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Fig. 4: A MIAs (Mechanical Impedance Actuators) powered arm, realized at Sugano 
Labs, Waseda University, in 1997. Picture from: 
http://www.sugano.mech.waseda.ac.jp/wendy/arm/mia1-e.html

Fig. 3: A SEA (Series Elastic Actuator) used as a robotic leg, realized from the 
Yobotics! company. Picture from: 
http://yobotics.com/actuators/actuators.htm

Fig. 5: A Variable Stiffness arm, realized by the Interdepartmental Research center 
“E. Piaggio”, in University of Pisa.

Fig. 2: Schematic drawing of a typical servomotor used for industrial applications.
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Fig. 1: Schematic drawing of an electric motor used for industrial applications.

● Embeds gearbox Embeds gearbox 
sensor and controlsensor and control

● Very rigid & inertial Very rigid & inertial 
structurestructure

● High precisionHigh precision
● Poor dynamicsPoor dynamics
(position source)(position source)

● Needs gearboxNeeds gearbox
● Needs controlNeeds control
● Poor dynamicsPoor dynamics
(acts as torque (acts as torque 
source)source)

● Compliant Compliant 
structurestructure

● Less precision Less precision 
& bandwidth& bandwidth

● Embedded Embedded 
dynamicsdynamics ● Programmable Programmable 

compliancecompliance
● More dynamics More dynamics 
are possibleare possible

● Real-time variable  complianceReal-time variable  compliance
● Variable embedded dynamicsVariable embedded dynamics
● AdvantagesAdvantages

● Safety / Performance trade-off Safety / Performance trade-off 
optimizationoptimization

● Actuator RobustnessActuator Robustness
● Adaptability to environmentAdaptability to environment
● Energy optimizationEnergy optimization

● ApplicationsApplications
● Human Robot InteractionHuman Robot Interaction
● RehabilitationRehabilitation
● Gait locomotionGait locomotion
● ……more to come!more to come!

Fig. 7: typical workspace of a DC motor Fig. 8: Example workspace of a VSA.

VSAVSA adds one  adds one degree of freedomdegree of freedom to the possibilities of robotic actuation! to the possibilities of robotic actuation!

Fig. 6: Working concept of a Variable Stiffness Actuator (VSA).
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Fig. 9: VSA I, the first electric variable stiffness actuator, developed within the 
Interdept. center “E. Piaggio”, of University of Pisa.

Fig. 10: VSA II, the second variable stiffness actuator developed within the Interdept. 
center “E. Piaggio”, of University of Pisa, uses bidirectional non-linear springs.
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Fig. 11: VSA HD, the third VSA developed within the Interdept. center “E. Piaggio”, 
optimizes and integrates the whole actuation system trough the clever usage of 
harmonic drive gearboxes

Fig. 12: the Qbot is the ultimate version of VSA developed within the Interdept. center “E. Piaggio”. Completely integrates prime movers, 
gearboxes, sensors and low level control logic and power drivers inside a modular structure to offer an easy variable stiffness robotic 
development platform. The Qboid on the right is just one example of the many multi-dof robot that can be realized combining more Qbots.
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MiniaturizationMiniaturizationProof of Proof of 
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● Impedance ObserversImpedance Observers

Optimal controlOptimal control

● Safe BrachistochroneSafe Brachistochrone
Fig. 15: Performance of two different types of stiffness observers, developed within University of Pisa, tracking the stiffness of a VSA. Due to the absence of stiffness 
sensors, stiffness must be identified either offline, trough accurate calibrations, or online with a non-linear observer.
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Fig. 14: Performance of VSAs can be optimized to achieve very different goals, achieving profound insights which can help to understand also biomechanical behavior of human 
and animals. In the picture an example of the optimal control pattern designed to drive a nail with the fewest hits of a VSA-hammer .

● Energy  Transfer OptimizationEnergy  Transfer Optimization

Fig. 13: Performance of VSAs can be optimized to 
achieve very different goals, achieving profound insights 
which can help to understand also biomechanical 
behavior of human and animals. In the picture an 
example of the optimal control pattern designed to move 
a VSA arm in the shortest time while remaining within 
safety constraints determined by injury risk in case of 
accidental impact with a human operator.
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