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Abstract 

In this paper the problem of localizing disturbances of 
a vehicle with active suspensions is investigated. We 
focus on the  regulation of the chassis posture in spite 
of unaccessible disturbances. The regulated variables, 
i.e. the roll and pitch angles and the chassis heights, 
can be disturbance decoupled by state feedback. The 
decoupling problem is analyzed from a geometric con- 
trol point of view. The geometric aspects of the ve- 
hicle dynamics are emphasized and it is shown that 
disturbance localization is a structural property of ve- 
hicles with active suspensions. On the implementation 
side, we show that, if suspensions heights along with 
their derivatives are available as measured outputs, dis- 
turbance localization can be gained by a static output 
feedback. 

1. Introduction 

The actuation of suspensions along with proper sensor 
systems allows the vehicle controller to actively reject 
external disturbances to enhance both ride comfort and 
safety. In most of the conventional cars, rejection of 
disturbances is gained by passive devices which have a 
damping force &xed at  all frequencies and cannot at- 
tenuate both low and high frequency vibrations. On 
the contrary, active suspensions are able to change the 
damping force according to the sensed vibrations and 
can improve performances of the whole system. 

The control of active suspensions has been widely in- 
vestigated in literature. In [3] Hrovat studied the 
problem of optimal design of active suspensions by 
casting it into an equivalent linear-quadratic (LQG)- 
optimization problem. 

Two different types of disturbances can influence vehi- 
cle dynamics. One acts directly on the sprung mass of 
the vehicle and for instance can be generated by lateral 
accelerations, the other type of disturbances is due to 

road irregularity and is transmitted through the same 
suspensions. In this paper we focus on the last type of 
disturbances and our purpose is to isolate the chassis 
from vibrations transmitted through suspensions. The 
paper is aimed at the synthesis of a decoupling con- 
trol law making the regulated outputs, i.e. roll, pitch 
and chassis height, insensitive to the external distur- 
bances. A geometric approach to the control problem 
is adopted. The earliest geometric approach to nonin- 
teracting and decoupling control are due to Basile and 
Marro [l, 21 and to Wonham and Morse [7]. 

2 .  Dynamic model of the vehicle 

The mathematical model of vertical dynamics of road 
vehicles is derived. The mechanical structure of the 
vehicle is reported in figure 1. The vehicle consists 
of a rigid chassis and two rigid front and rear axes. 
The sprung mass is linked with these axes by means 
of four passive suspensions and actuators. An inde- 
pendent control action is exerted at each corner of the 
vehicle. The controlled vertical force uj ( j  = 1, . . . , 4) 
is generated at  the expense of additional energy source 
such as compressors or pumps. 

Assume that the vehicle is in an equilibrium configura- 
tion (see Figure 1 for illustration) and that roll center 
coincides with gravity center. Let us introduce some 
notation. 
8,: variation of the roll angle around the equilibrium 
configuration; 
I,.: moment of inertia of the chassis about the roll axis; 
8,: variation of the pitch angle around the equilibrium 
configuration; 
I,: moment of inertia of the chassis about the pitch 
axis; 
Z: variation of the height of the center of gravity (CG) 
of the sprung mass; 
M b :  sprung mass; 
Bat: variation angles of the front (i = 1) and of the rear 
axis (i = 2);  
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Figure 1: Mechanical model of a vehicle with active sus- 
pensions. Front and side view. 

Iai: moment of inertia of the i-th axis; 
zi :  variation of the height of the CG of the i-th axis; 
Mai: mass of the i-th axis; 
k, 0: spring and damping coefficient of the passive part 
of suspensions; 
kt ,  f i t: visco-elastic parameters of tires; 
a: half distance between front (or rear) suspensions; 
I: half distance between of the two axes; 
d j :  independent, unaccessible, external disturbances 
exerted on the axes; 

The adopted model has 7 degrees-of freedom and takes 
into account the roll, the pitch angles of the chassis, the 
rotations of wheel axes and the vertical displacements 
of the sprung mass and of the two axes. Lateral and 
longitudinal dynamics of the sprung mass are not con- 
sidered in this model. 

Equality of visco-elastic parameters of the passive sus- 
pensions has been assumed. Notice that such an as- 
sumption can be easily satisfied by means of a proper 
compensating control for the vertical forces ug's. The 
consequence of this assumption is that dynamics of 
pitch, roll and vertical motions are decoupled and can 

be independently analyzed. 

Under the assumption that Or,  e,, z ,  O,l ,  Qa2,  z1 and 
22 are small, linear approximation of system dynamics 
are  simply obtained as follows. 

Chassis  dynamics  ( O r ,  e,, 2). 

I,&. = -4ki28, - 4pi28, + 2ki2ea1 + 2 ~ 1 ~ 8 , ~ +  
2kL'QaZ + 2@L28a2 + ( U Z  - U1)L + (U4 - ' U 3 ) L ;  

IP9, = -4ka2Qp - 4pa28, - 2kz1a - 2/321a+ 
2kz2a + 2Piaa + (U3 - u 1 ) a  + (U4 - uz)a; 

2ka2 + 2852 + (U1  + U2 + U3 + U*),  

b f b 2  = -4k.Z - 4 p 2  + 2k%1 + 262l-b 

~~~e~~ = -2(kt + k)i20a2 - 2(pt  + P ) P ~ , ~  + 2ki2e,+ 
2@128, - (U4 - U3)L - d3l + d41; 

Ma121 = -2(kt + k)zl  - 2(,& + / 3 ) i 1 -  Z ~ U Q ,  - 2/3aBp+ 

bfaz2z = -2(kt + k)zz - 2(pt  + P ) i 2  + Zka6, + 2/3ae,+ 

Sign conventions for forces, motion and other parame 
ters of vehicle dynamics are defined in Figure 1. 

2 k ~  + 2/32 + dl  + d2 - ( ~ 1  + U Z ) ;  

2 k ~  + 2/32 + d3 + d4 - ( ~ g  + u L ) .  

2.1. State space model 

In this paper we are interested in controlling the chassis 
posture in spite of disturbances dj  transmitted through 
the suspensions and generated by road irregularities. 
Such a type of regulation will be referred to as ride 
heights  regulation [6] and consists in controlling the roll 
and pitch angles and the height of the sprung mass CG. 
Thus the output vector is defined as 

In the following the vehicle dynamics is described in 
the state space domain. 

Let us define the 14-dimensional state vector x, the 
4-dimensional input vector and the 4-dimensional dis- 
turbance vector as 

x = ( x T x F ) ~ ;  where 

( 2 )  . .  . 
Xr = (8, Qal Qa2 Qr Qa1 0 , ~ ) ~ ;  
xv = (6, z z1  z2 e, i il i 2 ) T ;  
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Notice that we have grouped the roll dynamics in vec- 
tor x,, while the vector x, contains the pitch and the 
vertical dynamics. 

From the chassis and axes dynamics the state space 
model of linearized dynamics around the equilibrium 
configuration is simply obtained as 

y = c x  , ( 5 )  
X = Ax + B u +  Dd; i 

where the state matrix is 

1 A =  [ All o(6x8) 

O(8xS) A22 ' 

the input matrix is 

BZL = 

the disturbance matrix is 

D =  [ 3 

with 

and finally the output matrix is 

3. Localization of disturbances 

On the base of previous formulation of vehicle dy- 
namics, the ride heights regulation can be rigorously 
stated as a problem of unaccessible disturbance local- 
ization. This problem consists in realizing a state feed- 
back U = Fx, such that, starting at zero state, the 
regulated output y ( t )  is identically zero for all the ad- 
missible disturbances d(t). 

We attack the problem by using classical tools of the 
geometric control theory. It is well known that the 
unaccessible disturbance localization problem has a sc- 
lution if and only if there exists a matrix F such that 
min Z (A + BF, D), the minimal (A + BF)-invariant 
subspace containing the column space of the distur- 
bance matrix D, is included in the nullspace of the 
regulated output matrix, ker (C). Since this condition 
depends on the choice of F, it lacks convenience and 
an equivalent structural condition is preferred [2]. 

Proposition 1 The  unaccessible disturbance localiza- 
t ion  problem i s  solvable if and only i f  

im (D) 2 V', (7) 

where V* = maxV (A, B, ker (C)) i s  the maximal 
(A, B) -controlled invariant contained in ker (C) and 
im (D) i s  the column space of the disturbance matrix. 

For the localization problem to be technically sound, 
we should require that the state feedback, other than 
localizing disturbance in the nullspace of the output 
matrix, stabilizes the whole system in its equilibrium 
point. The following theorem shows that the unac- 
cessible disturbance localization with stability for the 
regulated output y of the dynamic system in ( 5 ) ,  is 
an intrinsic structural property of vehicle with active 
suspensions. 
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Theorem 1 (Disturbance localization.) For the 
dynamic system (5) of a vehicle with active suspen- 
sions, there always exists a stabilizing state feedback 
gain F which localizes disturbances d in the nullspace 
of the regulated output y = ( Q T ,  e,, 2). 

Sketch of the proof. 
reader is referred to [5].) 
definition of the column space of matrix J, 

(For the complete proof the 
The proof starts with the 

J =  [ J1 ] 
0 52 

where 

Being, from (6), 

r O ( l X 5 )  I O ( l X 6 )  1 . .  . .  

ker(C) = im 1 I ' @ y 6 )  1 , O ( Z X 5 )  O ( Z X 6 )  

O ( 6 X 5 )  

it is an easy matter to show that i m (J) 

In [5] it is proven that the im (J) an is (A, B)-controlled 
invariant, thus im (J) 5 maxV (A, B, ker (C)). 
Since im (D) 5 im (J), it follows that necessary and 
sufficient condition for disturbance localization holds, 

ker (C) . 

D C J C V* = maxV(A,B, ker(C)). 

As regards the stability requirement of the controlled 
couple (A + BF, B), in [5] authors prove that there 
exists a stabilizing feedback matrix F which makes 
the controlled invariant im (J) invariant with respect 
to A + BF. U 

4. Case study 

A realistic simulation of a road vehicle with active sus- 
pensions is here reported to show an application of the 
disturbance decoupling theorem. The used parameters 
[4] of the vehicle geometry and dynamics are reported 
in Table 1 (cf. notation in Section 2). 

The controller for the ride heights regulation is syn- 
thesised through a stabilizing state feedback matrix F, 
which localizes disturbances d in the nullspace of the 
regulated output y = (QT,  e,, z ) .  Geometrically, the 
state feedback matrix F = -103G, where G is 

-95, 88, -250, -7, .77, -1.7,  770, 1300, 10 ,  190, 36, 49, - 5 6 ,  1 

160, -250,  88, -4,  -1.7, .77, -440, 880, 190, 10, -30,  43, 1, - 5 6  
-240, 250, -88, 13, 1.7, --.77, -520,  950, 100, IO, -32, 44, I, - 5 6  

-170, -88, 250, 10, -.77, 1.7, 700, 1300, 10, 190, 34, 50, -56, 1 

satisfies these two properties, 

1500kg 
360kgm 

2300kgm 
40kq -1 

10.8 K.qm 

1 8 E 4 N l m  
l E 3 N s l m  

1 . 9 6 E 5 N l m  
1 . 9 2 E 3 N s l m  

Table 1: Parameters of vehicle geometry and dynamics; 
spring and damping coefficients. 

a) the (A, B)-controlled invariant J becomes ( A  + 
BF)-invariant ; 
b) the controlled invariant J is stabilized internally and 
externally. 

The influence of the external disturbances, due to road 
surface irregularities, is simulated. Let us suppose that 
the vehicle has a constant speed of 60kmlh and that 
the variation of the road surface profile occur every 
1 6 m  on the right side of the car ( d l  # 0; d3 # 0; d2 = 
d4 = 0). Assume that the front and rear wheels pass 
the same path, thus dl = d ( t )  and d3 = d ( t  -Tc) where 
the delay T, is equal to 0.24s. 

A ride of 10 seconds has been simulated, with and with- 
out the state feedback, under the action of a distur- 
bance vector d(t) built as follows: 

d l ( t )  = d ( t ) ;  d3 ( t )  = d ( t  - T,);  d z ( t )  = &(t) = 0, 

where disturbance signal d ( t )  is described, as a function 
of the time, in Figure 2. 

Figure 2 reports the behaviour of the regulated out- 
puts, roll, pitch angles and vehicle height. The plot- 
ted outputs are those relative to both system with and 
without feedback action F. As it is expected, varia- 
tions of roll and pitch angles and of the vehicle height, 
due to disturbance d, disappear when the disturbance 
decoupling gain matrix F is fed back. Figure 3 illus- 
trates the signals performed by active suspensions and 
commanded by the disturbance decoupling controller. 

On the implementation side we cannot assume that 
the state vector is accessible, however it's not diffi- 
cult to obtain a sensor system able to  measure the 
suspensions heights along with their derivatives. As 
regards these latter variables, grouped in the sensed 
vector ys = Csx, it has been proved [5] that the lin- 
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Figure 2: Disturbance d(t) caused by the road surface 
variations (less than 0 . 0 5 ~ ~ ) .  Roll, pitch an- 
gles and vehicle height for a ride of 10 seconds 
during which the disturbance d l  and d3 are ex- 
erted on the vehicle. Both outputs for systems 
with and without disturbance decoupling are 
reported. Signals identically zero refer to the 
vehicle with the state feedback gain F. 

earized dynamics (5) is observable from ys and that 
the (A, B)-controlled invariant im (J) results to  be an 
(A, ker ((2,))-conditioned invariant subspace as well. 
It’s worthwhile to mention that conditioned invariance 
of im (J) allows the designer to localize disturbances 
d(t) by means of an output feedback gain instead of a 
state feedback one. 

5. Conclusions 

Localization of external disturbances in road vehicles 
with active suspensions was investigated. The problem 
of ride heights regulation, i.e. the regulation of the roll, 
pitch and vehicle height, was considered. The main re- 
sult of the paper, Theorem 1, states that there always 
exists a state feedback controller able to decouple ex- 
ternal disturbances transmitted through suspensions. 

The aim of this paper is to emphasize that such a de- 
coupling property is a structural property of road vehi- 
cles with active suspensions. Moreover it’s worthwhile 
to  mention that only axes disturbances d enjoy the de- 
coupling property. In fact it’s an easy matter to verify 
that it’s not possible to make the regulated outputs 
insensitive to  those disturbances which are directly ex- 
erted on the sprung mass as, for instance, the lateral 
accelerations. 

Finally, let us remark that the aim of this paper con- 

-2’ 
10 

t (4 
x i o5  
I I 

Figure 3: Active suspensions control outputs. 

sists of enlightening some structural properties of ve- 
hicles with active suspensions more than synthesizing 
different algorithms taking into account various kinds 
of available actuators’ dynamics. 
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