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Abstract—In this paper, we consider the problem of designing
controllers for linear plants to be implemented in embedded
platforms under stringent real-time constraints. These include
preemptive scheduling schemes, under which the execution time
allowed for control software tasks is uncertain. In a conservative
Hard Real-Time (HRT) design approach, only a control algorithm
that (in the worst case) is executable within the minimum time
slot guaranteed by the scheduler would be employed. In the spirit
of modern Soft Real-Time (SRT) approaches, we consider here
an ”anytime control” design technique, based on a hierarchy of
controllers for the same plant. Higher controllers in the hierarchy
provide better closed-loop performance, while typically requiring
longer execution time. Stochastic models of the scheduler and
of algorithm execution times are used to infer probabilities that
controllers of different complexity can be executed at different
periods. We propose a strategy for choosing among executable
controllers, maximizing the usage of higher controllers, which
affords better exploitation of the computational platform than the
HRT design while guaranteeing stability (in a suitable stochastic
sense).

Results on the robustness with respect to uncertainties affecting
the scheduler model, and on bumpless transfer for tracking prob-
lems are also reported. Simulation results on the control of two
prototypical mechanical systems show that performance is sub-
stantially enhanced by our anytime control technique w.r.t. worst
case-based scheduling.

Index Terms—Anytime algorithms, embedded control, sto-
chastic scheduling, switched systems.

I. INTRODUCTION

A general tendency can be observed in embedded systems
towards implementation of a great variety of concurrent

real-time tasks on the same platform, thus reducing the overall
HW cost and development time. Among such tasks, those im-
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plementing control algorithms are usually highly time critical,
and have traditionally imposed very conservative scheduling
approaches, whereby execution time is allotted statically. This
makes the overall architecture extremely rigid, hardly reconfig-
urable for additions or changes of components, and often under-
performing.

Modern multitasking Real-Time Operating Systems
(RTOSs), running, e.g., on embedded Electronic Control
Units (ECUs) in the automotive domain, schedule their tasks
dynamically, adapting to varying load conditions and Quality of
Service (QoS) requirements. Real-time preemptive algorithms,
such as, e.g., Rate Monotonic (RM) and Earliest Deadline
First (EDF) [1]–[3] can suspend the execution of a task in the
presence of requests by other, higher priority tasks.

To make a given set of tasks schedulable and to avoid deadline
misses, conservative assumptions are made in so-called Hard
Real-Time systems [1], including Worst Case Execution Time
(WCET) estimates for tasks. These entail underexploitation of
the computational platform and, ultimately, cost inefficiencies.
Conversely, when the computational power budget is given and
fixed (as common in industrial practice), then control algorithms
may have to be drastically simplified to be computable within
the allotted time. This clearly reflects in a degradation of the
overall performance of the ensuing closed-loop system.

Substantial performance improvement would be gained if less
conservative usage could be made of the platform. Indeed, as-
suming that the RTOS guarantees a minimum time for the
execution of the control task, it is often the case that, for most
of the CPU cycles, a time could be made available for
control.

A current trend in embedded system design is to relax hard
schedulability constraints and introduce “softer” models of
computation (viz. “resource reservations” [4], “weakly hard”
[5] and “firm” [6] RTOSs). Here, occasional deadline misses
are tolerated for tasks whose execution time may largely vary
(due e.g., to data-driven branching and/or the use of caches and
pipelines). Instead of using gross WCET bounds, the random
distribution pattern and average of such misses are quantified by
QoS metrics, in terms of which design constraints are typically
set [7].

In this paper, we propose a strategy to design and schedule
linear controllers in a soft RT environment, so that the limits
of current practice are overcome and better exploitation can be
obtained of the same resources.

A. Anytime Control Algorithms

The key idea is to design controllers which can be imple-
mented so that a useful result is guaranteed whenever the al-
gorithm is run for at least ; however, better results can be
provided if longer times are allowed.
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The idea of anytime algorithms is borrowed from the field
of imprecise computation, that has been proposed in the real-
time systems literature [8], [9]. The characteristic of anytime
algorithms is to always return an answer on demand; however,
the longer they are allowed to compute, the better (e.g., more
precise) an answer they will return. Thus, an anytime algorithm
can be interrupted prematurely, still providing a valid result and
improving the output accuracy as the available time increases.
A periodic task is split in a mandatory part and one or more
optional parts. Functionally critical subtasks are considered in
the mandatory part. If all mandatory parts of a set of tasks are
schedulable, the feasible mandatory constraint is satisfied [8].

In digital filter design [10], this philosophy has been pursued
by decomposing the full-order filter in a series of lower order
filters whose execution is prioritized. Execution of code imple-
menting the first block is always guaranteed within ; code
for blocks in the cascade is then executed sequentially, until a
deadline event takes over. The latest computed block output is
used as the anytime filter output. The overall performance of the
filter was shown in [10] to be superior to the conservative solu-
tion of always using only the first filter block.

To adopt the anytime approach in the control domain, a clas-
sical monolithic control task should be replaced by a hierarchy
of control tasks of increasing complexity, each providing a cor-
respondingly increasing performance of the controlled system.
For instance, the simplest control task in the hierarchy, could be
designed to guarantee only stability of the closed loop system,
while whenever the scheduler provides ”surplus” time, other
more sophisticated control algorithms could be executed to ob-
tain better quality of control.

However, application of the anytime algorithm idea to con-
trol is much more challenging than it may superficially appear.
The main conceptual roadblock is that, as opposed to most any-
time computation and filtering algorithms, anytime controllers
interact in feedback with dynamic systems, which fact entails
issues such as:

• Switched System Performance: unpredictable preemption
events introduce stochastic switching among different
closed-loop systems, which can subvert naïve expecta-
tions—e.g., switching between stabilizing controllers may
well result inoverall instability.Moregenerally,closed-loop
performance is strongly influenced by switching;

• Practicality: implementation of both control and sched-
uling algorithms must be numerically accurate, yet very
simple and noninvasive, not to contradict the very nature
of the limited-resource, embedded control problem;

• Hierarchical Design: the design of a set of controllers as
progressive approximations towards a given target design
does not typically provide the desired performance hier-
archy. Indeed, performance of closed-loop systems are not
trivially related to how close controller approximations are
to the target, as it is e.g., in filter design;

• Modularity: the computational structure of control algo-
rithms should be inherited through the hierarchy levels, so
that the computation of higher controllers in the hierarchy
exploits results of computations executed for lower con-
trollers. Although this property is not strictly required, it
can greatly enhance effectiveness of anytime control.

We will discuss these issues further in the rest of the paper.

B. Prior Work and Outline

A first attempt to apply the anytime computation paradigm
to control is reported in [11], [12], where standard system
reduction methods (balanced truncation or modal decompo-
sition) are used to decompose a target controller in simpler
ones. If the simplified controllers are individually stabilizing,
stability under switching is guaranteed by [11], [12] only under
the implicit assumption that a long enough (but unquantified)
dwelling time is allowed by the scheduler between switches.
Very recently a specular approach, using a sequence of increas-
ingly more accurate models of the open loop system, has been
presented in [13].

On the other hand, the substantial literature on switching
system stability (see e.g., [14]–[17] and references therein)
provides much inspiration and ideas for the problem at hand,
but few results can be used directly. For instance, application
of the important results of [18] would provide state-space
realizations of different stabilizing controllers such that the
overall closed-loop systems would remain stable under any
switching law. Unfortunately, however, the method is thought
for a different application, and assumes that all controllers are
designed by the internal-model approach, thus having the same
(rather heavy) computational complexity. Most importantly,
at each switching instant, a state-space transformation has to
be applied, whose complexity is comparable to that of the
controllers themselves. By the same practicality argument,
algorithms for switched system stabilization (such as e.g.,
[19]–[22]) requiring the computation of complex functions of
the state to ascertain which subsystem can be activated next
time, are not applicable to the anytime control problem as we
consider it here.

The thread of work closest to ours is probably that related to
Firm Real Time Systems (FRTSs) [5], [6]. In a series of papers
[7], [23]–[25], Lemmon and co-workers consider performance
of Networked Control Systems (NCSs) in a FRTS framework,
introduce a stochastic model to describe the task dropout
process, and provide a general QoS constraint encompassing
classical metrics such as average- or window-based dropout
measures.

Probabilistic modeling of real-time systems is by now a
widely accepted approach to avoid overconservatism of de-
terministic (WCET-based) models, to which an ample and
growing literature [26]–[28] is devoted. Within stochastic
models of RT systems, the use of Markov chains (cf. e.g.,
[25], [29], [30]) is one of the most promising avenues to ac-
curately compute the response time distribution (and deadline
miss probabilities) of different tasks in systems ranging from
fixed-priority (e.g., RM) to dynamic-priority (e.g., EDF).

In this paper, which builds upon [31], we also adopt a Markov
Chain model to describe the sequence of time slots allotted by
a scheduler for the execution of a control task (for methods to
infer the parameters of the stochastic model of the scheduler,
see e.g., [28], [29]). Our model differs from the one used in
the FRTSs literature cited above, as we define our probabilities
on the space of execution times rather than on deadline misses.
A more substantial difference, however, is that we regard the
scheduler characteristics to be a given in our problem, rather
than a design objective. In our anytime control setup, different
control subroutines can be alternatively activated in different
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periods to control the same plant, and we develop a switching
policy that affords better exploitation of the computational plat-
form while guaranteeing overall closed-loop stability. As the
system resulting from switching under stochastic constraints is a
Markov Jump Linear System (MJLS), stability is studied in the
probabilistic sense of “Almost Sure” (AS) stability [32], [33].

II. BACKGROUND MATERIAL

Let be a given linear, discrete time, in-
variant SISO plant and let , , be a family
of controllers for such that the feedback connection of with

is asymptotically stable for all . Let the closed-loop system
thus obtained be denoted as and let its dynamics be

(1)

The set of controllers is assumed to provide a hierarchy of
performance and complexity. In other terms, we assume
that application of controller provides better closed-loop
performance than controller if , and that its software im-
plementation typically requires longer execution time. Which
controller will be actually executed at each period depends on
the time allotted by the RTOS scheduler and on the execution
time of different controllers, both nondeterministic quantities.
The main tool used in this paper to address stability of the
switching system ensuing from probabilistic scheduling models
is the theory of Almost Sure stability.

A. Almost Sure Stability

In this section, a brief review of results on Almost Sure sta-
bility (AS-stability) for discrete-time systems is reported fol-
lowing [33]. Consider the discrete-time Markov Jump Linear
System (MJLS)

(2)

where , , , and is
a finite-state discrete-time homogeneous irreducible aperiodic
(FSHIA) Markov chain taking values in the finite state space

, with transition probability matrix ,
, and with initial proba-

bility measure . The evolution of the probability distribu-
tion of the process at time is given by

(3)

We will denote by the unique invariant probability distri-
bution (i.p.d.) of the irreducible and aperiodic Markov chain,
corresponding to the steady-state probability distribution for the
process (i.e., for any ).

Definition 1: The MJLS (2) is said exponentially almost
surely stable (AS-stable) if there exists such that, for
any and any initial distribution , the following
condition holds:

The following sufficient condition for AS-stability was
proven in [32]:

Theorem 1 (1–Step Average Contractivity): [32] If there ex-
ists a matrix norm , such that

(4)

then the MJLS (2) is AS-stable.
Inequality (4) can be interpreted as an average contractivity

of the state norm over a one-step horizon. A condition less re-
strictive than (4), and involving the average contractivity over
a multi-step horizon has been presented in [33]. Namely, a new
MJLS, called “lifting of period ”, is associated to the MJLS
(2). Such a system represents the sampling of the original one
at time instants , , and its stability properties mirror
those of the original system. More precisely, the lifted version
of period of system (2) is defined by

with , ,
. Moreover,

is a Markov process taking values in
and characterized as follows: for and

, the transition probability matrix
has elements given by

. This process has i.p.d. given by
.

The 1–step average contractivity condition applied to the
lifted system yields

Theorem 2 ( –Step Average Contractivity): [33] If

(5)

then the MJLS (2) is AS-stable.
The importance of condition (5) is related to the fact that for

increasing values of it provides a sequence of sufficient con-
ditions and, most importantly, to the following result

Theorem 3: [33] System (2) is AS-stable if and only if
such that condition (5) holds.

III. STOCHASTIC MODELING OF THE SCHEDULING PROCESS

We consider a single-processor platform with a multitasking
RTOS, and a periodic control task with period . We further
assume that control inputs and outputs are time-triggered and
synchronized, i.e., measurements are acquired at the beginning
of each period and control inputs are released at the end. As
a consequence, the control task is not affected by jitter, while
the constant unit delay can be easily accounted for directly in
the design of the individual controllers [34]. Assume the pe-
riod to be divided in time slices of length , and
that each controller is implemented by a homonymous soft-
ware subroutine. Both the time allotted by the scheduler to the
control task, and the execution times of any subroutine, are fi-
nite multiples of . Let , with ,

and .
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Let the time allotted to the control task during the -th sam-
pling period be described by the discrete random variable
taking on values in the set . A simple stochastic description
of the random sequence can be given in terms of an
independently and identically distributed (i.i.d.) process, with
probability distribution denoted by . Moti-
vated by the stochastic model of RT systems in [29], [30], we
adopt in what follows a more general model based on Markov
chains. Accordingly, will denote a FSHIA Markov chain
taking values in , with transition probability matrix and
i.p.d. .

Since it is assumed that no deterministic information is avail-
able in advance on the effective time allowance for the control
task, subroutines must be computed sequentially, i.e., the
computation of cannot start until the computation of has
terminated. Therefore, the execution time from to is mod-
eled as a discrete random variable defined on , with prob-
ability distribution , with
and . The (time-independent) probability distribu-

tion of is described by .
We now combine the probabilistic models above into a sto-

chastic description of the highest-index executable controller
in each period. This will be referred to as the (unconditioned)
scheduler process . Indeed, represents the highest index of a
schedulable controller, i.e., the controller such that its execution
time is the largest among those shorter than the available time.
Assume first that the simplest controller (whose worst-case
execution time is ) is considered to be mandatory in
the anytime scheme, and that the feasible mandatory constraint

is satisfied. Let the random process
taking on values in be defined as “
iff in the -th period all controllers but no controller

can be executed.” Because controllers are computed
sequentially, this is equivalent to stating that “ iff in
the -th period can be executed but can not.”.

Let . From
, it follows:

To express in terms of distributions
, let us write

because the two events are mutually exclusive.
Recalling that controllers are computed sequen-
tially, implies , hence

and

Defining the cumulative distribution of as
, we can write

. The relation
between the stochastic processes and is then given by

(6)

with

...

a stochastic matrix. If is a Markov chain, then is time
dependent, though not necessarily a Markov chain.

Remark 1: The assumption can be easily
dropped. Indeed, if , it is sufficient to add to

the event , with the meaning “ iff in the -th
period no controllers can be executed. ” In this case, matrix
is modified by adding on its top a row , where

is the cumulative distribution that no controller can be
executed.

Remark 2: In our previous work [31], a deterministic model
of the controller execution time was considered. This can be
regarded as a particular case of the present treatment, where
is chosen as a vector having a 1 in -th position if ,
and 0 elsewhere. Moreover, if is limited to the set of all the
WCETs, namely , then
becomes the identity matrix and coincides with the FSHIA
Markov chain .

IV. PROBLEM FORMULATION

Given a set of controllers , the associated closed loop
dynamics , and a probabilistic description of the process
modeling the maximum schedulable controller, a degree of
freedom is left to the control task designer to make an explicit
choice of the controller to be actually executed in each period.
We will refer to such choice as the switching policy, which is
defined as a map , determining the upper
bound to the index of the controller to be executed
at time . In other terms, at time , the control task computes
controllers until , unless a deadline event occurs
forcing it to provide only , the highest controller computed
before the deadline.

Application of a switching policy to a set of feedback sys-
tems under a given scheduler generates a switched
linear system which, under general hypotheses, is a
stochastic JLS with a conditioned i.p.d. . As an example,
the most conservative policy is to set , i.e., forcing al-
ways the execution of the simplest controller , regardless of
the probable availability of more computational time (

). If the feasible mandatory constraint
is satisfied, this (non-switching) policy guarantees stability

of the resulting closed loop system.
On the opposite, a “greedy” strategy would set ,

which leads to computing for all (hence ). Al-
though this policy attempts at maximizing the utilization of the
most performing controller, it is well known that switching ar-
bitrarily among asymptotically stable systems may easily re-
sult in an unstable behavior [35]. A sufficient condition for the
greedy switching policy to provide an AS-stable system is pro-
vided by Theorem 1, where and . Notice
that here we assume that all closed-loop systems have the same
number of states, which coincide with the sum of the number
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of states of the plant and of the largest controller (the actual ar-
rangement of the state vectors for closed-loop systems is illus-
trated in detail in the implementation Section VII).

If this condition is not verified, it is important to investigate
whether there exist scheduling policies which can ensure
AS-stability other than the over-conservative non-switching
choice. To do so, assume that the set

is not empty for some matrix norm. Given a scheduler i.p.d.
, in order for a compatible and stabilizing conditioned i.p.d.

to exist, further constraints have to be satisfied. In-
deed, let . For a switching policy to exist which can alter
a given scheduler probability distribution into ,
the following must hold:

...

where , and .
Inequalities – take into account the fact that no

switching law can alter the scheduler so as to give more com-
putational time to control tasks than it is made available by the
scheduler. Furthermore, constraints – model the fact
that the probability of the -th controller can be increased
only at the expenses of a reduction of the probabilities ,
of more complex controllers.

Definition 2: Given a set of matrices , , and a sched-
uler i.p.d. , the set of feasible AS-stabilizing scheduling prob-
abilities is defined as , with

Assuming that , it is natural to consider a Quality
of Control (QoC) metric within the set of feasible stabilizing
schedules. Based on the hypothesis that controllers are hierar-
chically ordered by their closed-loop performance, so that use
of controller provides better results than , , a natural
QoC metric for the problem at hand can be simply given as

(7)

i.e., the second moment of a random variable
with i.p.d. , where is the performance index associated with

, , .

In conclusion, we state the following problem
Problem 1 (Optimal Switching Policy (OSP) Problem): For

a given plant , a set of controllers , with associated perfor-
mance index and probabilistic execution time , and a prob-
abilistic scheduler process , find a switching policy that
maximizes , subject to .

V. INDEPENDENT STOCHASTIC SWITCHING POLICY

In this section, we tackle problem 1 above by introducing a
switching law which is itself stochastic, and is based on the con-
cept of a conditioning Markov chain. The stochastic properties
of the scheduler process and conditioning chain interact to pro-
duce a resulting switched system. To study such interaction, we
will make use of the operations of merging and aggregating sto-
chastic processes.

The merging of two finite state Markov chains and ,
defined on the state spaces and , respectively, is the sto-
chastic process defined on such that

. The following holds:
Theorem 4: For two independent, FSHIA Markov

chains and with transition probability matrices
and , and initial probability

distributions and , let and denote their
respective (unique) invariant probability distributions. Then,
for the merging , it holds

i) is a FSHIA Markov chain whose statis-
tics are given by the transition probability matrix

and by the initial
probability distribution (
denotes the Kronecker product);

ii) the evolution of the chain is given by

(8)

with . Moreover, converges to the unique
i.p.d.

(9)

for any initial distribution .
Proof: See the Appendix.

Consider further a stochastic process defined on the finite
state space and a function mapping in
another finite state space . The aggregation of with respect
to is the stochastic process defined on the quotient space
of by the equivalence relation iff .
Notice that the aggregated process is not necessarily Markovian
even if the original process is.

Coming back to the stochastic processes describing the
scheduling and execution of controllers, consider an indepen-
dent FSHIA Markov chain defined on a finite state space

. We will associate a switching law to the
stochastic process in the following explicit sense:

Independent Stochastic Switching Policy (ISSP).
At the –th period, the control task produces the results of the

-th controller iff
1) and ; or
2) and .
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The fact that process may not be a Markov chain im-
plies that the merged process is also not a
Markov chain in general. However, the probability distribution

of is linearly related to the distribution of
the merged Markov chain . Indeed, from the independence
of the random variables and , by the mixed
product rule we can write

(10)

with the identity matrix.
We identify states of resulting in the execution of the same

controller by introducing the aggregating function
with . The switching law choice above
amounts to setting the conditioned probability distribution
equal to , which is the probability distribution of the aggre-
gated process . It can be easily verified that the evolution
of is given by

(11)

with such that and

Remark 3: Because of the linear mappings (10) and (11) the
process admits an i.p.d. to which each initial distribution
of type converges. In particular,
we have

(12)

with . Hence the contractivity condition of the
AS-stability analysis applies to .

Remark 4: It can be observed that the choice of a switching
law by a Markov chain independent from the scheduler
process is not the most general possible choice. However,
besides simplifying the analysis considerably, this choice has
the advantage of not requiring on-line computations. Indeed,
an arbitrary realization of the process can be computed
off-line and used as a switching law , which fact is crucial
from a practicality point of view.

A. One-Step Average Contractivity Condition

Based on results of the previous section, we seek a solution of
Problem 1 with a structure such as in (12). The conditioned i.p.d.

, which for notational simplicity we will denote henceforth
as , can be written more explicitly as

(13)

where .
It actually turns out that the structure of described in (13),

resulting from the choice of an independent conditioning chain,
simplifies the formulation of the synthesis problem substan-
tially. Indeed, it can be proven by simple if lengthy arguments
(see Lemma 2 in the Appendix), that constraints , ,

and in Definition 2 are automatically satisfied by an i.p.d.
as in (13). Furthermore, for such , constraint can be

rewritten (with the proviso that ) as

By introducing the QoC vector , , such that
, using (13) and rearranging

terms, the OSP problem restricted to the ISSP class can be stated
as a classical linear programming problem in the unknown :

OSP Problem

where and .
Notice that indicates here a desired contractivity margin,
while the use of non-strict inequalities in 2) implies that a non-
irreducible Markov chain is accepted as a possible solution.

It is also worth noting that a necessary condition for OSP to be
feasible is that such that . This may easily not be
the case for an arbitrary matrix norm. On the other hand, if a ma-
trix norm for which is chosen, and
(which is reasonable to assume), then feasibility is guaranteed.
While finding such a norm is always possible if is Schur,
the choice of such an –adapted norm tends to bias solutions
of OSP towards using the simplest controller more often. This
in turn tends to produce low performance index . Therefore, it
can be useful to consider a more general position of the sched-
uling problem, which is described next.

B. Multi-Step Average Contractivity Condition

The advantage of using -step contractivity is illustrated by
the following Lemma:

Lemma 1: If such that is Schur, then for any given
matrix norm , and such that the solution
set is not empty, i.e.

Proof: If is Schur, then such that .
Let and . Hence such that,
for all probability distributions with ,

, .
This result guarantees that a -step stabilizing switching

policy exists, for large enough : by the assumption that
, it is indeed sufficient to choose in

the Lemma above. To exploit the more general -step con-
tractivity condition (5), we introduce a switching law such
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that some control patterns, i.e., sequences of symbols in ,
are preferentially used with respect to others. This may imply
associating to a matrix sequence a steady-state probability of
occurrence different from the product of the probabilities of
each matrix. Accordingly, an unconstrained chain will be
used for conditioning (as opposed to using a lifted version of
the one-step conditioning chain ), which can be interpreted
as suggesting the sequence of controllers to be executed in the
next steps.

Let denote the lifted Markov chain describing the time al-
lotted to control task computation in the next periods, whose
states are sequences of the original symbols defined in the
new state space with cardinality . Also let denote the
lifted scheduler process and its states ( ).

To compute the distribution of the lifted process defined
on , consider the matrix , whose entry is

, with the sequence
and . Recalling the meaning of the process ,
this probability can be written as

where we used the stationarity of the random variables .
From the independence of the variables and

, we have

where , times.
The distribution of and are hence linearly related through

. Consider the conditioning Markov chain with states
taking values in a finite state space . For notational simplicity,
let denote a sequence of symbols , so that we
have . A -step equivalent of Problem 1 is directly
obtained by replacing , and with , and , re-
spectively.

If a set of steady-state probability distributions exists
solving the -step version of Problem 1, the synthesis problem
is again to find a steady-state probability distribution for the
chain such that the aggregated process has steady-state

distribution , with the aggregation induced by the
element-wise minimum function.

Finally, a QoC metric generalizing (7) is obtained by setting
, with ( times). Indeed, in

this case any weight is the product of weights related to the

sequence . With these stipulations, an optimal
multistep switching problem for fixed can be formulated in
the parameters in the same terms as the OSP.

VI. ROBUST SYNTHESIS

We consider now the case that an exact stochastic model of
the scheduler is not available, rather it is subject to Unknown
But Bounded (UBB) uncertainties. For the sake of simplicity,
we limit our robustness analysis to the one-step average con-
tractivity condition.

Assume first that UBB uncertainties affect the steady-state
probabilities that a time is allotted to the control task, but
that the probabilistic computational model of the different con-
trollers is known. In other terms, we assume that the matrix
is given, while is only constrained to belong to a polytopic
set with a finite number of vertices, i.e., , with

( denotes the convex hull operator).
Due to the linearity of the mapping between and
, is mapped in the polytopic set

, , where ,
.

This uncertainty description lends itself to a very simple ro-
bustness problem formulation. Indeed, being that problem OSP
is linear, hence convex, w.r.t. , the set of solving OSP for
every can be characterized simply by replacing the
first inequality in OSP with inequalities, one for each vertex

. Hence, the new solution set is the polytope

with . Exploiting the lin-
earity of the index function in OSP w.r.t. both and , the
search for a robust optimal switching policy can be cast as a bi-
linear programming problem with disjoint constraints:

ROSP Problem

(14)

Such a problem admits an optimal solution where
and [36] (with denoting

the set of vertices of ). Applying von Neumann’s minimax
theorem [37], an equivalent formulation of ROSP is given by

An optimal solution to ROSP can then be found by
the following algorithm:

1) , solve the linear
program

and build the set ;
2) Exhaustively search and find

Consider now the more realistic case that the transition prob-
ability matrix of the Markov chain is also affected by UBB
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uncertainties, described by a polytope of stochastic matrices
such that , and let

denote the simplex of probability distributions. The set of
steady-state distributions corresponding to , i.e.

is unfortunately not convex in general. In fact, if denote the
steady-state vectors corresponding to vertex matrices , there
is no guarantee that is included in .

A numerically tractable condition for robust AS-stability can
be obtained by constructing a polytope providing an outer
(conservative) approximation of , i.e., .

Consider the image under of a set , de-
noted as . As a conse-
quence of the linearity of the map, if is a polytope

, then also is a polytope,
described by . Because

is the set of all fixed points for the map , i.e., ,
such that , it holds . For the same

reason, for , it holds . It is worth noting that
in general , but, being and ,
clearly . This suggests the following iterative
algorithm:

providing a non-increasing sequence of outer polytopic
approximations for as desired. If UBB uncertain-
ties also affect the mapping , i.e., if we assume

, then the approximating
polytope is mapped by means of all the mappings in in
the polytope . The general

ROSP problem is therefore restated by simply replacing the
polytope with .

VII. IMPLEMENTATION OF ANYTIME CONTROL SYSTEMS

In this section we discuss the problem of designing an ordered
set of feedback control algorithms for the given plant , whose
state and output evolve with the input as

(15)

A first, straightforward approach consists of designing a set
of independent controllers

where . A hierarchical design, with
and increasing performance, can be made e.g., by adopting
a sequence of design procedures of increasing sophistication
and/or by introducing successive refinements of design specifi-
cations. Controllers are then computed sequentially in the order

TABLE I
COMPUTATIONAL COMPLEXITY (CONSIDERED AS THE NUMBER OF

MULTIPLICATIONS EXCEPT BY 0 OR 1) AND NUMERICAL RELIABILITY OF

DIFFERENT STATE-SPACE REALIZATIONS OF A STRICTLY PROPER TRANSFER

FUNCTION ���� WITH � POLES. THE GENERIC CASE ASSUMES

NO PARTICULAR STRUCTURE IN THE SYSTEMS MATRICES

according to the switching policy proposed
above.

For AS stability analysis purposes only, it is convenient to set
up a compound state vector , with

, which includes the states of the plant and those of
each controller. The corresponding closed-loop matrices

are computed as follows:

(16)

where, assuming that the “sleeping” states corresponding to in-
active controllers , are reset to zero, we have

with the non-zero blocks in the –th block positions. It should
be noticed that this independent controller design approach is
the simplest but does not provide any modularity: indeed, in
such a mutually exclusive scheme, all computation results for

are eventually discarded.
To obtain a modular design for anytime control, one could

pursue a top-down approach, starting with the design of a com-
plex, high-performance controller (by, e.g., a technique
applied to the full set of performance requirements). Progres-
sively simpler controllers , may then be
obtained by e.g., model reduction techniques. As already re-
marked, however, this approach does not systematically guar-
antee closed-loop performance under switching.

Moreover, most model reduction techniques require
state-space realizations with full dynamic matrices , which
makes them impractical in real-time embedded applications.
Indeed, practicality requirements imply careful consideration
of algorithmic implementations of control laws [38]. Table I
reports a comparison among three different state space repre-
sentations for SISO systems.

We propose a simple, bottom-up design technique which
is suitable for addressing the main requirements of anytime
control algorithms. The method is based on classical cascade
design. Consider the two design stages illustrated in Fig. 1,
in which controllers are designed to ensure increasing per-
formance by any classical synthesis technique. The scheme
in Fig. 1 cannot be implemented as a modular anytime con-
trol, because after computation of the a) scheme, the input
to the block needs to be recomputed completely if the
b) scheme is to be applied. However, by simple block ma-
nipulations, the scheme in Fig. 2 can be obtained, where we
set The scheme in Fig. 2 is suitable
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Fig. 1. Stages of a classical cascade design procedure.

Fig. 2. Switched control scheme suitable for anytime control implementation.
The scheme is equivalent to Fig. 1(a) when the switches are in the � � � position,
and to Fig. 1(b) for � � �.

for anytime implementation. Indeed the series of and
is in open-loop (hence equivalent to an anytime filter

), while the parallel connection in the feedback loop
is simply obtained by summing the value computed in
to the value computed previously in . Using
Jordan form realizations of the blocks provides good numerical
accuracy as well as low computational complexity. The cascade
design method can be applied iteratively to provide a complete
hierarchy of controllers, satisfactorily addressing the issues
of hierarchical design, practicality, and modularity.

For AS stability analysis, consider the sequence of feedback
controllers .
Let the dynamics of the component controllers be realized
in a –dimensional state space with .
A state-space realization for is then given by

Accordingly, and assuming again that the states of inactive con-
trollers are reset to zero, the corresponding closed-loop matrices

have the same structure as in (16) with the new
block definitions

(17)

(18)

(19)

A. Tracking Control and Bumpless Transfer

The schedule conditioning technique of Section V is able to
address the switched system performance issue satisfactorily
when a regulation problem is considered. In reference-tracking
tasks, however, performance can be severely impaired by
switching between different controllers. Indeed, some of the
controllers may remain idle for a certain number of periods,
with their states in a “sleeping” condition. Sudden re-activation
of sleeping states may produce ”bumps” in the states and out-
puts, and degrade performance, if the active part of the system
has gone through significant changes in the meantime.

The design of bumpless-control techniques has been exten-
sively considered in the literature since at least the 80’s ([39]),
and is still an active area of research ([40]–[42]). However, most
of the existing results are not meant for resource-limited appli-
cations as those targeted here, and do not comply with the prac-
ticality requirements which are at a premium in anytime con-
trol. We describe below a simple method for bumpless control
that applies to the modular anytime structure in Fig. 2, and that
generalizes it to tracking problems for set-point references
which vary slowly with respect to the scheduling switches.

We assume in what follows that the input reference is scaled,
as customary in tracking problems, in the prefilter block (see
Fig. 2), by the steady-state gain of the corresponding closed loop
system with controller , . Let denote the state of
the controlled plant, and be the state of the –th controller
component . Suppose now that, at some instant in time ,
the –th level controller is active and the system components
have reached a steady-state equilibrium under a constant refer-
ence . Let , , and denote the corresponding equi-
librium values of the states and output.

Consider the event that, at time , the execution
of the –th level controller is imposed, by either the occur-
rence of a deadline or a conditioned schedule switch, while the
reference remains unchanged from . If (high-to-low
level switching), it can be easily verified that the active parts
of the system state remain at . If instead
(low-to-high level switching), the evolution of the whole system
for depends upon the values of the sleeping states at time

, i.e., , . The dynamics of controller states
during their idle periods is therefore an important degree-of-
freedom in switching control design. Straightforward policies
for managing sleeping states, such as e.g., keeping them con-
stant during sleep, may be adequate for the regulation problem,
but not for tracking (if the reference changes even slowly during
the idle time of a controller component, output bumps will nec-
essarily result at re-activation of that component). It is worth-
while noticing explicitly that zeroing the sleeping states, either
instantaneously – as assumed in the previous section – or pro-
gressively with a simple and computationally inexpensive dy-
namics as e.g., in [11], effectively avoid bumps only for zero-
regulation problems.

When the active part of the system is at steady state in
under a constant reference , perfectly smooth low-to-high

switching would be achieved if and only if the state of the -th
component controller ( ) is re-initialized as

(20)
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TABLE II
SAMPLED-TIME TRANSFER FUNCTIONS FOR SYSTEMS IN FIGS. 3 AND 7, AND HIERARCHICAL CONTROLLERS USED IN SIMULATIONS

Observing that and setting ,
one can rewrite (20) as

(21)

We replace this re-initialization formula with the following one:

(22)

which is equivalent to (20) provided that
. This holds true under the hypothesis that the system is at

steady-state before the switch. Indeed, using the definition of
and Woodbury’s matrix inversion lemma, it is straightfor-

ward to prove that . If the system is not
exactly at steady-state at , but the reference is varying slowly,
the difference is small and application of the
two formulas will slightly differ.

From a computational viewpoint, this re-initialization scheme
introduces negligible overhead, because matrices can be
easily pre-computed, and (22) needs to be evaluated only once
when a low-to-high transition occurs for the reactivated con-
trollers. However, for the sake of AS stability analysis, it is in-
strumental to consider an equivalent system where all sleeping
states are re-initialized at every time instant as

(the re-initialization of states clearly has no effect on the
closed-loop system until they remain inactivated). Therefore,
the closed-loop matrices have the same structure
as in (16), (17) and (18), but with (19) replaced by

(23)

In conclusion, the solution of the OSP (ROSP) problem with
matrices computed as in (16), (17), (18), and (23), provides the
(robust) optimal switching policy for the intended controller hi-
erarchy , while also guaranteeing AS stability of the bumpless
transfer technique (22).

VIII. EXAMPLES

The control of two mechanical systems will be used to il-
lustrate the application of the proposed technique. In the first
example we consider a regulation problem for both a nominal

Fig. 3. Model of Furuta pendulum with zero offset ([43]).

and an uncertain scheduler model. A conditioning Markov chain
solving the OSP and ROSP problems, respectively, is obtained
which satisfies the 1-step average contractivity condition. The
second example illustrates application of -step average con-
tractive solutions to the OSP problem, and the effectiveness of
the proposed bumpless transfer technique to track piecewise-
constant references. In both cases, the unit delay between the
output sampling instant and the application of the control ac-
tion has been explicitly considered.

For the sake of brevity, in the examples we consider a deter-
ministic WCET model of controller execution time, so that, in
the light of Remark 2, the process is described by a FSHIA
Markov chain. The same transition probability matrix of the
nominal scheduler process will be assumed in both examples,
which is

(24)

The corresponding steady-state probability distribution is given
by .

In the application of the contractivity condition for solving
(R)OSP problems, a suitable choice of the adopted matrix norm
can considerably help. In our examples we use the method pro-
posed by [32] to choose a vector norm and induced
matrix norm , where is a non-singular ma-
trix satisfying the condition that such that
(this condition generalizes directly to the multistep problem).

Example 1 (One-Step Contractivity With Robustness): A
model of Furuta pendulum with zero offset ([43]) is depicted
in Fig. 3 and its sampled-time linearized dynamics is reported
in Table II. With reference to the connection scheme in Fig. 2,
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Fig. 4. Regulation results for the Furuta pendulum example: (a) output signals;
(b) mean values of RMS errors (for one thousand runs) of the closed loop system
with different control schedulings.

the first controller has been designed to ensure the sta-
bility requirement, while the controllers and are
obtained applying LQG design techniques. Prefilters are
constants used to adapt the steady-state gain and ensure static
requirements. Notice that, in order to model the constant unit
delay, an additional term should be added to the transfer
function .

For the Furuta pendulum a solution to the 1-step OSP with
QoC index vector is ,
resulting in and .

In Fig. 4(a), the output signals obtained by different con-
trollers are shown, corresponding to regulation errors for ini-
tially perturbed angular velocity with respect to
an equilibrium velocity of , and an equilibrium pen-
dulum displacement of from the vertical. It can be no-
ticed in this case that the application of the greedy switching
policy causes instability.

In Fig. 4(b), the Root Mean Squares (RMSs) of the regula-
tion error are shown for different controllers corresponding to

Fig. 5. Samples of steady-state probability distributions in � for � � � and
the outer approximating polytope� ���. On the right, the approximating poly-
tope is located on the canonical 3-D simplex.

the same perturbation. Data plotted represent the average RMS
error of one thousand simulations performed for different in-
dependent realizations of the scheduler and conditioning pro-
cesses. Plots labeled Controller 1, 2, and 3, corresponding to re-
sults obtained without switching, are reported for reference. No-
tice the performance increase which would be obtained by the
(unschedulable) higher-level controllers. The average behavior
of the greedy switching policy is clearly unstable. On the same
Fig. 4(b), the plot labeled “Markov” shows the average RMS
error obtained by the stochastically conditioned scheduler. This
example shows how the proposed stochastic switching policy
ensures the AS-stability of the closed loop system (which is not
guaranteed by the greedy policy), while it obtains a definite per-
formance increase (of the order of 50%) with respect to the con-
servative scheduling policy consisting in using only Controller
1 [see Fig. 4(b)]. Consider now the case that the actual transi-
tion probability matrix of the scheduler is affected by UBB un-
certainties. In practical cases, a rough description of the uncer-
tainty may be available in terms of a bounding box centered in
the nominal value and described by an additive uncertainty
matrix , i.e., where

. Notice however that is not in general a set
of stochastic matrices, so that a polytopic description of the
possible perturbations is obtained as the intersection of with
the set of stochastic matrices (this can be done e.g., by using
the Polytope Library of the Multi-Parametric Toolbox [44]). In
our example, taking as in (24) and ,

, and , a matrix poly-
tope is obtained which has 216 vertices (not reported here).
Using the algorithm presented in Section VI, an approximating
polytope of the steady-state probability set with 30 vertices is
obtained after 8 iterations (see Fig. 5) A solution to the ROSP
problem for this example with QoC index vector
is , resulting in (i.e.,
slightly worse than the QoC index in the nominal case).

In Fig. 6, the RMSs of the regulation error for different closed
loop controllers is shown. The perturbed initial conditions are
the same of the previous case (with known scheduler). The RMS
regulation error is obtained as the mean of the RMS errors for
2500 simulations, whereby the scheduler stochastic description
is obtained by randomly choosing 50 transition probability ma-
trices and considering 50 different sample realizations
for each matrix. The closed loop system driven by the greedy
switching policy still appears unstable. The example shows re-
sults very close to the ones obtained for the nominal scheduler.
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Fig. 6. Regulation results for the Furuta pendulum example and scheduler tran-
sition probability matrix affected by UBB uncertainties: mean value of the RMS
errors (for 2500 runs) of the closed loop system with different schedules.

Fig. 7. Model of a Translational Oscillator/Rotational Actuator (TORA)
system ([45]).

Example 2 (Multi-Step Contractivity and Tracking): A
model of the Translational Oscillation Rotational Actuation
(TORA) systems ([45]) is depicted in Fig. 7, while its sam-
pled-time linearized dynamics is reported in Table II. In this
case the first (simplest) controller ensures only the stability
requirement, while other controllers are designed by hand
to achieve performance enhancements with minimal com-
plexity increase. Fig. 8(a) and (b) report plots to illustrate
application of the proposed methodology to the TORA ex-
ample. A 4-steps lifted version of the OSP problem with
index vector admits a solution resulting
in , according to which the conditioning
sequence of controllers is a concatenation of the 81 possible
combinations of length 4 of the three controllers. The steady
state conditioning probability distribution is not
reported here; it is however worth noticing that the two con-
troller sequences and
turn out to be by far the most likely, being used in more than
the 51.5% and the 40.5% of cases, respectively. Results of sim-
ulations of the different controllers and scheduling policies are
reported in Fig. 8(a), for a regulation problem from perturbed
initial angular velocity of 0.1 rad/s. The RMS performance
plots in Fig. 8(a) show that the greedy policy (in this particular
case) does not lead to divergence. In Fig. 8(b), sample realiza-
tions of scheduler, conditioning and conditioned processes are
depicted: the prevalence of the preferred patterns is apparent.

Fig. 8. (a) Regulation results for the TORA example: mean values of RMS er-
rors (for one thousand runs) of the closed loop system with different control
schedulings. (b) Sample realization of the scheduler, conditioning and condi-
tioned stochastic processes for the TORA example. At instants labeled as� the
conditioning process (i.e., the switching policy) calls for the execution of Con-
troller 2, while the scheduler gives time only for the execution of Controller 1,
hence the conditioned process executes Controller 1. Similarly, at instant� , the
switching policy call for Controller 3 is overridden and Controller 2 is executed.
At instants tagged as�, the opposite occurs, i.e., the conditioning process forces
execution of Controller 2, while the scheduler could allow Controller 3 to be ex-
ecuted. Finally, at instants labeled as �, the switching policy and the scheduler
agree on the execution of Controller 3.

Finally, results of application of the proposed technique for
a tracking control problem for the TORA example are reported
in Fig. 9. The reference to be tracked by the angular position
is a piecewise constant signal of amplitude , period
10 s and pulse width of 30%. The comparison of RMS errors
shows that the simple bumpless switching technique proposed
in Section VII-A ensures good performance, as shown in
both Fig. 9(a),(b). The RMS performance of the conditioned
switching policy is better than both the conservative and the
greedy approaches and is quite close to the results given by
using always Controller 2, which is not a feasible choice.
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Fig. 9. Tracking results for the TORA system: (a) output signals; (b) RMS
errors (one thousand runs).

IX. CONCLUSION

We considered the problem of scheduling the execution of
several control tasks on a multi-tasking, preemptive RTOS, with
an anytime control approach. Given a stochastic model of the
scheduler and the set of controllers, we formulated a linear pro-
gramming problem whose solutions provide switching laws that
condition the scheduler in such a way that the resulting switched
system is stable in a probabilistic sense. Although a satisfac-
tory solution for this problem is not guaranteed for one-step
switching laws, we have shown that for any set of stabilizing
anytime controllers it is possible to find a long enough step
horizon , such that a -step switching law exists providing
almost sure stability. The case of a scheduler model affected by
unknown but bounded uncertainties has also been considered,
and results on robustness have been reported for the one-step
contractivity condition.

We also presented simple design techniques to synthesize
anytime controllers, ensuring robustness to numerical errors as

well as reduction of computational burden w.r.t. worst case exe-
cution time design. A bottom-up approach was described, where
closed-loop performance are used to drive the practical design of
a compositional hierarchy of controllers. Tracking problems re-
lated to the re-activation of controllers are treated using a bump-
less-transfer approach, still guaranteeing AS stability and ca-
pable of significant performance improvements despite its sim-
plicity and computational inexpensiveness.

Finally, the performance of the controlled system under
switching have been illustrated by simulation. Two different
mechanical systems are used as examples, showing how the
proposed anytime control technique performs better than con-
ventional, over-conservative control scheduling approaches.

APPENDIX

Lemma 2: Constraints , , and in Defi-
nition 2 are satisfied by any with

Proof: Recall (12) and in particular

The vector is the unique invariant probability distri-
bution of the merged chain , hence satisfies constraints
formally equal to and (provided that the rigth di-
mensions are specified). The fact that even satisfies
and , hence, is a straight consequence of and
being stochastic matrices.

We prove now that satisfies constraint . Let us
re-write as

(25)

and as

(26)

Substituting (26) in (25) we obtain

from which, rearranging the first two sums and exchanging
names to the indices, we have
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If the previous inequality is trivially verified, else
can be removed. Thus , which is

true by virtue of .
Before proving Theorem 4 we need some preliminary results

on primitive matrices. Recall that the transition probability ma-
trix of a FSHIA Markov chain is a time-invariant stochastic ir-
reducible aperiodic matrix of finite dimension.

Definition 3 ([46, p.127]): A matrix is primitive if it is
irreducible and aperiodic.

Theorem 5 ([46, p.128]): Let 1. The following are
equivalent:

1) is primitive.
2) for some .
3) for all sufficiently large .
Primitivity is preserved by the Kronecker product.

Lemma 3: Given and primitive matrices,
then is a primitive matrix.

Proof: From Theorem 5 we know that there exist
such that and . From point 3 of

the same theorem we know that there exists
such that and . Recalling the definition of
Kronecker product, it is apparent that and using
the “mixed product rule” , hence

is primitive.
Proof of Theorem 4:

i) From the independence of the random variables
and , we can write compactly the prob-
ability distribution of the merged random variable

as follows:

(27)

Considering the previous relation in , yields the ini-
tial probability distribution for the process , while
in yields

where we used the “mixed product rule.” To prove that
is a FSHIA Markov chain, we must show that the

transition probabilty matrix is a time-in-
variant stochastic primitive matrix. The first two prop-
erties follow directly by the same properties of and

and by the definition of Kronecker product; the third
property is proved by Lemma 3.

ii) From (27) and the previous point, we obtain the evolu-
tion (8). Considering again (27), it is apparent that

for any
. To extend this property to any initial distribution

, it is sufficient to recall that the steady-state prob-
ability distribution of a FSHIA Markov chain is unique.

1With� � � (� � �) we mean nonnegative (positive) matrices. Stochastic
matrices are a subset of nonnegative matrices.
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