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As networked dynamical systems appear around us at an increasing rate, questions

concerning how to manage and control such systems are becoming more important. Examples

include multi-agent robotics, distributed sensor networks, interconnected manufacturing chains,

and data networks. In response to this growth, a significant body of work has emerged focusing

on how to organize such networks in order to facilitate theircontrol and make them amenable

to human interactions. In this article, we summarize these activities by connecting the network

topology, that is, the layout of the interconnections in thenetwork, to the classic notion of

controllability.

In manufacturing, one of the technological bottlenecks canbe found in the general

assembly phase. This is the last stage of the manufacturing chain where the pieces, such as doors,

locks, and cup-holders in automotive manufacturing, are assembled into a finished product. If a

single worker could command and interact with a number of flexible, mobile manipulators in an

effective manner, it is expected that this process could be improved significantly. For this to be
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possible, means must be made available to the operator to be able to effectively influence the

state of the manipulators. Similarly, the current mode of operation when piloting unmanned aerial

vehicles (UAVs) is that multiple operators are required to operate a single UAV. An explicit aim

is to be able to invert this many-to-one relationship so thata single operator can pilot multiple

UAVs, which again calls for the operator to be able to influence the state of the system. In both of

these applications, we are lacking the tools for systematically characterizing and designing useful

interaction models. In this article, we take one step towards achieving such a characterization by

focusing on the controllability properties of the underlying interaction network itself. By itself,

controllability does not provide answers to how these interactions should be structured. It does,

however, provide insights into what is possible.

At a high level of abstraction, a network can be viewed as a graph, that is, as a collection

of vertices and edges. In particular, given a collection ofN interconnected nodes, we let the

network graph be given byG = (V,E), where the vertex set is simply the set of nodesV =

{1, . . . , N}, and the edge setE ⊆ V × V encodes the information flow in the network. The

interpretation is that an edge exists between nodesi andj (denoted by(i, j) ∈ E) if information

is flowing between these nodes. In this article, we only consider undirected graphs in the sense

that (i, j) ∈ E if and only if (j, i) ∈ E, which corresponds to a bidirectional information flow

in the network. Such graphs have a convenient graphical representation, as shown in Figure 1.

Now, imagine that the nodes in the network are mobile robots that somehow coordinate

their movements, akin to swarming insects or schooling fish.If one were to try to control such

a swarm, one approach could be to select key individuals and then drag them around in order

to induce a desired, global behavior in the robot swarm. Although other approaches can be
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envisioned, this is the basic setup in this article and we will investigate how effective such a

strategy might be. In particular, we will see that the organization of the underlying network

structure plays a central role when addressing this issue.

The effectiveness of the interactions with a networked control system can, at least

partially, be understood in terms of its controllability properties. In particular, we are interested

in whether or not the system is completely controllable, that is, if it is possible to drive it from

any initial configuration to any target configuration. And, questions related to controllability

become meaningful only when the nodes are endowed with dynamics and if there is some

way of injecting exogenous control signals into the network. We achieve this latter objective

by dividing the vertex setV = Vf ∪ Vℓ into follower nodes,Vf , and leader nodes,Vℓ, with

the understanding that control signals can be injected onlyat the leader nodes. Moreover, the

followers execute their own coordination strategies and the control inputs propagate through the

network by virtue of the fact that these strategies take neighboring nodes’ states into account.

In Figure 1, the black nodes are the leader nodes while the remaining nodes are the follower

nodes.

In order to define the dynamics over the network, we first need to associate a state with

each of the nodes,xi ∈ R
d, i = 1, . . . , N , whered is the dimension of the state. These states

could for example correspond to the positions of the nodes ina mobile robot network, or the

processed sensor values in a sensor network. In this article, we assume that we can control the

leader nodes’ states directly in the sense thatxi = ui, i ∈ Vℓ, whereui is the control input

at nodei. This assumption can be somewhat relaxed but it helps keep the notation simple and

allows us to focus directly on the connections between the network structure and its associated
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controllability properties. By assuming that each of the follower nodes are executing a particular

coordination strategẏxi = fi(x1, . . . , xN ), i ∈ Vf , wherefi is allowed only to depend on the

state values associated with those nodes adjacent to vertexi in the network, one can ask whether

or not it is possible to drive the follower states from any configuration to any other configuration.

The answer to this question depends on the choice of interaction law as well as on the underlying

network topology.

Many different decentralized interaction laws and coordination strategies have been

designed for networked multi-agent systems to achieve a vast array of objectives such as

swarming, flocking, alignment, cohesion, rendezvous, formation maintenance, and coverage, [1],

[5], [9], [12], [15]. In this article, we focus on a particular such choice, namely, on the linear

agreement protocol, which has proved useful for providing cohesion in the network and has

served as a starting point for a large class for other types ofnetworked controllers. The reason

for this is that the linear agreement protocol ensures that each state asymptotically approaches

the stationary average of all the states in the network when the underlying graph is connected,

that is, there is a path (not necessarily direct) through thenetwork between each pair of two

vertices in the graph. For an introduction to this topic, see[12], [15].

Once the leader nodes are selected and the interaction laws are decided upon, what makes

different networks respond differently to control inputs becomes solely a question of the network

topology, that is, on the graph structure itself. As discussed in [11], [14], [16], certain network

topologies are better than others when it comes to being ableto effectively control the system.

This matters since the network design is typically decoupled from the control design. But, if the

network structure can be explicitly designed with the aim ofmaking the system amenable to
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control, this would improve the performance of the overall system. For instance, it turns out that

more interactions are not necessarily a good thing. If the network topology is given by a complete

graph, where every vertex is directly connected to every other vertex, what can effectively be

controlled by a single leader under the linear agreement protocol is just the centroid of the node

states. In other words, this is a particularly poor choice ofnetwork topology from a controllability

vantage point even though it has the largest number of edges possible. In this article, we take this

observation one step further and summarize the connectionsbetween the graph topology and the

controllability properties of thecontrolled agreement dynamics. It should be noted already at this

point that other types of interaction dynamics and user-network interactions can be envisioned.

As this type of inquiry into the controllability propertiesof networked control systems is still in

its infancy, we here report on the results that have been obtained so far, but acknowledge that

significant work remains to be done before this topic has beencompletely understood.

The Controlled Agreement Dynamics

Consider a network whose node states evolve according to thenearest neighbor-averaging

rule known as theconsensus equation, as defined, for example, in [12], [8], [13], [17],

ẋi = −
∑

j∈Ni

(xi − xj). (1)

Here,Ni is the set of nodes adjacent to nodei in the static and undirected information exchange

graphG = (V,E), in the sense thatNi = {j ∈ V | (i, j) ∈ E}. An example of using this

coordination strategy is shown for 10 nodes in Figure 2. As dictated by the theory, the agents’

states converge to the same value.

Assume that we would like to control this network, and we achieve this by injecting
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control signals at the leader nodes, as

xi = ui, i ∈ Vℓ, (2)

while all the remaining follower nodes execute the coordination strategy given in (1). To be

able to characterize the controllability properties of this network from a purely graph-theoretic

vantage point, we first need some basic tools from algebraic graph theory. (For a comprehensive

treatment of this subject, see [7].) What algebraic graph theory helps us with is to associate

matrices to graphs, which is crucial in order to arrive at a formulation that is amenable to

control theoretic tools.

Let ∆ be theN ×N degree matrix associated with a graph, with entries given by

[∆]i,j =



















deg(i) if i = j

0 otherwise,
(3)

where the degree, deg(i) = |Ni|, is the size of the neighborhood set to nodei, and where| · |

denotes cardinality. Similarly, theadjacency matrix A is given by

[A]i,j =



















1 if (i, j) ∈ E

0 otherwise.
(4)

The final matrix, thegraph Laplacian, needed for the discussion is given by

L = ∆−A. (5)

If we index the nodes in such a way that the lastM nodes are the leader nodes and the

first N −M nodes are the followers, we can decomposeL as

L = −











A B

BT λ











, (6)
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whereA = AT is (N−M)×(N−M), B is (N−M)×M , andλ is M×M . The point behind this

decomposition is that if we assume that the state values are scalars, that is,xi ∈ R, i = 1, . . . , N ,

and gather the states from all follower nodes asx = [x1, . . . , xN−M ]T and the leader nodes as

u = [xN−M+1, . . . , xN ]
T , the dynamics of the controlled network can be written as

ẋ = Ax+Bu, (7)

as shown in [14]. Note that if the states were non-scalar, theanalysis still holds even though

one has to decompose the system dynamics along the differentdimensions of the states.

As an example, returning to the graph in Figure 1, the corresponding system dynamics

become

ẋ =
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u. (8)

What we would like to know is what the controllability properties associated with this

system are. In particular, we would like to avoid the standard rank tests and instead obtain

7



characterizations of what the network topology should looklike in order to render the system

completely controllable. The reason for this is that if we had a clear understanding of the

usefulness of different network structures, this would help guide our design choices when

constructing the underlying information exchange network. There are various approaches to

obtain connections between network structure and controllability, and we start with the most

general and then focus in on methods for analyzing special classes of graphs.

Controllability Through External Equitable Partitions

One interesting fact about the controlled agreement dynamics is that the followers tend

to cluster together due to the cohesion provided by the consensus equation. This clustering effect

can actually be exploited when analyzing the network’s controllability properties. We thus start

with a discussion of how such clusters can be obtained.

By a partition of the graphG = (V,E) we understand a grouping (clustering) of nodes

into cells, that is, a mapπ : V → {C1, . . . , CK}, where we say thatπ(i) denotes thecell that

node i is mapped to, and we use range(π) to denote thecodomain to which π maps, that is,

range(π) = {C1, . . . , CK}. Similarly, the operationπ−1(Ci) = {j ∈ V | π(j) = Ci} returns the

set of nodes that are mapped to cellCi. An example of such a node partition is given in Figure

3.

But, we are not interested in arbitrary clusters. Instead, we want to partition the nodes into

cells in such a way that all nodes inside a cell have the same number of neighbors in adjacent

cells. To this end, thenode-to-cell degree degπ(i, Cj) characterizes the number of neighbors that
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nodei has in cellCj under the partitionπ,

degπ(i, Cj) = |{k ∈ V | π(k) = Cj and (i, k) ∈ E}|. (9)

A partition π is said to beequitable if all nodes in a cell have the same node-to-cell degree to

all cells, that is, if, for allCi, Cj ∈ range(π), degπ(k, Cj) = degπ(ℓ, Cj), for all k, ℓ ∈ π−1(Ci).

This is almost the construction one needs in order to obtain an initial characterization of

the controllability properties of the network. However, what we need to do is produce partitions

that are equitable between cells in the sense that all agentsin a given cell have the same number

of neighbors in adjacent cells, but where we do not care aboutthe structureinside the cells

themselves. This leads to the notion of anexternal equitable partition (EEP), and we say that a

partitionπ is anEEP if, for all Ci, Cj ∈ range(π), wherei 6= j,

degπ(k, Cj) = degπ(ℓ, Cj), for all k, ℓ ∈ π−1(Ci). (10)

A Necessary Condition for Single-Leader Networks

One key objective when trying to understand controllability of networked systems is to

enable users to interact with such networks. As a first step, one can start by analyzing leader-

follower networks with a single leader, which thus corresponds to a sole operator interacting

with the network. Hence, we assume that we have a single leader acting as the leader node, and

we are particularly interested in EEPs that place this leader node in a singleton cell, that is, in

partitions whereπ−1(π(N)) = {N}, and we refer to such EEPs asleader-invariant. Moreover,

we say that a leader-invariant EEP ismaximal if its codomain has the smallest cardinality, that is,

if it contains the fewest possible cells, and we letπ⋆ denote this maximal, leader-invariant EEP.

We note that given a graphG and a single leader,π⋆ always exists uniquely [2], [6], [7]. The

9



maximal, equitable partition (and as a consequence,π⋆ as well) can be computed in polynomial

time (polynomial in the size of the graph) and different algorithms have been given to this end,

[3], [6]. Examples of the construction ofπ⋆ are shown in Figure 4, which allow us to state the

following key result from [11].

The networked system in (7) is completely controllable only if G is connected and π⋆ is

trivial, that is, π⋆−1(π⋆(i)) = {i}, for all i ∈ V .

This result allows us to obtain necessary conditions for controllability purely in terms

of the network’s graph topology, that is, it does not rely on any rank tests. Examples of this

topological condition for controllability are given in Figure 5.

One particularly intriguing aspect of letting the interaction dynamics be given by the

consensus equation (1) is that it provides cohesion in the network. A consequence of that, as

shown in [11], is that the difference between states within cells in range(π⋆) is uncontrollable.

Moreover, if G is connected, these differences decay asymptotically due to the fact thatA in

(6) is negative definite if the graph is connected. In other words,

lim
t→∞

(xk(t)− xℓ(t)) = 0, for all k, ℓ ∈ π⋆−1(Ci). (11)

What this tells us is that no matter what the control input is,inside cells, the state values will

inevitably converge to the same value.

An example of this effect is shown in Figure 6. In that figure, six follower agents are

running the consensus equation (1), while the leader agent’s state is given by a harmonic function.

As can be seen, agents 2, 3, and 4 end up with the same state value since they share the same

cell in the maximal, leader-invariant EEP. Similarly, agents 5 and 6 end up with the same value
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while agent 1 belongs to a singleton cell. What is at play hereis that nodes inside the same cells

are symmetric with respect to the leader. And said symmetries are obstructions to controllability.

A surprising consequence of this is discussed in [10], wherethe electrical power grid was found

to be more symmetric (and hence less controllable) than biological or social networks.

But, we can do even better than this in that we can characterize an upper bound on what

the dimension of the controllable subspace is, as shown in [4]. In fact, let (A,B) be given in

(7) and letΓ be the corresponding controllability matrix. Then

rank(Γ) ≤ |range(π⋆)| − 1. (12)

We note that since this result is given in terms of an inequality instead of an equality, we

have only necessary conditions for controllability ratherthan a, as of yet elusive, necessary and

sufficient condition. One instantiation where this inequality is indeed an equality is whenπ⋆ is

also a distance partition, as shown in [18]. What this means is that when all nodes that are at

the same distance from the leader (counting hops through thegraph) also occupy the same cell

underπ⋆, we have that rank(Γ) = |range(π⋆)| − 1. These types of situations will be discussed

in subsequent sections.

Quotient Graph Dynamics

One question one can ask now is if it is possible to give the part of the network that

we can in fact control a graph-theoretic interpretation, that is, if there is a network structure

associated with the controllable subspace. In order to answer this question, we need to introduce

the notion of aquotient graph. Given a graphG together with an EEPπ, the quotient graph
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G\π = (Vπ, Eπ, wπ) is the weighted and directed graph whose node set isVπ = range(π), the

edge set is the set of ordered pairs such that(Ci, Cj) ∈ Eπ if and only if edges connect nodes

in cellsCi andCj , and the weight between cells is given by the cell-to-cell degree, that is, the

number of edges connecting nodes in cellsCi andCj. An example is shown in Figure 7.

As Vπ⋆ = range(π⋆) and, within cells, state values converge to the same value. we expect

be able to endow the quotient graph with a dynamics that is somehow related to the original

system. As the difference between state values inside a cellin the EEP vanishes asymptotically,

what we can in fact have some hope of controlling is the average inside a cell. For this, we let

ξi be the average state value of a cellCi ∈ range(π⋆)),

ξi =
1

|π⋆−1(Ci)|

∑

j∈π⋆−1(Ci)

xj , (13)

which allows us to state a result involving the quotient graph dynamics, found in [4].

Given a connected network,G, with a single leader node, whose node dynamics are

given in (7). Letπ⋆ be the maximal, leader-invariant EEP associated with this network, with

G\π⋆ being the corresponding quotient graph. We now chose to associate a dynamics with the

quotient graph as

ξ̇i = −
∑

Cj∈Nπ⋆,Ci

wi,j(ξi − ξj), (14)

for all i such thatπ⋆−1(Ci) 6= {N}, that is, celli does not contain the input node, and let

ξi = u, (15)

if π⋆−1(Ci) = {N}. This choice of dynamics is consistent with the original dynamics in the

sense that the dynamics (14-15), describing the evolution of ξi, satisfy

ξi(t) =
1

|π⋆−1(Ci)|

∑

j∈π⋆−1(Ci)

xj(t) (16)
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as long as

ξi(0) =
1

|π⋆−1(Ci)|

∑

j∈π⋆−1(Ci)

xj(0). (17)

What this result tells us is that given a network, what we can control is in fact another

smaller network, given by the quotient graph. The equivalent dynamics over the quotient graph

is given in terms of the average state values inside cells in the EEP. As the differences between

state values inside the cells vanish asymptotically, it describes the behavior of the actual states

in the original system ast approaches infinity.

The reason why it is beneficial to be able to view the controllable subspace as a network

is that this vantage point allows control designers to focusdirectly on smaller structures with

a physical interpretation. It also allows for the network design to be done in such a way that

the desired quotient graphs are obtained. An example is shown in Figure 8, in which different

edges are removed from the graph in order to produce different quotient graphs.

What we have arrived at, thus far, is a necessary condition for controllability based solely

on a characterization of the network topology. There are stronger conditions for specialized

classes of graphs, whose eigenstructure can be more clearlyestablished. In the next section, we

investigate two such classes, namely, chain graphs and multi-chain graphs.

Chain and Multi-Chain Graphs

We now move on to networks that exhibit a rather specialized structure, yet are quite

common in different application domains. In particular, weconsider systems consisting ofn > 0

followers, labeled by1, . . . , n, and one leader, labeled byn+1. In view of the system dynamics
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(7), we know there is a one-to-one correspondence between the system matrixA and its associated

graphG(A), which is the unique graph with−A as its upper left-most block in the Laplacian,

as per Equation (6). As we will take advantage of how the graph’s structure affects its spectral

properties, we, for simplicity, call the spectrum ofA the spectrum of the graph G(A).

We let achain graph with n + 1 vertices to be the graph for which one can label its

vertices in such a way that the edge set contains exactly the edge (n + 1, 1) and the edges

(i, i − 1), (i − 1, i), 1 < i ≤ n. What this entails is simply a graph laid out as a chain, where

each node (except the end nodes) has two neighbors, and the leader node being an end node

connected to noden, as shown in Figure 9. Such chain structures can for instancebe found

in platooning autonomous vehicles and manufacturing chains. Their widespread use is, in part,

why such structures deserve special attention.

We call n the length of the chain and we immediately note that there are a number of

interesting relationships between the spectra of two chaingraphs if their lengths satisfy certain

relationships. To be more specific, ifλ is an eigenvalue ofA(G1) with associated eigenvectorv

(A(G1)v = λv), whereG1 is the chain graph withn + 1 vertices, thenλ is also an eigenvalue

of A(G2), whereG2 is the chain graph withk(2n+1)+n+1 vertices, for any positive integer

k = 1, 2, . . .. What this means is that one can understand the spectral properties of longer chains

through collections of shorter chain graphs. An additionalimportant fact about such single-leader

chain graphs is thatthey are always completely controllable, that is rank(Γ) = n, as shown in

[2].

The chain construction can be generalized to other types of structures that take the form of

the union of several chains. We say that a graphG with n+1 vertices is anm-chain graph,m > 1,
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if one can label its vertices in such a way that there exist integers1 ≤ k1 < k2 < · · · < km−1 < n

such that its edge set is the union of the edge set{(n+1, 1), (n+1, k1+1), . . . , (n+1, km−1+1)}

and the edge set{(i − 1, i), (i, i − 1), 1 < i ≤ n and i 6= 1, k1 + 1, . . . , km−1 + 1}. A typical

m-chain graph is shown in Figure 10. These types of interconnection structures can be found

among transportation networks and flexible manufacturing lines. But, more importantly, they

serve as generators of examples that highlight that the external equitable partition results are

indeed only sufficient and not necessary for controllability.

In fact, using the relationships between the spectra of chain graphs, one can show that

the spectrum of anm-chain graph has the following property. IfG is anm-chain graph and the

length of each chaini, 1 ≤ i ≤ m, is 3li+1 for someli ≥ 0, thenA(G) has−1 as an eigenvalue

whose geometric multiplicity is at leastm. But, the system (7) is not completely controllable

if A has an eigenvalue whose geometric multiplicity is greater than one, as shown in [2]. As a

result, a topological test for complete controllability isthus to check fG is anm-chain graph

and the length of each chaini is 3ki + 1 for someki ≥ 0, then the system is not controllable.

One can also compute the EEPs of multi-chain graphs. In fact,if the lengths of the chains of

anm-chain graphG are different, then its maximal leader-invariant EEP is trivial [2].

It turns out that somem-chain graphs can be augmented by adding edges connecting

different chains. The augmentation can be carried out in such a way that the augmented graph

still has a trivial maximal leader-invariant EEP and is at the same time uncontrollable. We show

two examples of this construction in Figures 11 for such uncontrollable augmented multi-chain

graphs.
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Conclusions

To be able to infer controllability properties directly from the network structure is

useful since it allows the network designer to build networks that satisfy desired controllability

properties. This is important since we typically want to be able to command and control networks

in an efficient manner. In this article, we discuss this issueand collect some of the key results

that have emerged in this area during the last five years. Necessary conditions for controllability

are given in terms of the networks’ maximal, leader-invariant EEPs. These conditions are quite

general and can be extended in a straightforward manner beyond the single-leader case, as is

done in [14]. Unfortunately, these conditions are not sufficient and the quest for such a graph-

based necessary and sufficient condition remains an open issue. However, for certain classes of

systems, we have obtained a more complete characterization, and in this article we report on

two such classes, namely, chain and multi-chain graphs.
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Figure 1: A graphical representation of a network graph. Thecircles are nodes in the network

and the edges between nodes encode that information can flow between adjacent nodes. In the

figure, the leader nodes (nodes 12, 13, 14) are given in black,while the remaining nodes (nodes

1 to 11) are follower nodes.
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Figure 2: Running the consensus equation (1). Ten agents areexecuting the coordination protocol

in (1) and their states converge to the same value.
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Figure 3: A partition of the node set into cells. The partition has four cellsC1, . . . , C4 and each

vertex belongs to exactly one cell.
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Figure 4: A graph with four possible EEPs. The leader-node (black node) is in a singleton cell

in the two left-most figures and, as such, they correspond to leader-invariant EEPs. Of these

two leader-invariant EEPs, the top-left partition has the fewest number of cells and that partition

is thus maximal. We note that this maximal partition is not trivial since one cell contains two

nodes.
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(a) (b) (c)

(d) (e)

Figure 5: Networks (a), (b) are not completely controllable, as their partitionsπ∗ are not trivial.

The partitionsπ∗ associated with networks (c), (d), (e) are indeed trivial, but we cannot directly

conclude anything definitive about their controllability properties since the topological condition

is only necessary. Indeed, (c) is completely controllable,while (d) and (e) are not completely

controllable.
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Figure 6: Asymptotically stable uncontrollable part of thedynamics. The uncontrollable part is

given by the differences between state values inside the same cell in the maximal, leader-invariant

EEP.

22



G

C1

C2

C3

C4

C5

π

G\π

C1 C2 C3 C43 C5

1

4

3

1

2 2

1

Figure 7: A graphG with an EEPπ (left) and the resulting weighted and directed quotient graph

G\π (right). For this quotient graph, we havewπ(Ci, Cj) 6= wπ(Cj, Ci), that is, the edge weights

are different along different directions.
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Figure 8: An original graph (left) together with two graphs obtained through the removal of

edges. As a result, the corresponding minimal, leader-invariant EEPs (leader node in black) lead

to different quotient graphs (middle and right).
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n+ 1 1 2 3 n− 1 n

Figure 9: Chain graph. Control signals are injected at one ofthe boundary nodes and are

propagated through the network.
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Figure 10:m-chain graph.
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(b)

Figure 11: Examples of augmented two-chain graphs that bothhave trivial maximal leader-

invariant EEPs yet are not completely controllable.
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