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Abstract— This paper investigates the optimal design of low-
cost gloves for hand pose sensing. This problem becomes par-
ticularly relevant when limits on the production costs of sensing
gloves are taken into account. These cost constraints may limit
both the number and the quality of sensors used as well as the
technology adopted. For this reason, an optimal distribution of
sensors on the glove during the design phase is mandatory in
order to obtain good hand pose reconstruction. In this paper,
by exploiting the knowledge on how humans most frequently
use their hands in grasping tasks, we study the problem of
how and where to place sensors on the glove in order to get
the maximum information about the actual hand posture, and
hence minimize in average the reconstruction error. Simulations
and experiments of reconstruction performance are reported to
validate the proposed optimal design of sensing devices.

I. INTRODUCTION

In recent years numerous studies have underlined the
complex role of human hand in motor organization, with
particular attention to grasping tasks. It was shown that indi-
viduated finger motions were phylogenetically superimposed
on basic grasping movements [1]. Moreover, it is possible
to individuate a reduced number of coordination patterns
(synergies) which constrain both joint motions and force
exertions of multiple fingers [2]. Coordination patterns were
analyzed by means of multivariate statistical methods over
a grasping dataset, revealing that a limited amount of so-
called eigenpostures or principal components (PCs) [3], [4],
or otherwise statistically identified kinematic coordination
patterns [2], are sufficient to explain a great part of hand
pose variability.

In [5] we have exploited the knowledge on how humans
most frequently use their hands (a priori information) for
hand pose reconstructions from measures provided by given
low–cost sensing “gloves”, i.e. devices for hand pose recon-
struction based on measurements of few geometric features
of the hand. In this manner final results are improved in
spite of insufficient and inaccurate sensing data. Glove–based
systems represent the most popular devices for gesture mea-
surement, providing useful interfaces for human–machine
and haptic interaction in many fields like, for example, virtual
reality, musical performance, video games, teleoperation and
robotics [6]. In this paper, we extend the analysis in [5]
including the optimal design of these devices. The aim is
to find, for a given a priori information, the optimal sensor
distribution that minimizes the reconstruction error in a
minimum variance sense. This problem becomes particularly
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relevant when limits on the production costs of sensing
gloves are taken into account. These cost constraints may
limit both the number and the quality of sensors used, and
hence an optimal distribution of sensors during the design
phase is mandatory in order to achieve good performance.
Notice that this optimization procedure is strictly related to
the reconstruction algorithm described in [5]. Indeed, the
pose reconstruction obtained using optimal sensor design is
actually optimal only if reconstruction approaches described
in [5] are used.

The problem of optimal design of pose sensing gloves
has already been investigated, e.g. in [7], [8], [9], [10]. For
instance, in [10] authors explore how to methodically select
a minimal set of hand pose features from optical marker data
for grasp recognition. The objective is to determine marker
locations on the hand surface that is appropriate for grasp
classification of hand poses. However, all the aforementioned
approaches rely on experimental observations: from actual
sensor data, locations that provide the largest and most useful
information on the system are chosen.

In this paper we investigate a similar problem, obtaining
the optimal distribution of sensors able to minimize in
average the reconstruction error of hand poses, and hence
maximizing the information on the real hand posture avail-
able by the glove in a minimum variance sense. Moreover,
by optimizing the number and location of sensors the cost of
production and the calibration time can be further reduced
without loss of performance, thus enabling for device diffu-
sion. We first consider the continuous sensing case, where
individual sensing elements in the glove can be designed
so as to measure a linear combination of joint angles. An
example of this type of device is the sensorized glove
developed in [11] or the 5DT Data Glove (5DT Inc., Irvine,
CA, USA). However, depending on the sensing technology
adopted for the glove design, the implementation of the
continuous sensing can be difficult and/or costly. For this
reason, we then consider the discrete sensing case, where
each measure provided by the glove corresponds to a single
joint angle. An example of this type of glove is the Hu-
manglove (Humanware s.r.l., Pisa, Italy) or the Cyberglove
(CyberGlove Systems LLC, San Jose, CA, USA). Finally, in
order to take advantage from both continuous and discrete
sensing — the amount of information achievable vs low-cost
implementation and feasibility — we also provide an optimal
design of hybrid sensing devices characterized by both types
of sensors.

Experiments and statistical analyses demonstrate the im-
provement of the estimation techniques proposed in [5] by
using the optimal design described in this paper.

The here discussed results can be used to enable for a
more effective development of both sensorization systems



for robotic hands and active touch sensing systems, for a
wide class of applications, ranging from virtual reality to
tele-robotics and rehabilitation.

II. PROBLEM DEFINITION

Let us consider a set of measures y ∈ IRm given by a
sensing glove. By using a n Degrees of Freedom (DoFs)
kinematic hand model, we assume a linear relationship
between joint variables x ∈ IRn and measurements y given
by

y = Hx+ν , (1)

where H ∈ IRm×n (m< n) is a full row rank matrix which rep-
resents the relationship between measures and joint angles,
and v ∈ IRm is a vector of measurement noise. Equation (1)
represents a system where there are fewer equations than
unknowns and hence it is compatible with an infinite number
of solutions. Among these possible solutions, the least-
squared solution resulting from the pseudoinverse of matrix
H for system (1) is a vector of minimum Euclidean norm
given by

x̂ = H†y . (2)

However, the hand pose reconstruction obtained by (2)
can be very far from the real one. In [5], among the
possible solutions to (1), the most likely hand pose has
been chosen to improve the reconstruction accuracy. The
basic idea is to exploit the fact that human hands, although
very complex and possibly different in size and shape, share
many commonalities in how they are shaped and used in
frequent everyday tasks. Indeed, studies on the human hand
in grasping tasks have shown that multi–digit motions are
strongly correlated according to some coordination patterns
referred to as postural synergies in [4].

In [5], we have used postural synergy information embed-
ded in the a priori grasp set obtained by collecting a large
number N of grasp postures xi, consisting of n DoFs, into a
matrix X ∈ IRn×N . This information can be summarized with
a covariance matrix Po ∈ IRn×n, which is a symmetric matrix
computed as Po = (X−x̄)(X−x̄)T

N−1 , where x̄ is a matrix n×N
whose columns contain the mean values for each joint angle
arranged in vector µo ∈ IRn.

Based on Minimum Variance Estimation (MVE) tech-
niques, in [5] we have obtained the hand pose reconstruction
as

x̂ = (P−1
o +HT R−1H)−1(HT R−1y+P−1

o µo) , (3)

where matrix Pp = (P−1
o +HT R−1H)−1 is the a posteriori

covariance matrix and R is the covariance matrix of noise,
which is assumed to be zero–mean random Gaussian. When
R tends to assume very small values, the solution described
in (3) might encounter numerical problems. However, by
using the Sherman-Morrison-Woodbury formulae, (3) can be
rewritten as

x̂ = µo−PoHT (HPoHT +R)−1(Hµo− y) , (4)

and the a posteriori covariance matrix becomes Pp = Po−
PoHT (HPoHT +R)−1HPo.

The a posteriori covariance matrix, which depends on
measurement matrix H, represents a measure of the amount

of information that an observable variable carries about
unknown parameters. In this paper we investigate the role of
the measurement matrix H on the estimation procedure (4),
providing the optimal design of a sensing device able to
obtain the maximum amount of the information on the actual
hand posture.

III. OPTIMAL SENSING DESIGN

Let us consider the following problem to solve:
Problem 1: Let H be an m× n full row rank matrix

with m < n and V1(Po,H,R) : IRm×n → IR be defined as
V1(Po,H,R) = ‖Po−PoHT (HPoHT +R)−1HPo‖2

F , find

H∗ = argmin
H

V1(Po,H,R)

where ‖ ·‖F denotes the Frobenius norm defined as ‖A‖F =√
tr(AAT ), for A ∈ IRn×n.

To solve problem 1 means to minimize the entries of the a
posteriori covariance matrix: the smaller the values of the
elements in Pp, the greater is the predictive efficiency.

To simplify the following analysis, we have separately an-
alyzed the design of continuous, discrete and hybrid sensing
devices, respectively.

A. Continuous Sensing Design

This section is dedicated to describe the closed–form
solution to problem 1 for the optimal continuous sensing
design, in case of both noise–free and noisy measures. In this
type of glove, individual sensing elements can be designed so
as to measure a linear combination of joint angles. Hereafter,
we will refer to the measurement matrix related to continuous
sensing devices as Hc.

Noise–Free Measures: Let A be a non-negative matrix
of order n. It is well known (cf. [12]) that, for any given
matrix B of rank m with m≤ n,

min
B
‖A−B‖2

F = α
2
m+1 + · · ·+α

2
n , (5)

where αi are the eigenvalues of A, and the minimum is
attained when

B = α1w1w1
T + · · ·+αmwmwm

T , (6)

where wi are the eigenvector of A associated with αi. In other
words, the choice of B as in (6) is the best fitting matrix of
given rank m to A.

By using (5) and (6), the minimum of V1(Po,H,0) is
obtained when (cf. [12])

ΣoHT (HΣoHT )−1HΣo = σ1(Po)u1(Po)uT
1 (Po)+ · · ·+

+σm(Po)um(Po)uT
m(Po) ,

(7)

where ui(Po) is the ith principal components of Po and σi(Po)
its corresponding singular value. As a consequence, row
vectors (hi)c of Hc are the first m principal components of
Po, i.e. (hi)c = ui(Po)

T , for i = 1, . . . ,m.
From these results, a principal component, here refer to

as synergy ([13]), can be defined as a linear combination
of optimally–weighted observed variables meaning that the
corresponding measures can account for a maximal amount
of variance in the data set. As reported in [12], every set of



m optimal measures can be considered as a representation of
points in the best fitting lower dimensional subspace. Thus
the first measure gives the best one dimensional represen-
tation of data set, the first two measures give the best two
dimensional representation, and so on.

Noisy Measures: Equation (6) can not be verified with
noisy measures since it represents a limit case that can be
achieved when H becomes very large and hence increasing
the signal-to-noise ratio. To avoid this, we will present an
optimal solution for problem 1 in the set A = {H : HHT =
Im}. This problem has been discussed and solved in [14],
providing that, for arbitrarily noise covariance matrix R,

min
H∈A

V1(H) =
m

∑
i=1

σi(Po)

1+σi(Po)/σm−i+1(R)
+

n

∑
i=m+1

σi(Po) , (8)

and it is attained for

H =
m

∑
i=1

um−i+1(R)uT
i (Po) . (9)

Hence, if A consists of all matrices with mutually perpen-
dicular, unit length rows, the first m principal components
of Po are always the optimal choice for H rows, even if
linearly combined by the principal components of the noise
covariance matrix R.

B. Discrete Sensing Design
Let us consider now the case that each measure y j,

j = 1, . . . ,m provided by the glove corresponds to a single
joint angle xi, i = 1, . . . ,n. In this case, measurement matrix
becomes a full row rank matrix where each row is a vector
of the canonical basis, i.e. matrices which have exactly one
nonzero entry in each row. Let Hd be a such type of matrix.
The problem here is to find the optimal choice of m joints
to be measured.

Let Om×n denotes the set of matrices with orthonormal
rows, i.e. m× n matrices, with m < n, whose rows satisfy
condition HHT = Im, and let Nm×n denotes the set of m×n
element-wise non-negative matrices; then Pm×n = Om×n ∩
Nm×n, where Pm×n is the set of m× n matrices which
have exactly one nonzero entry in each row (see [15]). In
other words, if we restrict H to be orthonormal and element-
wise non-negative, we obtain a matrix which has exactly
one nonzero entry in each row. Hence, the problem to solve
becomes:

Problem 2: Let H be a m× n matrix with m < n, and
V1(Po,H,R) : IRm×n→ IR be defined as V1(Po,H,R) = ‖Po−
PoHT (HPoHT +R)−1HPo‖2

F , find the optimal measurement
matrix

H∗ = argmin
H

V1(Po,H,R)

s.t. H ∈Pm×n .

where ‖·‖F denotes the Frobenius norm defined as, ‖X‖F =√
tr(X XT ), for X ∈ IRn×n.
The optimal measurement matrix can be computed by

substituting all the possible sub–sets of m vectors of the
canonical basis in IRn in the cost function V1(Po,H,R),
looking for the sub–set that minimizes this function, in case
of both noise–free and noisy measures, respectively. More

details about the optimization procedure will be included in
future works.

C. Hybrid Sensing Design
According to the sensing technology of the glove, the

implementation of the continuous sensing design can be
difficult and/or costly, especially for a large number of
measures m. For this reason, in previous section we have
provided a procedure to determine which joints have to
be individually measured, characterizing optimal discrete
sensing devices. However, for the same number of measures
m, a continuous sensing device is able to get much more
information about the hand posture than a discrete one.

Therefore, in this section, for the sake of generality and
in order to take advantage from both continuous and discrete
sensing (the amount of information achievable vs low–cost
implementation and feasibility) we consider a hybrid sensing
device which combines both continuous and discrete sensors.
Let us therefore define measurement matrix Hc,d ∈ IRm×n as

Hc,d =

[
Hc
Hd

]
,

where Hc ∈ IRmc×n represents the continuous sensing part and
Hd ∈ IRmd×n the discrete one, with mc +md = m.

For the hybrid sensing design, there is neither a closed–
form solution nor an easy procedure to follow. Hence, taking
inspiration by [15], we derive a matrix differential equation
Ḣc,d(t) = f (Po,R,Hc,d). This equation converges to a matrix
Hc,d , such that cost function V1(Po,R,Hc,d) is minimized,
while the discrete part of the matrix also converges to the
set Pm×n. We construct this matrix differential equation
by combining, for appropriate cost functions, two gradient
flows. The first one minimizes the cost function V1(Po,H,R)
for H ∈ IRm×n as described in the following proposition.

Proposition 1: The gradient flow for the function
V1(Po,H,R) : IRm×n→ IR is given by,

Ḣ =−∇‖Pp‖2
F =−4

[
P2

p PoHT
Σ(H)

]T
, (10)

where Σ(H) = (HPoHT +R)−1.
For sake of space we have omitted the calculation developed
to obtain (10), which are based on classical matrix differen-
tiation.

Notice that, in case of noisy measures, the minimum
of V1(Po,H,R) can not be obtained since it represents a
limit case (i.e. an infimum) that can be achieved only when
H becomes very large and hence increasing the signal-to-
noise ratio. It is reasonable to find the optimal solution
among all full row rank matrices, whose rows are unit
vectors. A solution for the constrained problem can be
provided by using the Rosen’s gradient projection method
for linear constraints [16], which is based on projecting the
search direction onto the subspace tangent to the constraint
itself. Furthermore, given the steepest descent direction for
the unconstrained problem, this method finds the direction
with the most negative directional derivative, satisfying the
constraint about the structure of the H matrix. For this case,
a solution can be obtained by using the projecting matrix
W = In−HT (HHT )−1H, and then projecting unconstrained



gradient flow (10) onto the subspace tangent to the constraint,
obtaining the search direction

s = ∇‖Pp‖2
FW . (11)

Having the search direction for the constrained problem,
the gradient flow is given by

Ḣ =−4
[
P2

p PoHT
Σ(H)

]T
W (12)

where Σ(H) = (HPoHT +R)−1. The gradient flow (10) guar-
antees that the optimal solution H∗ has unit vectors as rows,
if H(0) satisfies the latter condition.

In [15] authors define a function V2(P) with P ∈ IRn×n

that forces the entries of P to be as “positive” as possible.
In this section, for the second gradient, we extend this
function to measurement matrices H ∈ IRm×n with m < n,
thus considering function V2 : Om×n→ IR, given by

V2(H) =
2
3

tr
[
HT (H− (H ◦H))

]
, (13)

where A◦B denotes the Hadamard or elementwise product
of the matrices A = (ai j) and B = (bi j), i.e. A◦B = (ai jbi j).
The gradient flow of V2(H) is

Ḣ =−H
[
(H ◦H)T H−HT (H ◦H)

]
, (14)

which minimizes V2(H) converging to a matrix in Pm×n if
H(0) ∈ Om×n (H(0) is the starting point at t = 0 for (14)).

By combining (12) and (14), we can build the following
gradient flow

Ḣc,d = 4(1− k)
[
P2

p PoHT
c,dΣ(Hc,d)

]T
W+

+ k H̄d
[
(H̄d ◦ H̄d)

T H̄d− H̄T
d (H̄d ◦ H̄d)

]
, (15)

where k ∈ [0, 1] is a positive constant, Σ(Hc,d) =
(Hc,dPoHT

c,d + R)−1, W = In − HT
c,d(Hc,dHT

c,d)
−1Hc,d is the

projecting matrix onto the set of all matrices whose rows are
unit vectors, and, finally, H̄d assumed the following form:

H̄d =

[
0mc×n

Hd

]
.

The gradient flow defined in (15) converges towards a
hybrid sensing device, i.e. with both continuous and dis-
crete sensors, if Hc,d(0) ∈ Om×n, minimizing the squared
Frobenius norm of the a posteriori covariance matrix. Notice
that, since this problem is not convex, we can only assure
that the proposed algorithm converges to a local minimum.
To overcome this common problem in gradient methods a
classic solution can be provided by performing a multi–start
search.

IV. RESULTS

Figure 1 shows the values of the squared norm of the
a posteriori covariance matrix for increasing number m of
measures. In particular, values of V1 for matrices H∗c and H∗d
are reported, for both noise–free and noisy measures. Notice
that, in case of noise–free measures, V1 values decrease
with the number of measures, tending to assume nearly
zero values in case of both continuous and discrete sensing.
This fact is trivial because increasing the measurements we
reduce the uncertainty of the measured variables. When all
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Fig. 1: Squared Frobenius norm of the a posteriori matrix
with noise–free and noisy measures (with noise covariance
matrix R = diag(12) [◦]) for both H∗c and H∗d .

the measured information is available V1 assumes zero value
with perfectly accurate measures. In case of noisy measures,
V1 values decrease with the number of measures but, in this
case, it tends to a value which is larger, depending on the
level of noise.

In case of free-noise measures, if we analyze how much
V1 reduces with the number of measurements w.r.t. the value
it assumes for only one measure, reduction percentage with
three measures is greater than 80% for both H∗c and H∗d .
This result suggests that with only three measurements the
optimal matrix can furnish more than 80% of uncertainty
reduction. This is equivalent to say that a reduced number of
measurements is sufficient to guarantee a good hand posture
estimation. In [4], [13], under the controllability point of
view, authors state that three postural synergies are crucial in
grasp pre–shaping as well as in grasping force optimization
since they take into account for more than 80% of variance in
grasp poses. Here, the same result can be obtained in terms
of the measurement process, i.e. from the observability point
of view: a reduced number of measures coinciding with the
first three principal components enables for more than 80%
reduction of the squared Frobenius norm of the a posteriori
covariance matrix.

V. EXPERIMENTS

In this work, we deal with the problem of hand pose
reconstructions considering noisy measures in the discrete
sensing case. We consider an additional zero–mean random
Gaussian noise with standard deviation of 7◦ on each mea-
sure and hence a noise covariance matrix R = diag(7) [◦].
This value is chosen in a cautionary manner, based on data
about common technologies and tools used to measure hand
joint positions [17]. Without loss of generality we have
adopted the 15 DoF model also in used [4], [13], [5] and
reported in figure 3. As described in [5], an optical motion
capture system (Phase Space, San Leandro, CA - USA)
with 19 active markers is used to collect a large number of
static grasp positions, see figure 4. Subject AT (M,26) has
performed all the grasps of the 57 imagined objects described
in [4]; these data have been acquired twice to define a set of
114 a priori data.
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Fig. 2: Measured DoFs for matrix Hs, on the left, and H∗d , on the right, (cf. figure 3). The measured joints are highlighted
in color.

DoFs Description
TA Thumb Abduction
TR Thumb Rotation
TM Thumb Metacarpal
TI Thumb Interphalangeal
IA Index Abduction
IM Index Metacarpal
IP Index Proximal

MM Middle Metacarpal
MP Middle Proximal
RA Ring Abduction
RM Ring Metacarpal
RP Ring Proximal
LA Little abduction
LM Little Metacarpal
LP Little Proximal

Fig. 3: Kinematic model of the hand with 15 DoFs. Markers
are reported as red spheres.

Fig. 4: Experimental setup for hand pose acquisition with
Phase Space system.

The disposition of the markers on the hand refers to [18]
and it is reported in figure 3. We have used four markers
for the thumb and three markers for each of the rest of the
fingers. Three markers have been also placed on the dorsal
surface of the palm to define a local reference system SH .
The positions of the markers, which have been sampled at
480 Hz, are given referring to the global reference system

SMC (which is directly defined during the calibration of the
acquisition system).

An additional set of Np = 54 grasp poses has been
performed by subject LC (26,M). Subject has been asked to
perform some imagined grasped object poses contained in the
a priori dataset and also some new postures which identify
basic grasping configurations of the hand (e.g. precision and
power grasp). None of the subjects had physical limitations
that would affect the experimental outcomes. Data collection
from subjects in this study was approved by the University of
Pisa Institutional Review Board. The set of the latter poses
will be referred hereinafter as validation set, since these
poses can be assumed to represent accurate reference angular
values for hand pose configurations, given the high accuracy
provided by the optical system to detect markers (the amount
of static marker jitter is inferior than 0.5 mm, usually 0.1
mm) and assuming a linear correlation (due to skin stretch)
between marker motion around the axes of rotation of the
joint and the movement of the joint itself [19]. Validation
set has been then used to simulate discrete optimal gloves.
According to the number of measures, we have considered
from the postures in this set only the joints resulting from the
optimization procedure, assuming to select them individually
based on the non–zero elements in matrix Hd . Since all
the DoFs of the postures in the validation set are known,
we have compared the reconstructed hand configurations
obtained from simulated optimal glove measures with the
reference ones. Same thing has been done with hand pose
reconstructions achieved starting from non optimal measures.

A. Reconstruction of Hand Postures

We have hence compared the hand posture reconstruction
obtained by applying the hand pose reconstruction algorithm
summarized in section II and detailed in [5] to m = 5
measures provided by matrix Hs, and by optimal matrix
H∗d . In figure 2 sensor locations related to matrix Hs and
H∗d are reported. Hs matrix represents the ideal case mea-
surement matrix for the low–cost sensing glove [11] used
for the experiments in [5], whereas H∗d has been obtained
by substituting all the possible sub-set of 5 vectors of the



canonical basis of IRn in V1(Po,Hd ,R) with a noise covariance
matrix R = diag(7) [◦].

In order to compare reconstruction performance achieved
with Hs and H∗d we have used as evaluation indices, averaged
over Np, pose estimation error ep =

1
Np

∑
Np
k=1

( 1
n ∑

n
i=1 |xi− x̂i|

)
,

and DoF absolute estimation error ed = 1
Np

∑
Np
k=1 |xi − x̂i|,

for each i–th DoF. Maximum errors are also reported.
These error indices as well as statistical tools have been
chosen according to the ones considered in [5]. Statistical
differences between estimated pose and joint errors obtained
with the above described techniques have been computed
by using classic tools, after having tested for normality and
homogeneity of variances assumption on samples (through
Lilliefors’ composite goodness-of-fit test and Levene’s test,
respectively). Standard two-tailed t-test (hereinafter referred
as Teq ) is used in case of both the assumptions are met, a
modified two-tailed T-test is exploited (Behrens-Fisher prob-
lem, using Satterthwaite’s approximation for the effective
degrees of freedom, hereinafter referred as Tneq ) when vari-
ance assumption is not verified and finally a non parametric
test is adopted for the comparison (Mann-Whitney U-test,
hereinafter referred as U ) when normality hypothesis fails.
Significance level of 5% is assumed and p-values less than
10−4 are posed equal to zero. Only noisy measures are
analyzed.

In case of noise, performance in terms of pose estimation
errors ep ([◦]) obtained with H∗d is better than the one exhib-
ited by Hs (5.96±1.42 vs. 8.18±2.70). Moreover, maximum
pose error with H∗d is the smallest (9.30◦ vs. 15.35◦ observed
with Hs). Statistical difference between results from Hs and
H∗d are found (p=0.001, Tneq).

In table I average absolute estimation errors ed with
standard deviations are reported for each DoF. For the
estimated DoFs, performance with H∗d is always better or
not statistically different from the one referred to Hs, also for
not-directly measured DoFs. Maximum absolute estimation
errors, considered for each DoF, with H∗d are inferior or at
most comparable to the ones obtained with Hs.

The most difficult DoFs to be estimated appear to be those
related to abduction–adduction movements, such as IA and
LA. A possible explanation for that can be given in terms
of the a priori covariance matrix structure 1. Indeed, IA
and LA seem to be the less correlated with the other DoFs.
Furthermore, under a technological and experimental point
of view, the abduction DoFs can be the most difficult to
be measured. This consideration might suggest to include in
the optimization function also a cost which represents the
feasibility and robustness of the measurements.

Finally, in figure 8 some reconstructed poses with MVE
algorithm are reported by using both Hs and H∗d measurement
matrices. These poses are chosen because they represent
some of the main topologies of postures contained in the
validation set. Under a qualitative point of view, what is
noticeable is that reconstructed poses are not far from the real
ones for both measurement matrices, even if the pose error

1The a priori data with covariance matrix Po and the validation set are
available at http:\\handcorpus.org

DoF Mean Error [◦] Hs vs. H∗d Max Error [◦]
Hs H∗d p-values Hs H∗d

TA⊗ 6.7±5.62 4.87±3.57 0.19 23.35 15.93
TR 7.65±5.57 7.54±5.00 0.91 � 27.46 22.73

TM◦ 2.81±1.75 2.63±1.90 0.61 � 7.2 8.78
TI 6.08±4.63 5.42±4.74 0.32 19.6 19.10
IA 10.74±5.6 11.52±5.81 0.32 27.31 28.46

IM◦ 4.15±3.17 6.91±5.00 0.003 11.66 21.49
IP 14.61±7.93 6.61±6.01 0 31.85 38.07

MM◦⊗ 4.59±3.08 4.71±3.19 0.77 11.43 15.72
MP⊗ 13.71±8.07 4.08±2.98 0 ‡ 37.61 13.71
RA 3.12±2.37 3.28±2.45 0.71 9.18 9.37

RM◦ 4.03±3.07 6.30±4.72 0.01 ‡ 12.94 12.91
RP 16.78±11.07 6.89±3.82 0 ‡ 50.66 16.34
LA 8.97±5.11 9.86±5.45 0.38 � 20.86 21.48

LM◦⊗ 3.82±3.05 4.82±4.30 0.44 11.33 14.26
LP⊗ 14.64±9.68 3.94±2.95 0 48.61 11.03

1←−−−−−−−−−−−−−−−−−0p-values
◦ indicates a DoF measured with Hs⊗ indicates a DoF measured with H∗d

TABLE I: Average estimation errors and standard de-
viation for each DoF [◦] for the simulated acquisition
considering Hs and H∗d both with five noisy measures.
Maximum errors are also reported as well as p-values
from the evaluation of DoF estimation errors between
Hs and H∗d . � indicates Teq test. ‡ indicates Tneq test.
When no symbol appears near the tabulated values, U
test is used. Bold value indicates no statistical difference
between the two methods under analysis at 5% signifi-
cance level. When the difference is significative, values
are reported with a 10−4 precision. p-values less than
10−4 are considered equal to zero.

ei =
1
n ∑

n
i=1 |xi− x̂i| is smaller for the optimal case. However,

it may happen that some poses are estimated in a better
manner using Hs. This fact would not be surprising since
MVE methods are thought to minimize error statistics rather
than reconstruction errors related to individual poses [20].

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, optimal design of sensing glove with a
limited number of sensors has been proposed on the basis
of the minimization of the a posteriori covariance matrix
as it results from the estimation procedure described in [5].
Optimal solutions are described for the continuous, discrete
and hybrid cases. In the continuous sensing case, optimal
measures are individuated by principal components of the
a priori covariance matrix, thus suggesting the importance
of postural synergies not only for hand control in grasping
tasks.

Future works will aim at investigating the impact of the
a priori grasp dataset on the reconstruction of different pose
category, such e.g. American Sign Language poses.
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Fig. 8: Hand pose reconstructions by MVE algorithm as described in section II by using matrix Hs which allows to measure
T M, IM, MM, RM and LM and matrix H∗d which allows to measure TA, MM, MP, LP and LM (cf. figure 3). In color the
real hand posture whereas in white the estimated one. The pose error is given by ei =

1
n ∑

n
i=1 |xi− x̂i|.
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