cosφ1 cosφ2

ln
(

sinφ1 sin(φ1+φ2)
cosφ1+cosφ2

)

, the optimal

path is of type TL+1 ∗TR−
2 S−;

• for ψF < ψQ < ψV , 2φ1+ψF , the optimal path is of type S+TL+
1 ∗TR−

2 S−;

• for ψV ≤ ψQ < π , the optimal path is of type S+ ∗S−

Previous results have been obtained computing first and second derivatives of length
L and by using nonlinear minimization techniques.

We are now interested in determining the locus of switching points between ex-
tremals in optimal paths fromCS. Based on a similar procedure followed in [Salaris
et al., 2010], the loci of switching points are (see figure 14):

• For Q ∈ C(P) with 0 ≤ ψQ ≤ ψM, i.e. betweenP and M, the switching lo-

cus is the arc ofTR
2P within the extreme pointsP andm1 =

(

ρP
sin(φ1+φ2)sinφ2

cosφ1+cosφ2
,

1
t2

ln
(

cosφ1+cosφ2
sin(φ1+φ2)sinφ2

))

(included).



• For Q∈C(P) with ψM < ψQ ≤ ψF , i.e. betweenM andF, the loci of switching
pointsM2, N are the arcsC2(P), C2(m1), respectively.

• For Q ∈ C(P) with ψF < ψQ < ψV , i.e. betweenF andV, the loci of switch-
ing pointsM1, N, andM2 are the arcsC2(G1), C2(m1), andC2(P) with G1 =

(ρP
sinφ2
sinφ1

, ψV −φ1−φ2) outsideCS, respectively.

• Finally, forQ∈C(P) with ψV ≤ψQ ≤ π the loci of switching points is pointOw.

Remark 9. Notice that, whenφ2 =−φ1 = φ , Γ = 0 and the synthesis proposed in [Sa-
laris et al., 2010] is obtained.

Remark 10. Points P, G1 and G2 = fG2(P) = (ρP
sinφ1
sinφ2

,−ψG1) belong to a circle
denoted by CM in figure 14, passing through Ps. This circle is centered in a point
whose cartesian coordinates are(0, α) where

α = ρP
sin2 φ1− sin2 φ2

2sinξ sinφ1sinφ2
,

and radius

R=
ρP

2sinξ

√

sin2 φ1

sin2 φ2
+

sin2 φ2

sin2 φ1
−2cos(2ξ ) ,

where

ξ =
t1+ t2
t1 t2

ln

(

cosφ1+ cosφ2

sin(|φ1|+φ2)

)

+
1
t1

ln(sin|φ1|)−
1
t2

ln(sinφ2) .

Moreover, ifφ2 =−φ1 = φ circle CM becomes circle C(P).

4.2.1 Borderline Frontal Case (see figure 15)

In this case,Γ = δ
2 and angleφ1 = 0. Hence, spiralTL

1 becomes a straight line through
Ow, denoted byH. The subdivision ofCScan be obtained replacingφ1 = 0 in the-

orem 6. Notice that,F ≡ V andψV = φ2 +ψM whereψM = − tanφ2 ln
(

sin2 φ2
1+cosφ2

)

.

Moreover,m1 =
(

ρP
sin2 φ2

1+cosφ2
,− tanφ2 ln

(

sin2φ2
1+cosφ2

))

, G1 → ∞, G2 ≡ m2 ≡ Ow. As a

consequence, for 0≤ψQ ≤ψM the optimal path isH+∗TR−
2P and the locus of switching

point is the arc of spiralTR
2P betweenP andm1 (included); forψM ≤ ψQ < ψV ≡ ψF ,

the optimal path isH+ ∗TR−
2 S− and the loci of switching points between extremals

H+ andTR−
2 and betweenTR−

2 andS− areC2(m1) andC2(P), respectively. Finally, for
ψV ≤ ψQ ≤ π the optimal path isS+ ∗S−, hence, the locus of switching points isOw.

Notice that, in this case, circleCM degenerates onXw, i.e. a circle with infinity
radius, as shown in figure 15.



Figure 15: Borderline Frontal (Γ = δ
2 ): optimal path fromQ∈C(P) betweenM andV

(M andV). OnCS, the optimal path isH+TR−
2 ∗S−, and the locus of switching points

between extremalsH+ andTR−
2 is arcC2(m1), whereas between extremalsTR−

2 and
S− is arcC2(P). On the lower-half plane, forQ∈C(P) betweenM andV, the optimal
path isS+TR+

2 ∗H− and the locus of switching points between extremalsS+ andTR+
2

is spiral arcH, whereas between extremalsTR+
2 andS− is the segmentPOw.

4.3 Side Case

Let us consider the length of extremal paths of typeTR+
1 ∗ TR−

2 S−TR−
1 from points

Q= (ρP, ψQ) on the semicircle ofC(P) in the upper-half plane, i.e.CS. Referring to
figure 16, let the switching points of the optimal path be denoted byN, M1 andM2 or N,
M1 andM2 ≡ P, respectively, depending on the angular valuesαM1 or αM1

. Moreover,
in order to do the analysis, it is useful to parameterize the family by the angular value
αM1

of the switching pointM1 along the arcC2(P) betweenP andPF or the angular
valueαM1 of the switching pointM1 along the extremalE1 betweenPF andOw.

Theorem 7. For any point Q∈CS, length L of a pathγ ∈ PQ (see figure 16) of type
TR+

1 ∗TR−
2 S−TR−

1 is:

• for 0≤αM1
≤ φ2−φ1, i.e. from P to PF (notice that the last arc has zero length):

L = ρP

{

cosαM1

cosφ2
+

1
cosφ1

+

− cosφ1+cosφ2

cosφ1 cosφ2
e

(

ψQ−αM1

)

t1t2
t2−t1





sin
(

φ2−αM1

)

sinφ2





− t1
t2−t1















,

(12)

• for αM1 ≥ φ2−φ1, i.e. from PF to Ow:



Figure 16: Path of typeE+
1 ∗E−

2 S−E−
1 or the degenerate case of typeE+

1 ∗E−
2 S− from

Q∈CS.

L = ρP

{

2
cosφ1

+e−αM1 t1

[

cos(φ2−φ1)

cosφ2
− 1

cosφ1
+

−cosφ1+cosφ2

cosφ1cosφ2
e[ψQ−(φ2−φ1)]

t1t2
t2−t1

(

sinφ1

sinφ2

)− t1
t2−t1

]}

,

(13)

with t1 = 1/ tanφ1 and t2 = 1/ tanφ2.

The proof of this theorem is reported in Appendix, section A.5. Having an analyti-
cal expression for lengthL of the path as a function of two parametersαM1 or αM1

and
ψQ, we are now in a position to minimize the length within the sufficient family.

Theorem 8. Given a point Q∈CS (see figure 17),

• for 0≤ ψQ ≤ ψR1 := sin(φ2−φ1)
cosφ1 cosφ2

ln
(

cosφ1+cosφ2
sinφ2 sin(φ2−φ1)

)

, i.e. between P and R1, opti-

mal path is of type TR+1 ∗TR−
2 ;

• for ψR1 ≤ψQ ≤ ψR2 with ψR2 := (φ2−φ1)+ψR1 + tanφ2 ln
(

sinφ1
sinφ2

)

, i.e. between

R1 and R2, optimal path is of type TR+1 ∗TR−
2 S−;

• for ψR2 ≤ ψQ ≤ π , the optimal path is TR+1 ∗TR−
1 through Ow.

Moreover, forψQ = ψR2, any optimal path of type TR+1 ∗ TR−
2 S−TR−

1 turns out to
have the same length of optimal path TR+

1 ∗TR−
1 . Hence, forψQ = ψR2 also TR+

1 ∗
TR−

2 S−TR−
1 is optimal.



Figure 17: Side case (δ
2 < Γ < π−δ

2 ): optimal synthesis onC(P) and withinD(P).
From pointsQ on spiral arcTR

1 betweenR2 andmF , paths of typeTR+
1 ∗TR−

2 S− and
TR+

1 ∗TR−
2 S−TR−

1P have the same length and hence both optimal paths.

Previous results have been obtained computing first and second derivatives ofL and
by using nonlinear minimization techniques.

We are now interested in determining the locus of switching points between ex-
tremals in optimal paths.

Proposition 10. For Q∈CS with0≤ ψQ ≤ ψR1, the switching locus is the arc of E2 ≡
TR−

2P between P and m=(ρP
sinφ2 sin(φ2−φ1)

cosφ1+cosφ2
, ψM) (included), whereψm= tanφ2 ln

(

ρP
ρm

)

.

Proof. From theorem 8, the optimal path fromQ∈CSto P is of typeTR+
1 ∗TR−

2 (see
figure 17), withTR−

2 ≡ TR−
2P , hence the switch occurs onTR−

2P . For ψQ = ψR1 the
intersection betweenTR+

1 andTR−
2 is m.

Proposition 11. For Q ∈ CS withψR1 < ψQ ≤ ψR2, the loci of switching pointsM1

andN are the∂SF2(P) and∂SF2(m).

Proof. ForQ∈CSwith ψR1 < ψQ < ψR2, from theorem 8 we haveM1 ∈ ∂SF2(P) (see
figure 17). Furthermore, substituting the optimal values ofαM1 , obtained computing
first and second derivatives ofL, coordinates in equations (20) and (21) of the inter-
section pointN betweenE1 ≡ TR+

1 throughQ andE2 ≡ TR−
2 throughM1 we obtain

N ∈ ∂SF2(m) (see section A.5 in the Appendix).

Finally, for Q ∈ CSwith ψR2 ≤ ψ < π , the switching locus reduces to the origin
Ow since two extremalEi intersect only in the origin fori = 1,2.

4.3.1 Borderline Side Case

In this caseΓ = π−δ
2 and angleφ2 =

π
2 . Hence, spiralTR

2 degenerates in a circle cen-
tered inOw, denoted byC. The subdivision ofCScan not be obtained directly from



the Side case replacingφ2 =
π
2 in all previous results although, as shown in figure 18,

the subdivision ofC(P) is quite similar. Indeed, let us consider the length of extremal
paths of typeTR+

1 ∗C−S−TR−
1 from pointQ∈CS. Moreover, in order to do the anal-

ysis, let the switching points of extremal path be denoted byN, M1 andM2 or N, M1

andM2 ≡ P, respectively, depending on the angular valuesαM1 or αM1
, similarly to

figure 16 withE2 =C.

Theorem 9. For any point Q∈CS, length L of a pathγ ∈ PQ of type TR+
1 ∗C−S−TR−

1
is:

• for 0≤ αM1
≤ π

2 −φ1, i.e. from P to PF (notice that the last arc has zero length):

L = ρP

{

sinαM1
+

1−cosαM1

cosφ1

+cosαM1

(

ψQ− tanφ2 ln(cosαM1
)−αM1

)

,

(14)

• for αM1 ≥ π
2 −φ1, i.e. from PF to Ow:

L = ρP

{

2
cosφ1

+sinφ1 e(αM1−
π
2+φ1)t1 1+sinφ1

cosφ1
+

+ψQ−φ1−
π
2
+ tanφ1 ln(sinφ1)

}

,

(15)

with t1 = 1/ tanφ1.

The lengthL can be computed using techniques similar to those used for theo-
rem 7. Having an analytical expression for the length of the path as a function of two
parametersαM1 or αM1

andψQ, we are now in a position to minimize the length.

Theorem 10. Given a point Q∈CS (see figure 18),

• for 0≤ ψQ ≤ ψR1 := 1+sinφ1
cosφ1

, i.e. between P and R1, optimal path is of type C−

until P;

• for ψR1 ≤ ψQ ≤ ψR2 with ψR2 := (π
2 −φ1)+ψR1 + tanφ1 ln(sinφ1), i.e. between

R1 and R2, optimal path is of type TR+1 ∗C−S−;

• for ψR2 ≤ ψQ ≤ π the optimal path is TR+1 ∗TR−
1 through Ow.

Moreover, forψQ = ψR2, any optimal path of type TR+1 ∗C−S−TR−
1 turns out to have

the same length of optimal path TR+
1 ∗TR−

1 . Hence, forψQ =ψR2 also TR+
1 ∗C−S−TR−

1
is optimal.



Figure 18: Borderline Side case (Γ = π−δ
2 ): optimal synthesis onC(P) and within

D(P). From pointsQ on spiral arcTR
1 betweenR2 andmR1F , paths of typeTR+

1 ∗C−S−

andTR+
1 ∗C−S−TR−

1P have the same length and hence both optimal paths.

Previous results have been obtained computing first and second derivatives ofL and
by using nonlinear minimization techniques.

We are now interested in determining the locus of switching points between ex-
tremals in optimal paths. By using a similar argumentation followed in propositions 10
and 11, we have

• for 0 ≤ ψQ ≤ ψR1, the locus of switching point is arc of circleCSbetweenR1

andP;

• for ψR1 < ψQ ≤ ψR2, the loci of switching points between extremalsTR+
1 and

C− is arc∂F2(R1), whereas between extremalsC− andS− is arc∂F2(P).

Finally, for ψR2 ≤ ψQ ≤ π , the locus of switching points isOw (see figure 18).

4.4 Lateral and Symmetric Lateral Cases

In this case,π−δ
2 < Γ ≤ π

2 . Spirals have characteristic anglesφ1 =
π−δ

2 andφ2 =
π+δ

2 ,
and equations are

ρ1 = ρ1oeψ t1

ρ2 = ρ2oeψ t2 ,

wheret1 = 1/ tan
(

π−δ
2

)

, whereast2 = 1/ tan
(

π+δ
2

)

= −t1, i.e. two logarithmic spi-

rals, right and left respectively, with the same characteristic angleφ = π−δ
2 . The sub-

division of the motion plane can be obtained following the same procedure of the Side
and Borderline Side cases. Nevertheless, unlike previous cases and as a consequence
of remark 3, forQ∈ CSwith 0≤ ψQ ≤ ψRo = 2φ2−π , the optimal path is a straight
line until P (i.e.S−).



5 Shortest paths from any point in the motion plane

The synthesis onC(P) induce a partition in regions ofD(P). Indeed, for anyQ∈D(P),
there exists a pointV ∈C(P) such that the optimal pathγ fromV to P goes throughQ.
The Bellmann’s optimality principle ensure the optimalityof the sub–path fromQ to
P. For points outsideC(P), functionFQ has been defined in (10) in order to transform

paths starting fromQ insideC(P) in paths starting fromfQ(P) =
(

ρ2
P

ρQ
,−ψQ

)

outside

C(P).
From other properties ofFQ, such as Proposition 1, we have also that an optimal

path is mapped into an optimal path. Hence, the optimal synthesis from points outside
C(P) can be easily obtained mapping through mapFQ all borders of regions inside
C(P).

Proposition 12. Given a borderB and Q∈ B map FQ transforms:

1. B =C(P) into itself;

2. B = ∂SF2(Q) in ∂SB1( fQ(P))

3. B = ∂SF1(Q) in ∂SB2( fQ(P))

4. B = Ei in arcs of the same type (i= 1,2)

The proof of this proposition is based on the properties of the mapFQ, which con-
sists of rotations and scalings, which transform spiral arcs in spiral arcs, and arcs of
circles through the origin in straight lines (and viceversa), cf. remark 1. A detailed
proof can be found in [Salaris et al., 2010].

Based on Proposition 12, the optimal synthesis of the entiremotion plane is re-
ported in figure 19 and figure 20 for the Frontal and BorderlineFrontal cases. In fig-
ure 21 and figure 22 are reported the optimal synthesis for theSide and the Borderline
Side cases. Finally, figure 23 and figure 24 shown the partition of the motion plane for
the Lateral and Symmetric Lateral cases.

The subdivision of the motion plane in case ofπ
2 < Γ ≤ π can be easily obtained

by using that for 0≤ Γ ≤ π
2 considering optimal path followed in reverse order, i.e. for-

ward arc in backward arc and vice versa. Finally, a symmetry w.r.t. Xw axis of each
subdivision of the motion plane for eachΓ ∈ [0, π ] allows to obtain the corresponding
subdivision forΓ ∈ [−π , 0].

Finally, it is useful to point out that borders of all regionsare arcs of circle, straight
lines or logarithmic spirals. Hence, conditions onρQ andψQ determining the inclusion
of a pointQ in each region can be obtained in terms of a finite number of elementary
inequalities. As a consequence, given any initial robot position Q, an algorithm that
returns the Region in which robot lays can be easily obtained.

6 Conclusions and future work

A complete characterization of shortest paths for moving bodies with a preferential
direction of motion equipped with a general, limited FOV sensor system has been



Figure 19: Partition of the motion plane for 0≤ Γ < δ
2 , i.e. Frontal case.

Figure 20: Partition of the motion plane forΓ = δ/2, i.e. Borderline Frontal (the right
border is aligned with the robot motion direction).

proposed. A finite sufficient family of optimal paths has beendetermined based on
geometrical properties of the considered problem. Finally, a complete shortest path
synthesis to reach a point keeping a given feature in sight has been provided. While
the problem of keeping in sight, during motion, at least one feature can be considered
solved by these results, to obtain the current robot position, at least three features are
needed. As a consequence, a generalization of the optimal synthesis would be nec-
essary, providing the shortest paths to a goal keeping in sight more (at least three)
features. This is an open problem for future works.

A possible extension of this work is to consider a more realistic sensor, as a camera,
with both horizontal and vertical FOV limits pointing to anydirection with respect to



Figure 21: Partition of the motion plane forδ
2 < Γ < π−δ

2 , i.e. Side case.

the direction of motion. Another possible extension would be considering a different
minimization problem such as minimum time.
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A Appendix

A.1 Proof of Theorem 1

Theorem 1. Given two points A= (ρA, ψA) and B= (ρB, ψB), with ψA > ψB and
ρ = ρA = ρB, and an extremal pathγ from A to B such that for each point G ofγ,
ρG > ρ , there exists an extremal path̃γ from A to B such that for each point̃G of γ̃,
ρG̃ < ρ andℓ(γ̃)< ℓ(γ).

Proof. Consider a pointZ = (ρZ, ψZ) such thatρZ = maxG∈γ ρG > ρ . Let γ1 andγ2

the sub–paths ofγ from Z to B and fromZ to A.
The sub–pathγ1, is rotated and scaled (contracted of factorρ

ρZ
< 1) such thatZ is

transformed inA obtaining a path̃γ1 from A to Z̃ = (ρ2

ρZ
, ψA+ψB−ψZ). Similarly,γ2,

can be rotated and scaled with the same scale factor but different rotation angle w.r.t.γ1

such thatZ is transformed inB, see figure 6. After geometrical considerations, it is
easy to notice that the obtained pathγ̃2 starts inB and ends iñZ.

The obtained paths are a contraction ofγ1 andγ2 respectively and hence shorter.
Moreover, any pointG of γ1 or γ2 hasρG > ρ hence is scaled iñG of γ̃1 or γ̃2 with
ρG̃ = ρρG

ρZ
< ρ .

Concluding, we have obtained a shorter path fromA to B that evolves completely
in the disk of radiusρ .

A.2 Proof of Theorem 2

Theorem 2. Any path consisting in a sequence of a backward extremal arc followed
by a forward extremal arc is not optimal.

Proof. Observe that the distance fromOw is strictly increasing along backward ex-
tremal arcs (i.e.S−, E−

1 , E−
2 with E2 6= C) and strictly decreasing along forward ex-

tremal arcs (i.e.S+, E+
1 , E+

2 with E2 6=C). For continuity of paths, for any sequence of
a backward extremal followed by a forward one, there exist pointsA andB that verify
hypothesis of Theorem 1, hence it is not optimal.

Any sequence consisting in an extremalS(orE1) of lengthℓ and an extremalE2 =C
(in any order and direction) is inscribed in two circumferences centered inOw. Hence,
the shortest sequence is the one withE2 =C along the circle of smaller radius neces-
sarily preceded by a forwardS(or E1) of same lengthℓ.

Concluding, in an optimal path a forward arc cannot follow a backward arc.

A.3 Proof of Theorem 3

Theorem 3. Any path consisting in a sequence of an extremal arcs Ei and Ej followed
in the same direction is not optimal for any i, j ∈ {1, 2} with i 6= j.

Proof. By proving the non–optimality ofE+
i ∗E+

j the non–optimality ofE−
j ∗E−

i fol-
lows straightforwardly. Without loss of generality, we supposei = 1 and j = 2. LetA
andB be the initial and final points of the pathγ of typeE+

1 ∗E+
2 andN the intersection



Figure 25: Construction of a path shorter thanE+
1 ∗E+

2 for 0≤ Γ ≤ δ
2 .

Figure 26: Construction of a path shorter thanE+
1 ∗E+

2 for δ
2 < Γ ≤ π−δ

2 .

points betweenE+
1 andE+

2 . We now show for any value ofΓ andδ there exists a
sub–path ofγ that can be shortened with a straight arc.

For 0≤ Γ ≤ δ
2 , referring to figure 25,SF(A) intersects the extremalE2 in two

pointsV1 ∈ ∂SF1(A) andV2 ∈ ∂SF2(A) and three cases occur: ifB∈ SF(A), i.e.B=B1

betweenV1 andV2 alongE2, γ is obviously longer thanAB; if B = B2 is betweenV2

andOw, γ can be shortened byAV2; finally, if B = B3 is betweenV1 andN, consid-
eringSB(B) and the intersection pointV3 between∂SB1(B) = r1(B) andE1, γ can be
shortened byV3B.

For the Side case (δ
2 < Γ < π−δ

2 ), there always exists a pointG alongE1 between
A andN such thatSF(G) intersectsE2 betweenN andB. Hence,γ can be shortened by
GGF (see figure 26).

A.4 Proofs of Propositions 5, 6, 7, 8, and 9

To prove proposition 5, 6 and 7 and 9 the following technical result is needed.

Proposition 13. Consider any two points G and H on a spiral arc Ei (i = 1,2). Let Ẽ
be the set of points between Ei and its symmetric w.r.t.GH. A shortest path between G
and H that evolves completely outside regionẼ is the arc of Ei between G and H.

The proof of this proposition follows straightforwardly from the convexity property
of Ẽ.



Figure 27: Construction used in the proof of Proposition 5 toshort pathS+ ∗E−
1 .

Proposition 5. From any starting point A, any pathγ of type S+ ∗E+
2 (S− ∗E−

1 ) and
S+ ∗E−

1 to B can be shortened by a path of type S+E+
2 (S−E−

1 ), S+ (S−) or E+
2 ∗E−

1 .

Proof. To be optimal, a path of typeS+ ∗E+
2 (S− ∗E−

1 ) can be shortened by a path of
typeS+E+

2 (S−E−
1 ) or S+ (S−). Indeed, ifB ∈ SF(A) (B∈ SB(A)), γ is shortened by

S+ = AB (S− = AB). However, letN be the intersection point between extremal arcs
S+ andE+

2 , from proposition 4 necessarilyN ∈ ∂SF1(A)∪ ∂SF2(A). In this case, for
geometrical properties,S+ andE+

2 are tangent inN. Hence, pathS+ ∗E+
2 is shortened

by S+ or S+E+
2 . Equivalently,S− ∗E−

1 is shortened byS− or S−E−
1 .

Let now consider the path of typeS+ ∗E−
1 and the non trivial case ofB /∈ SF(A).

From proposition 4, the intersection pointN betweenS+ andE−
1 must lay on∂SF2(A).

Considering now an arcE2(B) passing throughB, two cases occur (see figure 27):

• if arc E2 intersects∂SF2(A) in V1 andS+ in V2, by using Proposition 13, arcE2

shortens pathS+ ∗E−
1 betweenV2 andB. A path fromA to B of typeS+ ∗E+

2 has
been obtained, that in turn can be shortened byS+E+

2 throughV1 ∈ ∂SF2(A);

• otherwise, let us consider the arcE2 throughA. It intersectsE1 betweenB andOw

in V3. By Proposition 13, the sub–path ofγ betweenA andV3 can be shortened
by E2. Hence, a shorter path of typeE+

2 ∗E−
1 is has been obtained.

Proposition 6. For δ
2 ≤ Γ ≤ π

2 (Side and Lateral cases), from any starting point A,
any pathγ of type S+ ∗E+

1 (S− ∗E−
2 ) or S+ ∗E−

2 can be shortened by a path of type S+

(S−), E+
1 S+ (E−

2 S−) or E+
1 ∗E−

2 .

Proof. If B∈ SF(A), γ is shortened byS+ = AB (S− = AB). However, let us consider
first a pathγ of typeS+ ∗E+

1 whose switching pointN ∈ ∂SF1(A) for proposition 4.
There always exists a straight line fromB tangent to the extremal arcE1 from A in
V1 betweenA andOw. Let V2 be the intersection point of this straight line and border



Figure 28: Construction used in the proof of Proposition 6 toshort pathS+ ∗E+
1 .

∂SF1(A) (∂SB1(A)). The unfeasible piecewise straight path fromA to B throughV2

shortens pathγ (see figure 28). In turn, the unfeasible polygonal path is longer than
pathE+

1 S+ throughV1. EquivalentlyS− ∗E−
2 can be shortened byE−

2 S−.
For a pathγ of typeS+ ∗E−

2 whose switching pointN ∈ ∂SF1(A) for proposition 4.
Let us consider an extremal arcE1 throughB. Two cases can occur (see figure 29):

• if E1 for A intersects arcE−
2 in V but B lays onE−

2 betweenV andOw, by using
the same construction of the unfeasible polygonal path above,γ can be shortened
by E+

1 S+;

• otherwise the extremalV lays betweenB andOw and for proposition 13, path of
typeE+

1 ∗E−
2 throughV is shorter thanS+ ∗E−

2 .

Notice that, as an extension of proposition 4 for the Side andLateral cases only, if
an optimal path fromQ to P includes a segment of typeS+ (or S−) from G, then it ends
on ∂SF2(G).

Proposition 7. For 0 ≤ Γ < δ
2 (Frontal case), from any starting point A, any pathγ

of type S+ ∗E+
1 or S+ ∗E−

2 can be shortened by a path of type S+, S+E+
1 or E+

1 ∗E−
2 .

Furthermore, for any pathγ of type S− ∗E−
2 or S− ∗E−

1 can be shortened by a path of
type S−, E−

2 S− or E+
1 ∗E−

2 .

Proof. Any pathγ of typeS+ ∗E+
1 can be shortened by a path of typeS+ or S+E+

1 for
proposition 4. For pathsS+ ∗E−

2 a similar procedure used for the path of typeS+ ∗E−
1

in the second part of proof of proposition 5, can be followed.Proofs for pathsS− ∗E−
2

or S− ∗E−
1 are equivalent to proof of proposition 6.

Proposition 8. For any starting point A, any pathγ of type S+ ∗S− can be shortened
if the angle between arc S+ and arc S− is less than

ψV , φ1+φ2+
sin(φ1+φ2)

cosφ1 cosφ2

[

2ln

(

sin(φ1+φ2)

cosφ1+ cosφ2

)

+ lnsinφ1+ lnsinφ2

]

.



Figure 29: Construction used in the proof of Proposition 6 toshort pathS+ ∗E−
2 .

Proof. The proof of this proposition follows straightforward fromtheorems 7 and 6;
indeed they show that pathS+ ∗S− is optimal when the starting pointQ lays onCS
betweenV andPS (see figure 13).

Proposition 9. For δ
2 ≤ Γ ≤ π

2 (Side and Lateral cases), S+∗S− path can be shortened
by paths of type E+2 ∗S−, S+ ∗E+

2 , E+
1 ∗S+ and E+1 S+.

Proof. The procedure used to prove this proposition is similar to that used in the proof
of Proposition 5, 6 to short pathS+ ∗E−

1 andS+ ∗E+
1 (S+ ∗E+

2 ), respectively. Con-
structions are similar to that shown in figure 27 replacing arc E−

1 with arcS−, and in
figure 28 (29) replacing arcE+

1 (E+
2 ) with arcS+.

A.5 Proof of Theorem 7

Theorem 7. For any point Q∈CS, length L of a pathγ ∈ PQ (see figure 16) of type
TR+

1 ∗TR−
2 S−TR−

1 is:

• for 0≤αM1
≤ φ2−φ1, i.e. from P to PF (notice that the last arc has zero length):

L = ρP

{

cosαM1

cosφ2
+

1
cosφ1

+

− cosφ1+cosφ2

cosφ1 cosφ2
e

(

ψQ−αM1

)

t1t2
t2−t1





sin
(

φ2−αM1

)

sinφ2





− t1
t2−t1















,

(16)

• for αM1 ≥ φ2−φ1, i.e. from PF to Ow:



L = ρP

{

2
cosφ1

+e−αM1 t1

[

cos(φ2−φ1)

cosφ2
− 1

cosφ1
+

−cosφ1+cosφ2

cosφ1cosφ2
e[ψQ−(φ2−φ1)]

t1t2
t2−t1

(

sinφ1

sinφ2

)− t1
t2−t1

]}

,

(17)

with t1 = 1/ tanφ1 and t2 = 1/ tanφ2.

Proof. Recalling thatP = (ρP,0), Q = (ρP,ψQ), when 0≤ αM1
≤ φ2 − φ1, M1 ∈

∂SF2(P) (see proposition 4), by the law of sines we have

ρM1
= ρP

sin(φ2−αM1
)

sinφ2
, (18)

and the length of segmentsS− is

PM1 = ρP
sinαM1

sinφ2
, (19)

(cf. figure 16).
From (7), settingt2 =

cosφ2
sinφ2

, the right logarithmic spiral passing throughM1 (de-

noted withTR
2M1

) is given by

TR
2M1

:
(

ρM1
e
(αM1

−ψ)t2,ψ
)

.

Similarly, settingt1 =
cosφ1
sinφ1

the right spiral throughQ (denoted asTR
1Q) is given by

TR
1Q :

(

ρQe(ψQ−ψ)t1,ψ
)

.

The intersection point between the spiralsTR
2M1

andTR
1Q is N = (ρN,ψN), where

ρN = ρP e

(

ψQ−αM1

)

t1t2
t2−t1





sin
(

φ2−αM1

)

sinφ2





− t1
t2−t1

(20)

ψN = ψQ
t1

t2− t1
−αM1

t2
t2− t1

− 1
t2− t1

ln





sin
(

φ2−αM1

)

sinφ2



 . (21)

The length of the spiral arcsTR
2M1

andTR
1Q from M1 andQ to N, respectively, are:

LM1N =
ρM1

−ρN

cosφ2
,



LQN =
ρP−ρN

cosφ1
.

Adding up, after some simplifications, the total lengthL is therefore as reported in (16).

When αM1 ≥ φ2 − φ1, the optimal path is of typeTR+
1 ∗ TR−

2 S−TR−
1 , where the

last arc is a spiral arc passing throughP, i.e. TR−
1P . As a consequence, the switching

pointM2 belongs toTR−
1P (cf. figure 16). Moreover, from results of theorem 3 (see also

figure 26),M1 ≡ M2F and for simple geometrical considerations,M1 ∈ TR
1PF

. For this
reasons, coordinates of pointM2 = (ρM2,ψM2) are

M2 :
(

ρPe(φ2−φ1−αM1
)t1, αM1 − (φ2−φ1)

)

, (22)

and coordinates of pointM1 = (ρM1,ψM1) are

M1 :

(

ρP
sinφ1

sinφ2
e(φ2−φ1−αM1)t1, αM1

)

. (23)

The right logarithmic spiralTR
2M1

passing throughM1 is given by

TR
2M1

:
(

ρM1 e(αM1−ψ)t2,ψ
)

.

Similarly, the right logarithmic spiral throughQ, denoted asTR
1Q is given by

TR
1Q :

(

ρP e(ψQ−ψ)t1,ψ
)

.

The intersection point between spiralsTR
1Q andTR

2M1
is pointN = (ρN,ψN), where

ρN = ρP e
ψQ

t1t2
t2−t1 e−αM1

t1 e
−(φ2−φ1)

t21
t2−t1

(

sinφ1

sinφ2

)− t1
t2−t1

, (24)

ψN = αM1 +(φ2−φ1)
t1

t2− t1
−ψQ

t1
t2− t1

+
1

t2− t1
ln

(

sinφ1

sinφ2

)

. (25)

The length of the arc of spiralTR−
1P betweenP andM2 is

LPM2 =
ρP−ρM2

cosφ1
=

ρP

cosφ1

(

1−e(φ2−φ1−αM1
)t1
)

,

the length of arcS− from M1 to M2 is

M1M2 = ρP
sin(φ2−φ1)

sinφ2
e(φ2−φ1−αM1)t1

and the length of the spiral arcsTR
1Q andTR

2M1
from M1 andQ to N, respectively, are

LM1N =
ρP−ρN

cosφ1
,

LQN =
ρM1 −ρN

cosφ2
.

Adding up, after some simplifications, the total lengthL is obtained, as reported in (17).


