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As networked dynamical systems appear around us at an swcgeaate, questions
concerning how to manage and control such systems are beganore important. Examples
include multi-agent robotics, distributed sensor netwpikterconnected manufacturing chains,
and data networks. In response to this growth, a significady lof work has emerged focusing
on how to organize such networks in order to facilitate tlweintrol and make them amenable
to human interactions. In this article, we summarize theswiges by connecting the network
topology, that is, the layout of the interconnections in tietwork, to the classic notion of

controllability.

In manufacturing, one of the technological bottlenecks banfound in the general
assembly phase. This is the last stage of the manufactuniaig ehere the pieces, such as doors,
locks, and cup-holders in automotive manufacturing, asembled into a finished product. If a
single worker could command and interact with a number oflflexmobile manipulators in an
effective manner, it is expected that this process couldvi@oved significantly. For this to be
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possible, means must be made available to the operator tblba@effectively influence the
state of the manipulators. Similarly, the current mode aration when piloting unmanned aerial
vehicles (UAVS) is that multiple operators are required perate a single UAV. An explicit aim
is to be able to invert this many-to-one relationship so thatngle operator can pilot multiple
UAVs, which again calls for the operator to be able to inflieetie state of the system. In both of
these applications, we are lacking the tools for systeralfiticharacterizing and designing useful
interaction models. In this article, we take one step towachieving such a characterization by
focusing on the controllability properties of the undenmlyiinteraction network itself. By itself,
controllability does not provide answers to how these axteons should be structured. It does,

however, provide insights into what is possible.

At a high level of abstraction, a network can be viewed as phgrthat is, as a collection
of vertices and edges. In particular, given a collectionNofinterconnected nodes, we let the
network graph be given by = (V, E), where the vertex set is simply the set of nodés-
{1,...,N}, and the edge set C V x V' encodes the information flow in the network. The
interpretation is that an edge exists between nadexl; (denoted by(:, j) € E) if information
is flowing between these nodes. In this article, we only asrsundirected graphs in the sense
that (i, j) € £ if and only if (j,7) € E, which corresponds to a bidirectional information flow

in the network. Such graphs have a convenient graphicaéseptation, as shown in Figure 1.

Now, imagine that the nodes in the network are mobile rokdwds $omehow coordinate
their movements, akin to swarming insects or schooling fisbne were to try to control such
a swarm, one approach could be to select key individuals lag drag them around in order

to induce a desired, global behavior in the robot swarm. Algh other approaches can be



envisioned, this is the basic setup in this article and we wwlestigate how effective such a
strategy might be. In particular, we will see that the orgation of the underlying network

structure plays a central role when addressing this issue.

The effectiveness of the interactions with a networked rayngystem can, at least
partially, be understood in terms of its controllabilityoperties. In particular, we are interested
in whether or not the system is completely controllablet thaif it is possible to drive it from
any initial configuration to any target configuration. Andjegtions related to controllability
become meaningful only when the nodes are endowed with dgsaand if there is some
way of injecting exogenous control signals into the netwdhle achieve this latter objective
by dividing the vertex set’ = V; UV, into follower nodes,V;, and leader nodes,V;, with
the understanding that control signals can be injected ahlyhe leader nodes. Moreover, the
followers execute their own coordination strategies amddbntrol inputs propagate through the
network by virtue of the fact that these strategies takehimigng nodes’ states into account.
In Figure 1, the black nodes are the leader nodes while thainemg nodes are the follower

nodes.

In order to define the dynamics over the network, we first neegissociate a state with
each of the nodes;; € R?, i =1,..., N, whered is the dimension of the state. These states
could for example correspond to the positions of the nodes imobile robot network, or the
processed sensor values in a sensor network. In this antveleassume that we can control the
leader nodes’ states directly in the sense that u;, i € V,, wherew; is the control input
at nodei. This assumption can be somewhat relaxed but it helps keepdtation simple and

allows us to focus directly on the connections between thear& structure and its associated



controllability properties. By assuming that each of thikofeer nodes are executing a particular
coordination strategy; = fi(z1,...,zn), ¢ € Vy, where f; is allowed only to depend on the
state values associated with those nodes adjacent to varteéke network, one can ask whether
or not it is possible to drive the follower states from any faguration to any other configuration.
The answer to this question depends on the choice of interdetw as well as on the underlying

network topology.

Many different decentralized interaction laws and coaatlon strategies have been
designed for networked multi-agent systems to achieve & amaay of objectives such as
swarming, flocking, alignment, cohesion, rendezvous, &fom maintenance, and coverage, [1],
[5], [9], [12], [15]. In this article, we focus on a particulauch choice, namely, on the linear
agreement protocol, which has proved useful for providingesion in the network and has
served as a starting point for a large class for other typesetforked controllers. The reason
for this is that the linear agreement protocol ensures thah etate asymptotically approaches
the stationary average of all the states in the network wherunderlying graph is connected,
that is, there is a path (not necessarily direct) throughniétsvork between each pair of two

vertices in the graph. For an introduction to this topic, gy, [15].

Once the leader nodes are selected and the interaction tewdeeded upon, what makes
different networks respond differently to control inpuecbmes solely a question of the network
topology, that is, on the graph structure itself. As disedsm [11], [14], [16], certain network
topologies are better than others when it comes to beingtaladfectively control the system.
This matters since the network design is typically decadiflem the control design. But, if the

network structure can be explicitly designed with the aimnadking the system amenable to



control, this would improve the performance of the overgfitem. For instance, it turns out that
more interactions are not necessarily a good thing. If theark topology is given by a complete
graph, where every vertex is directly connected to evergmnotiertex, what can effectively be
controlled by a single leader under the linear agreemeribpobis just the centroid of the node
states. In other words, this is a particularly poor choiceetfvork topology from a controllability
vantage point even though it has the largest number of edggssiphe. In this article, we take this
observation one step further and summarize the connediemgeen the graph topology and the
controllability properties of theontrolled agreement dynamics. It should be noted already at this
point that other types of interaction dynamics and useroi interactions can be envisioned.
As this type of inquiry into the controllability properties$ networked control systems is still in
its infancy, we here report on the results that have beenmautaso far, but acknowledge that

significant work remains to be done before this topic has lweempletely understood.

The Controlled Agreement Dynamics

Consider a network whose node states evolve according toeidunest neighbor-averaging

rule known as theonsensus equation, as defined, for example, in [12], [8], [13], [17],

ip=— > (@ — ). (1)

JEN;

Here, \V; is the set of nodes adjacent to nade the static and undirected information exchange
graphG = (V, E), in the sense thal; = {j € V | (i,j) € E}. An example of using this
coordination strategy is shown for 10 nodes in Figure 2. Asatied by the theory, the agents’

states converge to the same value.

Assume that we would like to control this network, and we aechithis by injecting
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control signals at the leader nodes, as

while all the remaining follower nodes execute the coortiomastrategy given in (1). To be
able to characterize the controllability properties osthetwork from a purely graph-theoretic
vantage point, we first need some basic tools from algebraishgtheory. (For a comprehensive
treatment of this subject, see [7].) What algebraic gramomn helps us with is to associate
matrices to graphs, which is crucial in order to arrive at amiaation that is amenable to

control theoretic tools.

Let A be theN x N degree matrix associated with a graph, with entries given by

deqi) ifi=j
A, = ! ©)
0 otherwise,

where the degree, deg = ||, is the size of the neighborhood set to nadend where - |

denotes cardinality. Similarly, thadjacency matrix A is given by

1 if (i,j) € E
AL = (4)
0 otherwise.

The final matrix, thegraph Laplacian, needed for the discussion is given by

L=A—A (5)

If we index the nodes in such a way that the lastnodes are the leader nodes and the

first N — M nodes are the followers, we can decompasas

A |B



whereA = AT is (N—M)x(N—M), Bis (N—M)x M, and) is M x M. The point behind this
decomposition is that if we assume that the state valuescatars, thatisy; e R, i =1,..., N,
and gather the states from all follower nodeszas [z1,...,zy_u|? and the leader nodes as

u=[rN_ps1,---,2x]|T, the dynamics of the controlled network can be written as
* = Az + Bu, (7)

as shown in [14]. Note that if the states were non-scalar.atredysis still holds even though

one has to decompose the system dynamics along the difféiraehsions of the states.

As an example, returning to the graph in Figure 1, the comeding system dynamics

become
_—11000000000_ _000_
1 -3 1.0 0 0 0 0 0 0 0 100
o1 -2 0 0 0 0 0 0 0 0 001
o0 0 -2 1 0 0 0 0 0 0 100
o 0 0 1 -3 1 0 0 0 0 0 100
=10 0 0 0 1 -2 0 1 0 0 0 |z+t|[00o0]|u (8
o 0 0 0 0 0 -1 1 0 0 0 000
o 0 0 0 0 1 1 —4 0 0 1 010
o 0 0 0 0 0 0 0 -2 1 0 010
o 0 0 0 0 0 0 0 1 =2 0 010
o 0 0 0 0 0 0 1 0 0 -1 000

What we would like to know is what the controllability progies associated with this
system are. In particular, we would like to avoid the staddank tests and instead obtain
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characterizations of what the network topology should |bké& in order to render the system
completely controllable. The reason for this is that if wedhe clear understanding of the
usefulness of different network structures, this wouldphglide our design choices when
constructing the underlying information exchange netwdrkere are various approaches to
obtain connections between network structure and coabitity, and we start with the most

general and then focus in on methods for analyzing spe@akek of graphs.

Controllability Through External Equitable Partitions

One interesting fact about the controlled agreement dyecgimsithat the followers tend
to cluster together due to the cohesion provided by the cmuseequation. This clustering effect
can actually be exploited when analyzing the network’s i@dlatbility properties. We thus start

with a discussion of how such clusters can be obtained.

By a partition of the graphG = (V, E') we understand a grouping (clustering) of nodes
into cells, that is, a map : V — {C4,...,Ck}, where we say that(i) denotes theell that
node: is mapped to, and we use rarigée to denote thecodomain to which = maps, that is,
rangér) = {C},...,Cx}. Similarly, the operationr=!(C;) = {j € V | =n(j) = C;} returns the
set of nodes that are mapped to @gll An example of such a node partition is given in Figure

3.

But, we are not interested in arbitrary clusters. Insteadywant to partition the nodes into
cells in such a way that all nodes inside a cell have the sammébeauof neighbors in adjacent

cells. To this end, theode-to-cell degree deg, (i, C;) characterizes the number of neighbors that



node: has in cellC; under the partitionr,
deg.(i,C;) = |{k € V | m(k) = C; and (i, k) € E}|. 9)

A partition 7 is said to beequitable if all nodes in a cell have the same node-to-cell degree to

all cells, that is, if, for allC;, C; € rangdn), deg.(k,C;) = deg.(¢,C;), for all k,¢ € 7=1(C}).

This is almost the construction one needs in order to obtaimiéial characterization of
the controllability properties of the network. However,athwe need to do is produce partitions
that are equitable between cells in the sense that all ageatgiven cell have the same number
of neighbors in adjacent cells, but where we do not care atfmutstructureinside the cells
themselves. This leads to the notion ofeternal equitable partition (EEP), and we say that a

partition 7 is an EEP if, for all C;, C; € rangér), wherei # j,

deg,(k,C;) = deg.(¢,C;), for all k,¢ € 771(C;). (10)

A Necessary Condition for Single-Leader Networks

One key objective when trying to understand controllapitif networked systems is to
enable users to interact with such networks. As a first step,aan start by analyzing leader-
follower networks with a single leader, which thus corragf®to a sole operator interacting
with the network. Hence, we assume that we have a singlereatiag as the leader node, and
we are particularly interested in EEPs that place this leadée in a singleton cell, that is, in
partitions wherer—!(w(N)) = { N}, and we refer to such EEPs bmder-invariant. Moreover,
we say that a leader-invariant EERwaximal if its codomain has the smallest cardinality, that is,
if it contains the fewest possible cells, and we#étdenote this maximal, leader-invariant EEP.
We note that given a grapf and a single leader* always exists uniquely [2], [6], [7]. The
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maximal, equitable partition (and as a consequent&s well) can be computed in polynomial
time (polynomial in the size of the graph) and different aitjons have been given to this end,
[3], [6]. Examples of the construction af are shown in Figure 4, which allow us to state the

following key result from [11].

The networked system in (7) is completely controllable only if G is connected and 7* is

trivial, that is, 71 (7*(i)) = {i}, for all i € V.

This result allows us to obtain necessary conditions fortrotlability purely in terms
of the network’s graph topology, that is, it does not rely aty aank tests. Examples of this

topological condition for controllability are given in kige 5.

One particularly intriguing aspect of letting the interant dynamics be given by the
consensus equation (1) is that it provides cohesion in tieank. A consequence of that, as
shown in [11], is that the difference between states witkglisdn rangérn*) is uncontrollable.
Moreover, if G is connected, these differences decay asymptotically dube fact that4 in

(6) is negative definite if the graph is connected. In otherdsp

lim (z1(t) — z(t)) = 0, for all k,¢ € 7 (Cy). (11)

t—o00

What this tells us is that no matter what the control inputnsjde cells, the state values will

inevitably converge to the same value.

An example of this effect is shown in Figure 6. In that figuri, fellower agents are
running the consensus equation (1), while the leader agstatte is given by a harmonic function.
As can be seen, agents 2, 3, and 4 end up with the same statesuade they share the same
cell in the maximal, leader-invariant EEP. Similarly, atgeh and 6 end up with the same value
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while agent 1 belongs to a singleton cell. What is at play Ieethat nodes inside the same cells
are symmetric with respect to the leader. And said symnsettie obstructions to controllability.
A surprising consequence of this is discussed in [10], whiseeelectrical power grid was found

to be more symmetric (and hence less controllable) tharodichl or social networks.

But, we can do even better than this in that we can charaetanzupper bound on what
the dimension of the controllable subspace is, as shown]inr4fact, let (A, B) be given in

(7) and letI" be the corresponding controllability matrix. Then

rank(I") < |rangén™)| — 1. (12)

We note that since this result is given in terms of an inetyalistead of an equality, we
have only necessary conditions for controllability rattiean a, as of yet elusive, necessary and
sufficient condition. One instantiation where this inedfyak indeed an equality is when* is
also a distance partition, as shown in [18]. What this mearthat when all nodes that are at
the same distance from the leader (counting hops throughgrdgEh) also occupy the same cell
under7*, we have that ran’) = |[rangér*)| — 1. These types of situations will be discussed

in subsequent sections.

Quotient Graph Dynamics

One question one can ask now is if it is possible to give the piathe network that
we can in fact control a graph-theoretic interpretatiorat tis, if there is a network structure
associated with the controllable subspace. In order to @anglvis question, we need to introduce
the notion of aquotient graph. Given a graphGG together with an EEPRr, the quotient graph
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G\m = (V,, E,,w,) is the weighted and directed graph whose node s&t. is- rangén), the
edge set is the set of ordered pairs such tatC;) € E, if and only if edges connect nodes
in cells C; andC;, and the weight between cells is given by the cell-to-cefrde, that is, the

number of edges connecting nodes in céljsand C;. An example is shown in Figure 7.

As V.. =rangér*) and, within cells, state values converge to the same valaexpect
be able to endow the quotient graph with a dynamics that isebom related to the original
system. As the difference between state values inside ancetle EEP vanishes asymptotically,
what we can in fact have some hope of controlling is the awemgide a cell. For this, we let

& be the average state value of a @gllc rangér™*)),

1
5i=m > (13)

JeET*T1(Cy)
which allows us to state a result involving the quotient gralynamics, found in [4].
Given a connected networky, with a single leader node, whose node dynamics are
given in (7). Letn* be the maximal, leader-invariant EEP associated with tkisvork, with
G\7* being the corresponding quotient graph. We now chose tccegsca dynamics with the

guotient graph as

E=— Y w6 —§), (14)

CjENrr*,C,L-

for all i such thatt*~'(C;) # {N}, that is, celli does not contain the input node, and let
& = u, (15)

if 7~1(C;) = {N}. This choice of dynamics is consistent with the original ayrncs in the

sense that the dynamics (14-15), describing the evolutiaf, satisfy

1
&(t)zm > () (16)
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as long as

jem=1(Cy)

What this result tells us is that given a network, what we camtrol is in fact another
smaller network, given by the quotient graph. The equivatlymamics over the quotient graph
is given in terms of the average state values inside celleerEEP. As the differences between
state values inside the cells vanish asymptotically, icdbss the behavior of the actual states

in the original system as approaches infinity.

The reason why it is beneficial to be able to view the contbbdlaubspace as a network
is that this vantage point allows control designers to fodinectly on smaller structures with
a physical interpretation. It also allows for the networlsida to be done in such a way that
the desired quotient graphs are obtained. An example is slowigure 8, in which different

edges are removed from the graph in order to produce diffepeotient graphs.

What we have arrived at, thus far, is a necessary conditioadotrollability based solely
on a characterization of the network topology. There arengier conditions for specialized
classes of graphs, whose eigenstructure can be more cesddplished. In the next section, we

investigate two such classes, namely, chain graphs and-chaiin graphs.

Chain and Multi-Chain Graphs

We now move on to networks that exhibit a rather specializeactire, yet are quite
common in different application domains. In particular, @gsider systems consisting of> 0
followers, labeled by, . .., n, and one leader, labeled y+ 1. In view of the system dynamics
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(7), we know there is a one-to-one correspondence betweesy#item matrixd and its associated
graphG(A), which is the unique graph with A as its upper left-most block in the Laplacian,
as per Equation (6). As we will take advantage of how the dgsagtinucture affects its spectral

properties, we, for simplicity, call the spectrum afthe spectrum of the graph G(A).

We let achain graph with n + 1 vertices to be the graph for which one can label its
vertices in such a way that the edge set contains exactly dge @ + 1,1) and the edges
(1,1 —1),(i — 1,7), 1 <1i < n. What this entails is simply a graph laid out as a chain, where
each node (except the end nodes) has two neighbors, andaither leode being an end node
connected to node, as shown in Figure 9. Such chain structures can for instaectound
in platooning autonomous vehicles and manufacturing chdiheir widespread use is, in part,

why such structures deserve special attention.

We call n the length of the chain and we immediately note that there are a number of
interesting relationships between the spectra of two cheaphs if their lengths satisfy certain
relationships. To be more specific, ifis an eigenvalue ofi(G;) with associated eigenvector
(A(G1)v = Mv), where@, is the chain graph wit + 1 vertices, then\ is also an eigenvalue
of A(G,), whereG, is the chain graph witlk(2n + 1) +n + 1 vertices, for any positive integer
k=1,2,.... What this means is that one can understand the spectragntiesgoof longer chains
through collections of shorter chain graphs. An additiomgdortant fact about such single-leader

chain graphs is thahey are always completely controllable, that is rankl') = n, as shown in

[2].

The chain construction can be generalized to other typesuaitares that take the form of

the union of several chains. We say that a graéphith n+1 vertices is ann-chain graph, m > 1,
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if one can label its vertices in such a way that there exigigetsl < k1 < ks < --- < k-1 <n
such that its edge set is the union of the edgg get-1,1), (n+1,k;+1),..., (n+1,k,1+1)}
and the edge seft(i — 1,4),(i,i —1),1 < i <nandi # 1,k +1,...,k,_1+ 1}. A typical
m-chain graph is shown in Figure 10. These types of intercctime structures can be found
among transportation networks and flexible manufacturingsl But, more importantly, they
serve as generators of examples that highlight that therettequitable partition results are

indeed only sufficient and not necessary for controllapbilit

In fact, using the relationships between the spectra ofncheaphs, one can show that
the spectrum of am-chain graph has the following property.df is anm-chain graph and the
length of each chain 1 < i < m, is3[;+ 1 for somel; > 0, thenA(G) has—1 as an eigenvalue
whose geometric multiplicity is at least. But, the system (7) is not completely controllable
if A has an eigenvalue whose geometric multiplicity is gredtantone, as shown in [2]. As a
result, a topological test for complete controllabilitytiaus to check fG is anm-chain graph
and the length of each chainis 3k; + 1 for somek; > 0, then the system is not controllable.

One can also compute the EEPs of multi-chain graphs. In iflattie lengths of the chains of

anm-chain graphG are different, then its maximal leader-invariant EEP igiati[2].

It turns out that somen-chain graphs can be augmented by adding edges connecting
different chains. The augmentation can be carried out ith suway that the augmented graph
still has a trivial maximal leader-invariant EEP and is & fame time uncontrollable. We show
two examples of this construction in Figures 11 for such mt@dlable augmented multi-chain

graphs.

15



Conclusions

To be able to infer controllability properties directly fnothe network structure is
useful since it allows the network designer to build netvgottkat satisfy desired controllability
properties. This is important since we typically want to beeao command and control networks
in an efficient manner. In this article, we discuss this isané collect some of the key results
that have emerged in this area during the last five years.d8acg conditions for controllability
are given in terms of the networks’ maximal, leader-invatriBEPs. These conditions are quite
general and can be extended in a straightforward mannembdeye single-leader case, as is
done in [14]. Unfortunately, these conditions are not sigficand the quest for such a graph-
based necessary and sufficient condition remains an opee. islowever, for certain classes of
systems, we have obtained a more complete characterizatnmhin this article we report on

two such classes, namely, chain and multi-chain graphs.
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Figure 1: A graphical representation of a network graph. @ingles are nodes in the network
and the edges between nodes encode that information can étwedn adjacent nodes. In the

figure, the leader nodes (nodes 12, 13, 14) are given in bielcke the remaining nodes (nodes

1 to 11) are follower nodes.
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Figure 2: Running the consensus equation (1). Ten agenexaceiting the coordination protocol

in (1) and their states converge to the same value.
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Figure 3: A partition of the node set into cells. The partitiwas four cells”, ..., C, and each

vertex belongs to exactly one cell.

19



A
©

9

of-e
o

Figure 4: A graph with four possible EEPs. The leader-nodieckbnode) is in a singleton cell
in the two left-most figures and, as such, they corresponaaddr-invariant EEPs. Of these
two leader-invariant EEPs, the top-left partition has th@dst number of cells and that partition
is thus maximal. We note that this maximal partition is notiat since one cell contains two

nodes.
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Figure 5: Networks (a), (b) are not completely controllalale their partitionsr™ are not trivial.
The partitionst* associated with networks (c), (d), (e) are indeed triviat, Wwe cannot directly
conclude anything definitive about their controllabilityoperties since the topological condition
is only necessary. Indeed, (c) is completely controllableile (d) and (e) are not completely

controllable.
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Figure 6: Asymptotically stable uncontrollable part of @iynamics. The uncontrollable part is

given by the differences between state values inside the sathin the maximal, leader-invariant

EEP.
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Figure 7: A graphGG with an EEPr (left) and the resulting weighted and directed quotienpgra
G\ (right). For this quotient graph, we hawe.(C;, C;) # w.(C;, C;), that is, the edge weights

are different along different directions.

23



Figure 8: An original graph (left) together with two graphstained through the removal of
edges. As a result, the corresponding minimal, leaderigwBEEPS (leader node in black) lead

to different quotient graphs (middle and right).
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Figure 9: Chain graph. Control signals are injected at onehef boundary nodes and are

propagated through the network.
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Figure 10:m-chain graph.
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Figure 11: Examples of augmented two-chain graphs that hatle trivial maximal leader-

invariant EEPs yet are not completely controllable.
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