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Abstract 
The nonholonomy exhibited by kinematic systems 

consisting of bodies rolling on top of each other can 
be used to the purpose of building dexterous mech- 
anism with a minimum hardware complication. Pre- 
vious work concentrated on manipulation of objects 
possessing a regular surface. On the other hand, in- 
dustrial parts are most often irregular, possessing ver- 
tices and edges. In this paper we present some results 
on the description of the set of positions and orienta- 
tions that polyhedral objects can reach when manip- 
ulated by rolling without slipping. An algorithm for 
planning the manipulation of a polyhedral part from 
a given configuration to another reachable one, is also 
presented. 

1 Introduction 
Manipulation of industrial parts has been one of 

the core problems of robotics since its beginnings, 
and it still attracts large attention. Solutions have 
been proposed that vary in philosophy according to 
the different application domain. Thus multifingered 
hands apply where flexibility is at a premium, while 
more factory-oriented solutions privilege simplicity of 
the manipulator and use regrasping: j[15], [SI) and/or 
pushing and tilting actions ([13], 71 in conjunction 
with such simple end-effectors as parallel-jaw grip- 
pers. In this paper, we focus on tasks requiring much 
flexibility, but where the hardware complexity of the 
end-effector is to be minimized, in the interest of 
weight, unreliability, and cost reduction. 

The nonholonomic behaviour of some systems have 
been exploited for achieving dexterous manipulation 
by means of simple mechanical design. Montana[ll], 
and Li and Canny[S] used tools from differential ge- 
ometry and nonlinear control to model manipulation 
by rollin and discuss its geometry. Bicchi and Sor- 
rentino b] designed and implemented a dexterous 
hand exploiting rolling, which used only three motors. 
Such hand is able to arbitrarily change the position 
and orientation of the manipulated object, provided 
that its surface complies with some assumptions (see 
[6]), including regularity and convexity. In order to 
approach genuine industrial problems, in this paper 
we consider a similar style of manipulation as applied 
to polyhedral parts. 

The rolling of a polyhedron on a plane is itself a 
nonholonomic phenomenon, although a wider defini- 
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Figure 1: Slightly different polyhedra may reach dra- 
matically different sets of configurations by rolling 

tion of nonholonmy is to be accepted than the one 
most engineers may be familiar with. Consider the 
example of rolling a die on a table about its edges, 
tumbling it first rightwards, then upwards, hence left- 
wards, and finally downwards. While the final position 
of the center of the die is unchanged, its orientation 
is, and a different face of the die is now on the ta- 
ble. The correspondence to a cyclic path of some base 
variables (in this case, the position in the plane) to 
a net change in other fiber variables (the orientation 
angles) , is syntomatic of nonholonomy. This suggests 
that manipulation of parts with non-smooth surface 
can be advantageously performed by rolling. 

Previous work on graspless manipulation of poly- 
hedral parts by rolling in the robotics literature in- 
clude that of Inoue and Aiyama [4], Sawasaki, Inoue 
and Inaba [14]), and Erdmann and Mason [7]. As 
of today, however, study of this subject is far from 
complete, and some peculiar phenomena may occur 
in its consideration, that call for an oculate analy- 
sis. One such phenomenon consists in the dramat- 
ically different structure of the set of configurations 
that slightly different polyhedra can be brought to 
reach by rolling about their edges. For instance, it 
is intuitive that a cube will only reach positions that 
lie on a square mesh, with orientations that are multi- 
ples of n/2. However, by inducing the results of sim- 
ple computer simulations, it can be seen that rolling 
for long enough a truncated pyramid, however slightly 
different it may be from the cube, any arbitrary con- 
figuration can be reached as close as one wishes (see 
fig. 1). It is also possible to have a polyhedron whose 
reachable set of positions is dense, while it is discrete 
for orientations (e.g., an equilateral pyramid). In this 
paper, we explain these phenomena and characterize 
the set of positions and orientations reachable by a 
general polyhedron. The constructive method used in 
order to study the reachability problem also allow us 
to propose an algorithm for planning manipulation of 
polyhedral parts by rolling. 
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Figure 2: A parallel-jaw gripper can manipulate poly- 
hedral parts 

2 Problem Formulation 
Consider a simple manipulator as the one in fig. 2, 

consisting of two plates one of which is fixed, while the 
other can translate remaining parallel to the first. A 
part is put between the plates, which are covered by 
compliant high-friction pads. By coordinated motion 
of the jaws, the object can be made to roll from a 
face to another adjacent one through the connecting 
edge. The goal of manipulation is to  bring the part 
from a given initial configuration (a point in SE(3))  
to another desired one. Without loss of generality, we 
only consider here different configurations modulo a 
rigid vertical translation of the whole mechanism (i.e., 
we restrict to Et2 x SO(3)) .  

Manipulated parts are considered that have a piece- 
wise flat, closed surface, comprised of a finite number 
of faces, edges, and vertices. Observe that actual parts 
need not be convex, in general. However, the finger 
plates being assumed to be large w.r.t. the diameter 
of parts, we only need to be concerned with the convex 
hull of parts themselves. 

Several kinds of motions for a polyhedron on a plane 
are possible, as e.g. by sliding on a face, pivoting 
about a vertex or tumbling about an edge. In this 
paper, however, we rule out the former two possibil- 
ities, and only consider sequences of rotations about 
one of the edges in contact, by the amount that ex- 
actly brings another face to ground. This action on 
the parts, which will be referred to as an elementary 
tumble (ET for short), appears to  be more reliable 
than slipping or pivoting, as it  will be discussed later 
on. 

Let P be a convex polyhedron rolling on a plane P ,  
and let Y = {VI, . . . , Vm} be the set of vertices, E = 
{El,. . . , Ek} the set of edges, and F = { F l ,  . . . , Fl} 
the set of faces of P. The configuration space z of 
the system is given by the set of points of type ( p ,  8, i) 
where i is the index of the face in contact with the 
plane P, p is the projection onto P of some point c 
fixed on the part (e.g., its center of gravity), and 8 is 
the angle between two reference systems fixed respec- 
tively on face Fi and on P. Briefly, %? is the union of 
I copies of SE(2) ,  i.e. 

In this terms, the problem of deciding whether 
the polyhedron P can be dextrously manipulated is 
solved by studying the subset of reachable configura- 
tions RI C z, given by all configurations (PI , Of, if) 
such that there exists some sequence of ET s bring- 
ing P from a given initial configuration (po, eo, 1) to 
(p f  ,e l ,  i& Such sequence of ET’S will be referred to 
as a wa , and will be described by the sequence of 
faces brou ht successively in contact with P, {Fs,}, 
where {SnjnEI, I c N, Sn E {I, ..., I }  is a sequence 
of face indices. Thus {Fs, 

be the set of all the sequences {Sn} such that 
represent a “walk” of P on P. For a walk 
steering configuration (po ,  80, io) E M in configuration 
( p f ,  Of, if) E 2 we will use the notation 

represents a walk if Fs 
and Fs,+,, Vk E I, are a 1 jacent faces. Let then 4 

{Fs,): (Po,Oo,io) (Pf,8f,if) (2) 

or briefly, when we are not interested in position and 
orientation, as {Fs,} : Fi, H Fit. While in analysing 
the rolling motions of regular surfaces the central role 
was played by the surface metric, curvature, and tor- 
sion forms ([ll] , to study the structure of the reach- 

the geometrical quantities introduced below: 

Definition 1 Let Dlk denote the lenght of the edge 
incident t o  vertices Vr and vk. Also, denote ai, the 
angles of face Fj at vertex vi. The defect angle pi ut 
vertex vi is defined as the complement to  27r of the sum 
of angles ct!ij for all j such that face F, is adjacent to  
vi. 
Being convex polyhedral parts topological spheres, 
their total curvature is 4 ~ .  Because faces and edges 
of a polyhedron have zero Gauss curvature, all cur- 
vature is concentrated at vertices. In fact, the de- 
fect angle represents how much of the curvature of 
the object is concentrated at vi, and clearly we have CLlpi = 47r. The fact that all the curvature of a 
polyhedral part (and hence, sensitivity to rolling) is 
concentrated at its vertices, along with the fact that 
such vertices are never perfectly sharp in real-world 
parts, suggests that pivoting about vertices may be 
much less robust a means of manipulation for polyhe- 
dral parts, than that of tumbling about edges. 

The main theoretical results reported in this pa- 
per concern the structure of the set of configurations 
reachable by rolling a given polyhedron. We will say 
that such set is dense w.r.t. positions iffor any desired 
position pf in the plane, and any given tolerance a,, 
there exists a walk such that the polyhedron reaches a 
position closer to p f  than 6,. Analogously, the reach- 
able set is dense w.r.t. orientations if, for any Of and 
66, there exists a walk leading to an orientation closer 
to Of than 66. The reachable set will be called dense 
in M ,  or dense tout-court, if the polyhedron can be 
brought arbitrarily close to any desired position with 
an orientation arbitrarily close to any desired orienta- 
tion. The term discrete will be used for the negation 
of dense. Our results are as follows: 

able set of a PO 1 yhedron it is instrumental to refer to 

- 
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Theorem 1 The set of configurations reachable by a 
polyhedron is dense in if and only if there ezists a 
vertex whose defect angle is irrational with A, i.e., 
i83pi : 6 Q .  

Theorem 2 The reachable set is discrete i n  both po- 
sations and orientations if and only if either of these 
conditions hold: 

i) all angles of all faces (hence all defect angles) are 
7r/2, and all lenghts of the edges are rational 
w.T.t. each other (i.e., Di j lDkl  E &,Vi,  j , k ,  1 E 

ii) all angles of all faces (hence all defect angles) are 
integer multiples of ~ / 3 ,  and all lenghts of the 
edges are rational w.r. t .  each other (in other 
words, a i j  E ( 5 ,  F}, Vi E {I, ..., m} and ’dj E 
{ 1, ..., l } ,  and Dij /Dki  E Q, Vi, j ,  k, 2 E { 1, ..., m}; 

Theorem 3 The reachable set is dense i n  positions 
and discrete i n  orientations if and only if the defect 
angles are all rational w.r . t .  A, and neither conditions 
i )  or i i )  of theorem 2 apply. 

Remark 1. Polyhedra satisfying condition i) of 
theorem 2 are rectangular parallelepipeds, as e.g. a 
cube or a sum of cubes which is convex. Polyhedra as 
in condition ii) are those whose surface can be covered 
by a tessellation of equilateral triangles, as e.g. any 
Platonic solid except the dodecahedron. 

Before giving a sketch of the proof of these results 
in the next section, it is perhaps the case to under- 
line that they concern theoretical idealizations of real- 
world polyhedral parts. No part can be measured with 
accuracy fine enough to say whether the characteristic 
ratios above are rational or irrational. However, from 
the very machinery developed for the proof, an intu- 
ition of what goes on in the real case and an useful 
planning algorithm will result. 

3 Mathematical development 
We first reduce our problem of studying the set 721 

reachable from a configuration with face F1 in contact 
with P to the study of one of its subsets. In fact, the 
density of the subset of reachable configurations with 
face F1 in contact with P is the same for every face: 
the problem does not depend on the initial configu- 
ration. Thus if through some sequence { F s , }  = t i ,  
that will be referred to as “transit walk”, we bring 
face Fi in contact with P then Fi can be brought in 
any position and orientation if and only if this is true 
for 8’1. Therefore, what is actually to be studied is the 
subset of reachable configurations with face F1 in con- 
tact with P. By doing this, it is clear that such subset 
is the orbit of the initial configuration under the ac- 
tion of the subset of all walks bringing face F1 back 
in contact with P : L1 = { F s ,  : FI w 9). Such set 
of walks L1, together with the operation of composi- 
tion of walks by concatenation, is clearly a group, and 
possesses a finite set of generators which can be de- 
scribed, using some tools of the theory of graphs and 
from topology, as follows. 

(1, **-, m}; 

Figure 3: 
sphere 

A convex polyhedron projected onto a 

/- 
/ / 

Figure 4: The stereographic projection 

3.1 A set of canonical movements for the 
motion of the polyhedron 

By the assumption of convexity, parts are topolog- 
ical spheres, i.e. they can be continously deformed 
onto spheres. As an example of such process, consider 
“blowing up” a polyhedron P onto a sphere S large 
enough to encompass all of it (see fig. 3) by projecting 
the surface of P on the sphere from a point inside the 
polyhedron. Consider the tiling X induced on S by 
the image of the edges and the vertices of P, i.e. the 
covering of its surface by a number of connected com- 
ponents (cells) which are the image on the sphere of 
the faces of the polyhedron. The Schlegel map (111) of 
P associates to the polyhedron a graph on the plane 
built by the stereographic projection (fig.4) 

AN : S\{N} - n 
from a point N E S (the “north” pole onto a plane U,  
the latter being tangent to S throug b a point S (the 
“south”po1e) provided that both poles do not belong 
to the projection of any edge or vertex of the polyhe- 
dron on the sphere. 

The stereographic projection AN produces a 
tiling X’ on the plane P with one infinite component 
(corresponding to the cell of S containing N )  and I -  1 
bounded connected components. The graph naturally 
associated to such tiling X’ is the so-called Schlegel 
map of the polyhedron. The Schlegel map has the 
same number k of edges and m of vertices (nodes) as 
the original polyhedron. Furthermore, since we con- 
sider convex polyhedra for which the Euler relation 
I + m - k = 2 holds, the map is line-crossing free ([ 11). 

The dual of the Schlegel map can now be built by 
taking the following steps (see fig.5): 

1. take new vertices as interior points of the cells of 
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Figure 5 :  The Schlegel map and its dual 

Figure 6:  The generators of the fundamental group are 
the segment paths on the dual graph which appears 
overlapping the Schlegel map. 

2. 

XI, one per cell; 

draw new edges joining pairs of new vertices, each 
new edge crossing one and only one of the edges 
of the original map. Observe that k such new 
edges are drawn, and that two new vertices are 
connected by a new edge if and only if the two cor- 
responding cells of the Schlegel map are adjacent, 
i.e. iff the corresponding faces of the polyhedron 
share an edge. 

In the resultin% dual graph, described by X” = 
(V”, E’’) with V the set of I new vertices and E” the 
set of k new arcs, vertices correspond one-to-one to 
faces of the polyhedron, and two vertices on the graph 
are adjacent if and only if the corresponding faces of 
the polyhedron are adjacent. Thus we can uniquely 
associate to any sequence of elementary tumbles one 
path on the dual of the Schlegel map, and to L1 (the 
group of walks eventually bringing face F1 in contact 
with P), the fundamental group on the dual graph 
based at point F1. Using a well-known theorem from 
the theory of groups stating that the foundamental 
group of a graph is a free group generated by a set of 
e-v+l  generators, where e is the number ofedges and 
v is the number of vertices of the graph, along with 
the Euler relation, we have that L1 can be generated 
by a set of m - 1 generators. 

In order to describe such generators, and hence the 
group L1 and the reachable set, we proceed as follows. 
Consider that in the dual of the Schlegel map there 
are m- 1 bounded cells. For the i-th of such bounded 
cells, consider a node F j  belonging to the cell and a 
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transit path t j  (possibly void) joining the base node 
F1 to F j  see fig.6). Concatenate with t j  a loop 4 that 

ary. Finally return to the base point F1 by following 
t j  in the inverse sense. By repeating the procedure for 
each bounded cell, we obtain m- 1 independent paths 
on the graph of type = t j  04otT1, which form a set 
of generators of all possible paths on the graph. Re- 
calling that nodes and cells of the dual Schlegel map 
correspond to faces and vertices of the polyhedron, re- 
spectively, we can view each generator as an operator 
acting on Z : 

touches a5 1 and only the nodes on the i-th cell bound- 

Ri : (Pole01 1) tPflef11)l 

Such map can be explicitly calculated based on the 
geometry of the polyhedron. Consider a plane devel- 
opment of the polyhedron based at the position of face 
1 i.e., glue face 1 on the plane, then “spread” the 

as to bring all faces on the plane while leaving the 
surface connected, see fig.7). Let F j  be the image on 
the plane of face F j ,  and let I& be the image of vertex 

on the boundary of F j .  Recalling the geometrical 
meaning of the defect angle pi, therefore, the action 
of the generators is described as 

PO \ yhedron cutting along its edges when necessary so 

~ i ( ~ 0 ,  e O y 1 )  = (PO + (fi - R)eafii,Pi + 00,  1). 

3.2 Proof of theorems (sketch) 
Observe first that the action on Sf of the generators 

Ri is transitive. Thus the structure of the projection 
of the reachable set on S’, i.e., the orientation part 
of the three theorems, is proved at once: the set of 
reachable orientations is in fact given by all 0 such 
that the Diophantine equation 

c * a -  - 6 + 2 k r ,  
i 

(3) 

has a solution with ai, i = 1,. . . , m - 1, and k inte- 
gers. If all pi are rational w.r.t. r, the set of such solu- 
tions is discrete (actually] finite modulo 2z), and easily 
characterized as the integer multiples of the greatest 
common divisor of the pi’s, denoted by b. 

Concerning the structure of the projection of the 
reachable set in Et2, i.e. displacements of the polyhe- 
dra, for the case of existence of a defect angle irrational 
w.r.t. A, we recall the proof of theorem 1 given in [3]. 

If otherwise all pi’s are rational w.r.t. r, it is pos- 
sible to focus on the subgroup T of the translations 
of L1, i.e., the set of all walks of type (p0,60,1) H 

( p f ,  60,l) .  In fact, the density of T implies and is 
implied by the density of the whole set of reachable 
positions in the plane. Again, being T a transitive 
subgroup of the group generated by the R:s, the de- 
scription of a complete set of generators is sufficient 
to  fully characterize its action. To describe such a set 
of generators, a “virtual rotation” Rv is introduced 
which is comprised of a composition of rotations h$ 
such that the total rotation is a, the G.C.D. of the 
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defect angles. Any solution set ai, i = 1 , .  . . , m - 1 
of (3) with 8 = a is taken as such a virtual rotation. 
Denote by the point in the plane about which Rv 
occurs (this is computed easily given the a i ’ s  and the 
polyhedron geometric parameters). The generators of 
T can be written as translations in the direction of the 
vectors 

ghj = (G - C)(e*@j - l)e*h@, 

with j = 1 ,..., m - 1, h = 1, .  ..,h, where 6 is the 
smallest integer s.t. ha E 0 (d 2x) (for a detailed 
calculation of these generators, see [lo]). 

The generators g h j  of T thus evaluated can be rep- 
resented as vectors in P originating from PO. The set 
of reachable positions is the locus of points in the plane 
that can be reached by summing such vectors, i.e. the 
set of all points p such that the 2-dimensional Dio- 
phantine equation 

E m-1 

h=l j = 1  

has a solution with integers 7 h j .  
If there exist no two generators such that any other 

generator can be written as a combination over the 
rationals of the two, than the reachable set is clearly 
dense. Otherwise, it is always possible to find two 
new vectors in the plane (the so-called “greatest com- 
mon divisors” of the set of generators, see [12]) such 
that any reachable position can be written as an in- 
teger combination of the g.c.d. vectors. The set of 
reachable positions is discrete in the latter case, and 
furthermore it lies on a lattice whose description is 
given completely by the above analysis (see fig.8). Us- 
ing this algebraic description of the generators, and 
the geometric properties of the polyhedra, the proof 
of theorems 2 and 3 easily follow. 

4 Planning Algorithm 
The theoretical analysis above summarized allows 

one to design a practical algorithm for planning ma- 
nipulation of polyhedral parts by rolling. As already 
mentioned, however, some caution has to  be taken in 
applying the results. In particular, although from the 
theory the discreteness of the reachable set appears 
to be an exception, this is the only practically rele- 
vant case. A first reason in fact is that any represen- 
tation of the angles pi and of the generators g h j . i s  
forcedfully rational in a digital computer with finite 
precision. Secondly, and more stringently, as the de- 
scription of the polyhedral part comes from a physical 
process of measurement or machining, it can only be 
known to within a tolerance. The numeric representa- 
tion of such data has therefore to be chosen with com- 
parable accuracy (usually much less than that avail- 
able in modern computers). 

These considerations imply that the only reason- 
able specification of a planning problem in this con- 
text is to give a desired face, position, and orienta- 
tion, along with a tolerance for the latter two (see 
fig.8). Deciding whether reaching the goal within the 
tolerance is possible for the given part description and 

associated accuracy should be considered as an impor- 
tant part of any planning algorithm. 

In this setting, an algorithm for finding a sequence 
of elementary tumbles that steers the polyhedron from 
configuration (po80,zo) H ( p f  , I9 f ,  1) within a toler- 
ance eP on positions and €0 on orientations, can be 
given as follows. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

Measure the polyhedron parameters Dij and Q k l ,  
and provide their continued fraction expansion 
with reasonable accuracy; 

Take face 1 on the plane, i.e., find a transit walk 
ti, such that t;l : (poco, i o )  H ( p l ,  e l ,  1);  

Compute angles pi and their g.c.d. a; the virtual 
rotation Rv and e; the plane development of the 
polyhedron on the plane and the G’s; 

Verify that the tolerance on orientations is admis- 
sible, i.e., that €0 > $; 
Let 68 = 8, -81 and k be the smallest integer s.t. 
lkpV - 681 < €0;  then apply k times the virtual 
rotation, i.e. Rk : (pl,81,1) H (pa, 82,l);  

Compute the generators g h j ,  and their g.c.d. g l ,  
g 2  using a lattice reduction algorithm (see [12]); 

Verify that the tolerance on positions is admissi- 
ble, i.e., that ep > m i n { / / w 1 1 ,  l l ~ l l } ;  

Let 6 p  = p t  - p2, and find the smallest integers 
k 1 ,  k 2  such that l l k1g1  + k 2 g a  -pall 5 4; 

Invert the g.c.d. algorithm to obtain integers k h j  

such that Eh cj khjghj = k 1 g 1  + k 2 g 2 ;  

If the admissibility checks hold true, the algorithm 
finds a solution to the planning problem in the form of 
a concatenation of walks, kg,m-lgh,m-l 0. . . o k l l g l l  o 

R; o t;’ : (po,80rio) c-) (~3,192, l ) ,  with p3 and O2 
within the prescribed tolerance. The resulting path 
may be rather complex. Once converted in terms of 
the sequence of faces, positions, and orientations to be 
followed by the polyhedron, the length of the walk can 
often be trimmed by deleting the largest subsequence 
comprised within two equal configurations. To further 
reduce the complication of manipulation maneuvers, 
the sequence resulting from the algorithm can be used 
as a feasible starting solution of a branch-and-bound 
algorithm for discrete optimization. As an example of 
application, manipulation by rolling of a 32-pin con- 
nector is reported in fig.9. 

5 Conclusions 
In this paper we have investigated the structure of 

the reachable set of a polyhedron rolling on a plane, 
and deduced a complete algorithm for planning such 
motions. Experimental work is under implementation 
to show the practicality of manipulation by rolling 
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Figure 7: Lattice generated by gl, ga. 

Figure 8: Polyhedral approximation of a 32-pin con- 
nector with its plane development. The part has 10 
faces, 16 vertices and 24 edges. Lengths are measured 
with lmm tolerance, eP = lcm and €8 = 6. The 
g.c.d. of defect angles is approximated to p = */21. 
315 generators are found by the algorithm. In the 
picture the manlpulatlon between the two configura- 
tions ((0, O), 0 , l )  and ((20,20), 5, 1) is desired while 
configuration ((19.85,20.66), 5,  1) is reached in 123 
elementary tumbles. 

parts. The interest of the concepts and tools devel- 
oped however may not be confined to robot manipu- 
lation. In fact, the problem appears to have multiple 
cousins in the scientific literature at  large: for instance 
in ergodic theory, automata theory, discrete gravita- 
tion theory (Regge's calculus), and billiards. 
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