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Abstract— The need for adaptability to the environment, en- (a) robotic application (b) biometric application

ergy conservation, and safety during physical interaction with
humans of many advanced robotic applications has prompted the
development of a number of Variable Stiffness Actuators (VSA).
These have been implemented in a variety of ways, using dif-
ferent transduction technologies (electromechanical, pneumatic
hydraulic, but also piezoelectric, active polymeric, etc. ) and
arrangements with elastic elements. All designs share a funda-
mentally unavoidable nonlinear behavior. The control schemes
proposed for these actuators typically aim at independently
controlling the position (or force) of the link, and its stiffness with
respect to external disturbances. Although effective feedlwk con-
trol schemes using position and force sensors are commonplace in
robotics, control of stiffness is at present completely open—loop
In practice, instead of measuring stiffness, it is inferred from
the mathematical model of the actuator. Being this in most cases rig. 1. Two possible applications for Non-invasive reaidistifiness measur-
only roughly known, model mismatches affect severely stiffness ments: control of a Variable Impedance Actuated robot (a) dedtification
control, undermining its utility. It should be noticed that, while  of human limb impedance (b) [6].

for constant stiffness elements an accurate calibration of the

model is possible, the same approach is hardly viable for variable

stiffness systems.

We propose a method for estimating stiffness while it is varied, per se (where by physical quantity it is meant “a property
either intentionally or not, hence without knowledge of the " h bod bst h th ¢
command inputs. The method uses instantaneous measurements®’ & P enomenon, ody, or substance, where theé property
of force and position at one of the ends of the compliant Nas @ magnitude that can be expressed as a number and
elements in the system, and derives a measure that asymptoticallya reference” [5]. Indeed, impedance is rather a differéntia
converges to the current value of stiffness, up to an error gperator relating the time course of physical quantitiescés
which can be bounded by an arbitrarily small value. Simulation 54 displacements). In full generality, therefore, thecpss
and experimental results are provided, which illustrate the of characterizing imped f t’ . ' bl f
performance of the proposed measurement method. . 9 _pe gr_me_o asys em_ls more a problem (_)

dynamical system identification than a direct measurenrent i

I. INTRODUCTION a traditional sense.

To fully characterize the motion of human limbs, not only Current protocols for identifying impedance in human mo-
knowledge of their position and velocity, but also of theition typically measure the basic parameters of mass, dampin
physical behavior in interaction with the environment,. i.eand stiffness, which concur in forming impedance, by experi
their mechanical impedance is needed [1, 2, 3]. Analogpusigents in which perturbations are purposefully injectedhia t
many modern robots are capable of changing their mechaniggstem, and their effects are measured. These experinents a
impedance to better perform a task and adapt to an envirelesigned specifically so as to isolate the effects of differe
ment. Variable impedance is obtained in these system bgreitparameters of impedance, while at the same time minimizing
intrinsic physical properties of the actuators (e.g. meséh perturbation of the task during which the measurement is
humans, or Variable Stiffness Actuators [4] in robots) or bpeeded [3]. In artificial robotic systems, impedance patarae
low-level control (neural reflexes or impedance control).  are either calculated on the basis of a precise descripfion o

Because of its ubiquitous importance, accurate measuiieeé model (wherever this is available), or obtained through
ments of the mechanical impedance of limbs are very imaccurate calibration procedures.
portant. Unfortunately, impedance is a rather elusive abje In both natural and artificial systems (e.g. see fig.1), ithdbou
to measure, as it is not, strictly speaking, a physical dtyantbe of great utility to have a method which could measure




all impedance parameters in real time, without perturbing f
the normal execution of the task, and robust to inaccurate y()
modeling and time-varying parameters which could alter cal }—>
bration results. Of particular interest in robotics woukd the

application of such methods to the class of Variable Impedan f(t) —
Actuators (VIA), which have been recently introduced to {J

address the need for adaptability to the environment, gnerg _,\I\N\N\_
conservation, and safety during physical interaction hith

mans. These have been implemented in a variety of ways, C) O k

using different transduction technologies (electromeats, /

pneumatic, hydraulic, but also piezoelectric, active padyic,

etc. ) and arrangements. All designs share a fundamentally

unavoidable nonlinear behavior. Fig. 2. A simple mass-spring-damper system.
The control schemes proposed for these actuators typically

aim at independently controlling the position (or force) of

the link, and its impedance (most often just stiffness) with . . .

respect to external disturbances. Because of the lack afla ren1 [lnear springs,f(y) = ky, where the gon;tan% IS the

time technique to measure impedance, or even just stif:fne%grmg stifiness. In general, the force functio is nonlinear

; . and time-varying, as it may depend on other parameters
controllers proposed so far (see e.g. [7]), are in realitgrep : . . C
loop, thus completely prone to model uncertainties. (Whlc.h rt_epresent mternz_;ll ;tate_s or mputs), which in tumym
Several works in the field of Admittance/Impedance robdf"Y N time. Stiffness> is in this case defined as
control and haptic telemanipulation discuss the estimatib of (y, )

impedance. Online estimation of the impedance parameters o o(y,u) = Ay

the contact dynamics is used to improve stability and olveral i ) . ) .
performance of interaction and telemanipulation tasksstMo!© introduce impedance, consider first the paradigmatic ex-
of these works assume a linear model for the environmedi'Ple of a mass-spring-damper system (see fig. 2), described
dynamics (a simple spring, a spring-damper, or a massepriRS & relation between the applied fortg) and positiony(t)
damper system), and use methods such as adaptive coanHF?th

recursive least squares, Extended Kalman filters and Active f=miy+by+ky. Q)
Observers to obtain an estimate of the parameters which fits )
best the assumed model best with the observed measuremeffi§. three parameters, b, k are constant, the O.D.E. (1) is
An extensive list of references about those methods cHpgar and time-invariant. Introducing the Laplace tramsfs

be found in [11]. Other works assume nonlinear impedanéds): Y (s) of force and position, one has immediately

contact model, as Hunt-Crossley’s, see in example [12]. 2
. . S F(s) = Y(s). 2
Our work while drawing some inspiration from those afore- (5) = (ms” + bs + k)Y (s) (2)
mentioned approaches, moves a step forward with the sufpre operatorZ(s) := (ms? + bs + k) is called the me-

stantial improvement of considering the possibility of lt&® chanicalimpedance of the spring-damper-mass systénirhe

with a time-varying non-linear spring, without assuming/ anreciprocal operator of impedance, calledmittance A(s),
a-priori description of the spring model. Notice that norlr generalizes compliance as it maps forces in displacements:
and time-varying impedance parameter are ubiquitous apds) — A(s)F(s). The admittance operator is causal (while
unavoidable in VIA. impedance is not).

Moreover, in this paper, we consider the problem of real- The apove approach can be generalized to a nonlinear
time impedance identification along motions that are nginamic setting by considering the relation between fqrces
intentionally perturbed. After setting up and discussihg t gisplacements, first and second derivatives of displactmen
problem in general terms, we focus on stiffness identiicati 4, internal states, and its graptG' ¢ F xY x DY x D2Y x
and propose a method that uses position and force sengorscomprised of 5-tuplesi(t) = (f(t),y(t),5(t), (), v)
to provide a measurement without recurring to any a prioghrresponding to an idealized, infinite set of experimelits.
knowledge of the mechanical model of the system. Simulatimf,%y’ §j,u) = 0 is an analytical description of the graph,
and experimental results are provided that confirm the Mgbi 3¢ 4, is a regular point, then force function f(y, 7,3, ) is

and practical applicability of our theoretical results. defined in a neighborhood df,. Defininggeneralized stiffness
Il. PROBLEM STATEMENT as )
The simplest example of mechanical impedancesgring, k(d) = — <8G(d)> 8G(d)7
i.e. a sample of material which exhibits a relation betweéen t of dy

applied forcef and the steady—state displacemgrgiven by
11t should be noted that in the literature, the teimpedance is sometimes
f= f(y) used to denote the relationship between velocity and force.



generalized damping as

-1
- (58"

generalized mass as
_[(0G(d)\ ! 9G(d)
mo=-(%57) o
and generalized /O characteristic as

-1
V(d) _ _ 8G(d) 6G(d) Fig. 3. A link subject to an external load and actuated by twtagonistic
af ou '’ actuators. Nomenclature refers to actuator models used inaifd) (4),

. . _ respectively.
one can compute the &ehet differential of the force function
as

5f = m(d) 5j + b(d) 53 + k(d) Sy + v(d) u .

From consideration of the positive definiteness of the kinet |
energy, Rayleigh dissipation function, and elastic enaagy :
sociated with the generalized inertia, damping and st#né
follows thatm, b, andk are always greater than zero.
Alternatively, one can describe admittance along a giver
trajectory as the linear operator mapping small changes o
the external force to changes in the resulting motion. Tig. 4.  Generalized stiffness (left - dashed is without dyaterm) and
do this, consider the nonlinear ODE obtained by solvi neralized damping for the example with actuators as in (8)jest to a
o . . . it step in external torque & = 1s, and with time-varying activation
G(f,y,9,9,u,t) = 0 at a regular point with respect §9as  ,(¢) = w,(t) linearly increasing from 0 af” = 1s to 1 atT = 15s.

. . Numerical values used in simulatio:= 0.05Nms?, mgl = 0.INm, 8 =
i=99, f u) INS?m, alpha = INM/rad, taumaz = 2Nm.

0 15 o 5
Time () Time ()

and its state space form, withe R?, 1 =y, zo = 7, i.e.

d [ T wheref, = (1/246), 0: = (7/2 —0), Tmae IS the maximum

dt { } - { g(x1, 2o, f,u) ] isometric torqueyy;, u; are the normalized contraction param-
. o - ) o eters 0 <u <1, u=up,u), anda is a constant assumed to

For given initial conditionsr(0) = 7, and a given course in pe gqual for the two actuators. We easily obtair= I for the

time _for force f(t), Ieta?(t) be the traje_ctory obtained, i._e. thegeneralized mass$(d) = 23/6| for the generalized damping,
solution of the dynamics ODE. The first-order approximatiog,

T2

of the dyna_mics of the pertgrbed ‘motiarit) = x(t) - z(t) k(8,u) = aluy + ug) — mgl cos(8)
corresponding to a change in forgét) = f(¢t) — f(¢) is the
time-varying linear system for the generalized stiffness. In the latter expressioa,rtie
- of a gravity-induced term and a co-activation stiffnessmter
i =T(t)Z 4 O(t) { f } , are apparent.
u If a different actuator model is adopted, namely (cf. [9])
where T o= —a(ly— N>, 4)
0 1 0 0 o= —a(f— )
L@)=| _ka _b@ |, OO)=| 1 wa |- .
m(d) m(d) m(d) m(d) where);, \; are interpreted as the rest lengths of the actuators,
Example: Consider the link in fig. 3, actuated by two°"€ has
antagonistic actuators (with a role vaguely similar to tbat k(0) = 2a(m — Xy — A) — mgl cos(6)

the biceps and triceps muscles at the elbow), with a quadrati

damping and subject to gravity and to an external torque loadThe values of stiffness and damping for the two examples
7.. The system dynamics are above, corresponding to time-varying values of the control

i o parameters, are reported in figs. 4 and 5, respectively.
10+ p0|0) — 7 + 7t — mglsing — 7. =0 °

Assume first that the two actuators generate torques acgprdi I11. | MPEDANCE OBSERVERS

to the model (cf. [8]) For the motivations above introduced, we seek a method
T = (Tmaz — abp) up 3) for characterizing impedance using force and position mea-
Tt = (Tmaz — @) uy surements taken during the natural evolution of a system, as



or on-line nonlinear state observers (e.g. Extended Kalman
Filters) applied to system (5).

B. Variable Siffness Observers

Unfortunately, generalization of the above straightfaxdva
approach to the case when impedance is nonlinear and/or time
varying is not trivial. To convince oneself, it is sufficietd
vvvvvv " ' Tome T * consider the case of an unknown force functiefy, u(t))

Fig. 5.  Generalized stifiness (left - dashed is without gyaterm) and replacing the linear spring term in (1), i.e.
generalized damping for the example with actuators as in (fjest to a

unit step in external torque &t = 1s, and with time-varying reference angle f=mij+by+ s(y,u), (6)
Ap(t) = A¢(t) linearly decreasing fromr/3 at T = 1s to 0 at T = 15s.
Numerical values used in simulation as in fig. 4, exceptcor 0.3. when no information on the structure gfor on the variable

u(t) is available?.
) . In the rest of this paper we describe a different approach

e.g. represented by the reference motign) under a given 5 measure stiffness in a system such as (6). For simphcity’
reference excitationf(t), assuming that the design of thesake, et us assume for the time being that accurate measures
excitation f(t) is not at our disposal. of the applied forcef (¢) and of the positiony(t) are available,

According to the description of impedance as a differentighg that numerical derivatives of these signals can be done.
operator, its characterization can be cast as an idenificat pgsme also that both the mass and damping coefficients,
problem of a dynamical system. This is done first for the cag@qy, are known (these strong assumptions will be discussed
of linear impedance as follows. later on). No assumptions are made on the function )
except that it is smooth in both arguments, with bounded

) derivatives of all orders.

Congderk an, ei<tended State  vectorz =  We assume that the stiffness-regulating inpuft) is

[v 9 —% —% =] and rewite the dynamics hoynded with its first derivativei(t). It should be noticed

A. Observers for linear impedance

of (1) as that, in building an observer that relies only on measurdésen
29 0 of the positiony(t) corresponding to the external logdt),
Z123 + 2924 25 it is physically impossible to observe a stiffness which is
5 = 0 +1 0 |f 5 changing in time4(¢) # 0) while the system is at equilibrium
0 0 ®) (y(t) = 0). More precisely then, we will make the assumption
0 0 that the ratio between the stiffness regulation rate of ghan

y = h(z)=2. and the velocity of the measured trajectory is bounded, hame

. . . hat, for all timest during the application of the observer, it
The identification of the impedance parameters can thus

cast as a nonlinear state estimation problem, i.e., from the la(t)]
measurement of the external for¢eand positiony, estimate [9(t)] <veER, Vi
the initial statez(0), and in particular its three last components
which completely determine the linear impedance. Let af  ds(y,u)
We preliminarily establish that the problem is well posed. o T’ = o(y, u(t))
Indeed, considering the observability codistribution fbis Y Y
system, denote the stiffness to be measured. Also d¢t) denote
its estimate at time, andg(t) = o(y,u(t)) — 6(t) be the
1 0 0 0 0 estimation error.
0 1 0 0 0 Differentiate (6) once with respect to time to get
Qz=| B A a1 22 0 o
0 0 0 0 1 f=mY +bj+ oy + su1,
2
23024 =3 324 2 +Ozlz4 178 ;222'24 z(l where s, := %. Using the current estimate of stiffness

and the assumptions stated above, a best-effort predifdion

it turns out that form, b,k > 0, dimQ(z)* = 0, Vz except f can be written (in the absence of information«p, ») and
z1 = z9 = 0. Hence, if the system moves from the equilibriumen «(¢)) as
the three_ 'Imear impedance parameters can be reconstructed f=m¥ +0bj+ 6y
from position and force measurements.

To actually estimate the impedance in this case, differengin the case a parametric description of the force functionviilable,
methods can be adopted. These include standard off-lf@ in terms of a finite polynomial expansigity, u) = ko(u) + k1 (u)y +
. i . . . . . ka(u)y? + ..., andu is constant, an observable finite dimensional nonlinear
identification techniques (which exploit the linear nataféhe

! system can be built. However, the possibility to achievedgperformance of
regressor for the unknown parameters), such as e.g. in [1%, corresponding observer is dubious.



We will show that the update law values of the spring parameters. The springs were subject

. - to a external forcef(t) given by a chirp in the frequency

o = afsgn(y), (") range from 0.1 to 10 Hz, with deformationst) in the range
[0.25,2.25]cm. The observation error (shown in fig. 5(b))

with « > 0 and )
decays to less than one percent in less than 0.3 s.

& i 2] #0
sgr(m) = , (a) tracking
0 if|z]|=0 54 '
is such thatr(t) can be made to converge to the true stiffness ,:2
value o (t) within an uniformly ultimately bounded error. 7%
Indeed, consider the positive definite error function £
@ 10f
1. £
Vo = 502 3 o
E 50
and its derivative along the trajectory defined in (7), i.e. g
V, =66 =66 — 30 =66 —ads, usgny) — ad?|y| . (8) 5 Reaisifness
Time [s] - Estimate

While the first two terms in the rightmost sum in (8) are
indefinite in sign, the third term is negative definite. Tliere,
wherever the inequality holds

(b) error

—_
S

Rel. Error [%]

i

a o

o o o

P

) [ —
|O" > |5u|7. + —— 0 05 1 15 2 25 3 3.5 4 4.5 5
gl alyl Z100
the derivative of the error functiol, is negative, hence the 5 50\
estimation error decreases. By writiig= o,y + o,%, and I e e e e -

using the upper bound above assumed on the rate of stiffnes g
change, we have that stiffness estimates converge to the tru
value within an ultimately uniformly bounded error given by

o] > % + (|su| + |0u|> v 9)

(67

Rel. Error [%]
i

o o

o © o
-//v

I I I I T I
0.5 1 15 35 4 45 5

o

25
Time [s]

Fig. 6. Simulation results for the exponential spring testhuthree different
) . ) springs ¢ = 2.7e 2, b=1,a=81e 6, b=23;a =135"10 b =5,
Remark: The assumption that the mass and damping pectively). Stiffness tracking is shown in panel (a) aslative estimation

exactly known is not realistic. However, it is easy to velthigt error in panel (b). Only the first 5s of the relative error ahewn, to focus

the analysis above carries over exactly even with no kncgded‘?” the transient phase. Relative error remains under 1% #oreht of the

of m andb, provided that a force sensor directly placed on the

elastic element provides a measure of the fefag ). In case o

this is not available, then errors on the and b parameters B- Antagonistic VSA systems

have the effect of making the ultimate error larger (thigetff  One of the simplest and most common examples of variable

can be countered by increasing the observer gain stiffness, both in natural systems and in robotics, is thest
antagonist arrangement on nonlinear actuators. To ittestr
IV. SIMULATION RESULTS how our proposed stiffness observer applies to antagonist
As a first illustration, the proposed stiffness observer MSA systems, consider the examples reported above in fig. 3.
tested using numeric simulations in two systems. Application of the stiffness observer in this case can baezr

A. Single spring ogt in two ways: 1) the tendon tensiom@ T, are measured
' directly, or 2) the external torque.(¢) is measured, and
In this first test, the observer algorithm is used to track thﬁ;timates of the link inertia and dampmg are used. In all
stiffness value of a single spring with non-linear, timeanant cases, a measurement of the link angle) is necessary. It
stiffness characteristic. The simulated elastic elemsnan should be noticed that, while the first method does not requir
exponential spring, whose force/displacement charatieis any estimate of link parameters, it is more invasive in the
s(y) = ae® | (10) system, and is iqapplicable to e.g. s_tiffness measurenment i
a human elbow joint. On the opposite, the second method
Such springs are designed so that the stiffness at any opgrats easily applicable to this case, although its accuraci bl
point is proportional to the force the spring is exchanginthw reduced if poor estimates of inertia and damping are availab
the external environment. Simulation results for the antagonist arrangements of two
Figure 5(a) compares the observer estimate of the sprimyiscle-like actuators as described in (3) and (4) are repant
stiffness with its exact value(y) = bae?, for three different fig. 7 a) and b), respectively. In both simulations, the exer



(a) example 1 (b) example 2 - (a) tracking
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Fig. 7. Stiffness tracking for an antagonist VSA systemireal adopting :
nonlinear muscle-like actuators as in equations 3 and 4 [pdag and (b) ;
respectively).
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Time [s]

(a) example 1 (b) example 2 (b) relative error

100f
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Fig. 8. Stiffness tracking of the antagonist VSA systems withscle-like
actuators as in (3) (a), and (4) (b), with1@% error in the knowledge of
parametersn andb.

| | | | |
0 5 10 15 20 25 30

Time [s]
force 7. is a sinusoid withw = 5 rad/s and amplitude 0.02 (c) link movement
Nm. Stiffness is varied during the simulation in a saturated  ° i i
ramp fashion. The ensuing joint motidt{t) is in the range oo oot

+0.01rad, while§ varies from zero td.05 rad/s.

To assess how strongly the performance of the stiﬁness%
observer is affected by inertia and damping parameter mis-§ i
matches (in the case that only external torques are megsuredz
we performed simulations in the hypothesis thaandb were =
in error by10% of their actual value. Results reported in fig. 8  _4
indicate that, for both muscle models, the relative error on e
stiffness is of comparable magnitude. 01t n - . - - S

Finally, a simulation is reported for the same link actuated Time (s
by two exponential springs (9). In this case, the stiffness fig 9. simulation results for the VSA system with exponensirings.
exponentially increasing in time (by linearly varying the-c a) Comparison of the link stiffness with its estimate; b) Retaestimation
contraction of the antagonist springs). A sinusoidal ewr €mor ¢) link motion during the simulated experiment.
force is applied during the initial and final phases of the
experiment, while it is set to zero in the time interval bed¢we i o ]
10s and20s. Correspondingly, motion of the links stogs= @& Seécond-order filter with time constant 6f02s. Signal
0), and the stiffness estimate is not updated in the intervderivatives used in the algorithm were approximated by the
When motion resumes, the estimation recovers quickly to tRgmerical filter described by the transfer function
exact value. s

D) =10 -

—0.02F

(11)
V. EXPERIMENTAL RESULTS
The algorithm has been tested on the experimental devigespite the simplicity of such “Dirty Derivatives” technuie,
shown in figure 10, implementing the antagonistic VSA devid@sults were suitable for the purposes of the present work,
with exponential springs described previously. Two straiProving the practical feasibility of the proposed method.
gauge load cells were used to measure the tendon tensionk should be pointed out that in this paper the impedance
directly, while positions of the link and of the tendon origi estimates are not used for control in a feedback loop, hérwece t
were measured using three HEDS-5540 encoders with a reect of derivation noise can not destabilize the systemure
olution of 2000 CPRs. Data were acquired using a Nationabrk will address this problem when closed loop control of
Instruments PCI6251 ADC board for the strain gauges, aitdpedance will be considered.
an USB-PCl4e for the encoders. Data were sampled withinput signals derivation could be avoided through use of
sampling time7, = 0.015s, and afterward filtered with sensors of the rate of change of desired quantities, e.g.



(a) left spring
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(b) right spring
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Fig. 10. The experimental setup consists of an antagonisEA gystem T i
with exponential springs, realized using a linear springéd to move on a 30- 1
suitable cam profile. Force sensors (strain gauges) are ewbontthe tendons o) J
connecting the springs to the link. Position sensors (esrs)dare mounted =2
on the link and on two tendon pulleys coupled with the inpuets. o |

15F 1

10F 1
. . ae . . 5r T
inductive sensors for positions, and piezo-electric senfur : . . . . .
forces —8.5 0 0.5 1 <o) 15 2 25 3

Both the external load and the torque actuating the tendon

tensions were generated manua”y, and not measured. Fig. 11. Experimental characterization of the two expornsprings.

. . Force and displacement pairs recorded during a calibratiperamnent, and
To obtain ground-truth data, the force functions of th%gression curve are shown for each of the two springs of xperamental

two springs were experimentally evaluated through carefu$a system.
preliminary calibration experiments. The calibrationqgadure

consisted in collecting a large number of force-displacgme ) ]

pairs (z, f), translating them in semi-logarithmic coordinate§€NSOrs. The method’s main advantages are that it does not
space(z, y = In(f)), finding the regression line in the semi"eauire injecting any m_ter_monal perturbation in the syst
logarithmic space, such thgt= ma -+ ¢, to finally go back and _that uses no a piori _knowledge on _the model of the
to the original space and obtajn= eV = ¢m#+d — ¢d . gma physical actuators. Simulations and experimental testvsho

from which @ = m andb = ¢?. From the mean square e,rrorthat the method is practically applicable and robust to ynois
of the regressios M E, the relative error margin of the modeldata and uncertain parameters.

can be easily evaluate as=1 — eSME, _ N ACKNOWLEDGMENT
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