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Abstract 

Although present-day Force/Torque sensors are 
mostly designed and used as if they were quasi-static 
devices, if significant compliance and/or stringent re- 
quirements on measurements bandwidth are in order, 
a dynamic analysis of such sensors is necessary. In 
this paper we consider the optimal (in a worst-case 
wise) design of F/T sensors, based on distributed- 
iiaratneter models of its compliance, and algorithms 
that can be used to obtain F/T measurements in real 
I itne with high bandwidth. Theoretical expectations 
are confirmed by experimental results. 

1 Introduction 

In many situations arising in robotic systems, one is 
interested in measuring the forces and torques applied 
at the terminal point of a certain mechanical struc- 
ture. This information is usually obtained from strain 
gauges conveniently placed on the structure itself. The 
estimation of the applied force (or torque) from the 
strain measurements is most often obtained by assum- 
ing a quasi-static relation between the force applied 
and the strain. This assumption is usually well re- 
spected even if the force is time varying, provided that 
the mechanical structure is rigid enough to make neg- 
ligible the effects of vibration in the structure itself. 
This is the case, for instance, of force/torque sensors 
mounted at the end-effector of robot manipulators. 

Whenever the flexibility of the mechanical structure 
can not be neglected, the measured strain will include 
components due to the vibration of the structure, and 
the estimation of the applied, time-varying, force can- 
not be done by using quasi-static relations. To over- 
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come this problem, the authors have recently proposed 
an approach to  dynamic force/torque sensing that at- 
tempts to recover the applied force from the strain 
measurement by fully exploiting the dynamic nature 
of the force-strain relation (Bicchi et al., 1997). 

The estimation of tlhe applied force, both in quasi- 
static and in full dynamic case, is dependent on the 
placement of the sensing device (the strain gauges) 
on the mechanical structure. In this paper some cri- 
teria for the selection of the optimal sensor placement 
are proposed, motivated from general consideration on 
multivariate sensor design (Bicchi and Canepa, 1994). 
Moreover, it is shown, by means of experimental re- 
sults, how the algorithm introduced in (Bicchi e t  
al., 1997) can produce effective estimates of the ap- 
plied force when the quasi-static approximation is not 
respected. 

The analysis carried out in the rest of the paper spe- 
cializes to the case of a flexible beam, and to the study 
of transversal vibrationls . As such, it has to be consid- 
ered as a preliminary investigation in order to proceed 
in the future towards more complex situations. How- 
ever, even in this simple case, it appears the interesting 
result that the sensor design has to trade-off between 
the best accuracy of the solution and the stability of 
the inversion process. 

The paper is organized as follows: in the next sec- 
tion, by using standard tools from truncated modal 
analysis, a system of ordinary differential equations is 
obtained for the case of a flexible beam. In Section 3, 
the invertibility properties of the system are investi- 
gated, a criterion for the design of the force sensor is 
proposed, and constraints on the design are discussed. 
In Section 4, a robust numerical algorithm for system 
inversion is described. Simulative and experimental 
results to validate the t(heoretica1 expectations are re- 
ported in Sections 5 and 6. Finally, conclusions and 
future perspectives are given. 
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Figure 1: The physical system considered. A beam of 
length L ,  fixed at one end and free at the other end, 
is subject to  a time-varying force F ( t )  applied at the 
free end which causes transverse vibrations y(x, t ) .  A 
strain gauge, placed at a position h along the beam, is 
used to estimate the applied force. 

odal Analysis 

Consider the transverse vibrations y(x, t )  excited in 
a flexible beam of length L fixed at one extremity by 
a time-varying point force F ( t )  applied at the free 
end point. The mechanical system is schematically 
depicted in fig. 1. The beam is assumed isotropic, and 
of total mass m homogeneously distributed. A strain 
gauge is placed at a distance h from the fixed end point 
of the beam. 

The aim of the paper is to design an algorithm able 
to retrieve the force F ( t )  at any instant t from the 
measurement s(h, t )  of the strain gauge placed in the 
position h.  The position of the gauge h is the free 
parameter of the design. 

The monodimensional beam subject to transverse 
vibration is a well studied system (Meirovitch, 1967) 
governed by the Euler-Bernoulli equations: 

a2 Y y + m 7 = F ( t ) S ( x - L )  (1) 
d4Y 8 4  d 

E 1 7  + a[---- d X  ax4 dt at 
where E I ,  [ and m are the stiffness, structural damp- 
ing and mass of the beam. 

The solution of equation (1) can be expressed in 
terms of its normal modes decomposition as: 

00 

Y(Z1t)  = q k ( t ) Y k ( E )  (2) 
k = l  

where the terms q k ( t )  play the role of a weight in time 
and the normal modes Y k ( z ) ,  x E [0, L] are defined as 

yk(z) = 
( s i n ( P k L )  - sinh(PkL))(sin(Pkz) - sinh(Pkz))+ 
S ( C O 4 P k L )  + COSh(PkL))(COS(Pk2) - cosh(Pkz)) 

(3) 

being P k  (k = 1, ..., CO) a solution of equation 
cos(PL)cosh(PL) = 1. 

By truncating the modal expansion to the N-th 
mode, and by defining time weights and their deriv- 
ative as the state vector: 

x =  [(rl(t),'",~N(t),Ql(t),"',~N(t)]*, (4) 

the following system of ordinary differential equations 
is obtained from equation (1): 

x = A x + B u  

y = Cx (5) 

where u( t )  = F ( t )  is the input force to be estimated, 
y = s ( t )  is the measurement signal from the strain 
gauge positioned at h,  and matrices A ,  B and C as- 
sume the following structures 

being matrix A a N x N diagonal matrix whose IC - th 
diagonal term is /3k, 

3 Dynamic Inversion and Optimal Sen- 
sor Design 

Consider the dynamic system in (5), where matri- 
ces A ,  B ,  and C have been previously defined for a 
fixed number N of modes , so that A E % 2 N x 2 N ,  

B E ?RzNX1, C E ? I ? 1 x 2 N .  The estimation of the input 
signal U ,  given the measurement y and knowing the 
system structure can be cast into a problem of system 
anversaon. A necessary and sufficient condition for a 
system to be invertible has been given in (Brockett 
and Mesarovic, 1965). To our case this condition spe- 
cializes in the following proposition. 

Proposition 1 Consider the matrax M E ?I?4N-1x2N 

O 1  0 ... r C B  

M =  (9) 

A necessary and suficient condition for the invertzbd- 
i t y  of system (5) as that the rank of matrax M is 2 N .  
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Figure 2: Cost function and constraints for the optimal 
design problem, computed with a 3-modes model. +: 
minimum singular value of M .  *: sign of the maximum 
real part of the zeros of G(s).  0: suggested sensor 
placement accordingly to the defined criterion 

The rank test on matrix A4 is not the most compu- 
t.ationally efficient test for system invertibility. Suc- 
cessively other methods to analyze the invertibility 
have been proposed in literature, as for instance 
those in (Sain and Massey, 1969), (Silverman, 1969), 
(Moylan, 1977), (Tan and Vandewalle, 1988), to name 
a few. However, for the aim of this paper the test on 
matrix A4 has been chosen since it plays the role of the 
"measurement matrix" for dynamic system in equation 
(6) (Bicchi and Canepa, 1994). For further details on 
this point the reader is referred to the proof of the 
above proposition as given in (Sain and Massey, 1969). 
It ensues that the knowledge of matrix M is relevant 
for the analysis of the system invertibility as pointed 
out in the following remark. 

Remark 1 Matrix M gives information on the invert- 
ibility of the system, and on the properties of the in- 
version result, independently from the numerical algo- 
rithm that will be used. 

The aim of this paper is to suggest an optimal criterion 
for the design of dynamic force sensors. The optimal- 
ity is here meant as the maximization of the input- 
force/output-strain inversion accuracy. According to 
(Bicchi e t  al . ,  1997), in this paper the maximization of 
the minimum singular values of M is proposed as the 
optimality criterion. Recall that matrix M depends, 
through the output matrix C ,  upon the gauge position 
h which represents the free parameter of the dynamic 
sensor design. 

However, the inversion accuracy is not the unique 
requirement of the sensor design. In fact, as regards 
the inversion algorithm, a stability requirement on the 
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Figure 3: Cost functilon and constraints for the opti- p 

mal design problem computed with a 4-modes model. 
Symbols as in fig. 2. 

inversion algorithm must be added. In terms of trans- 
fer functions (since a single input single output case 
is considered) this is equivalent to require that, for 
the resulting h ,  the transfer function of system (5) 
must not have any zero with positive real part. Be- 
ing G(s)  = C(sI  - A)--lB the transfer function of (51, 
the design criterion takes the form: 

where umin is the minimum singular value and 
z ; (G(s) )  is the i-th zero of the transfer function G ( s )  

The constrained optimization problem ( lo) ,  that is 
usually solved by means of nonlinear programming 
methods, can be tackled, in this simplified case, by 
exhaustive search and visual inspection. 

Fig. 2 reports the behaviour of the minimum sin- 
gular value of A4 as zt function of the position h of 
the strain gauge on a normalized ( L  = 1) beam. In 
the same figure the sign of the maximum real part of 
the zeros of G(s)  is reported. The sign function takes 
on value -1 if the zeros of G(s) have all negative real 
part (admissible region) and +l region if at  least one 
zero of G(s) has a positive real part (inadmissible re- 
gion). By a simple inspection of figure 2, it ensues 
that maximization of the minimum singular value of 
M is obtained when the strain gauge is at the left ex- 
treme of the admissible region. By taking into account 
a normalized tolerance of 5% in placement of the force 
transducer, the design choice corresponds to fix the 
strain gauge at  position h' = 0.5, i.e., the middle of 
the beam. 

Fig. 2 has been obtained by considering the modal 
approximation of order 3 ( N  = 3). It can be shown 
that the behaviour of the minimum singular value of 
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M does not change if the number of modes included 
in the approximation increases. However , positions of 
the transfer function zeros do change with the number 
of modes. Fig. 3 reports the minimum singular value 
and the sign of the zeros real part when the order of 
the modal approximation is four ( N  = 4). It can be 
seen that the admissible region for a stable inverse has 
been shrunken, and in particular the position h* = 0.5 
now belongs to the inadmissible region. 

This means that the optimal design of the sensor 
needs the a przorz specification of the maximum num- 
ber of modes that one wishes to  invert for. Such a 
number may be determined by the dynamic range of 
the strain gauge, by the precision one wish to achieve 
and so forth. However, once the choice has been made, 
and the strain gauge has been placed appropriately, 
the sensor cannot be used to invert data by using a 
model with more modes than those previously speci- 
fied. 

Notice also that, as the number of modes increases, 
the admissible region shrinks progressively towards the 
free end point of the beam. In the limit case ( N  --+ cm), 
the only admissibIe point is the free end point itself, 
hut unfortunately there the system is not invertible, 
as seen from the minimum singular value, that ap- 
proaches zero. 

Figure 4: Force F l ( t )  end F2(t) for the simulative test. 

cretized version of system (11) is obtained as 

( E  - T(  1 + Q ) F ) W ( j  + 1) = 
( E  + '(3 - a)F)w(j)+ 
+TG[(i + Q ) ( W ( j  + 1) - Y ( d )  + Y ( j ) l  

(12) 1 

where T is the sampling period, and Q 2 l / 2  is referred 
to  as the regularization parameter. For Q = 1/2 the 
method above turns into the Backward Euler method. 
As Q increases, the solutions of the discretized equa- 
tion (12) are low-pass filtered versions of the exact so- 
lution, with cut-off frequency progressively decreasing. 
Furthermore notice that parameter a can be adap- 
tively changed at each computational step. 

4 Inversion Algorithm 
5 Simulations 

In order to determine the applied force, the regu- 
larized backward Euler algorithm proposed in (Caiti 
and Cannata, 1995) has been selected. This algorithm, 
originated from the numerical study of implicit (or sin- 
gular) systems, has intrinsic robustness properties, and 
allows to estimate the input to a system with one-step 
delay with respect to the measured output. 

From dynamic system (5), the following implicit sys- 
tem is built. 

I O  A B  
[ o  o ] [ : ] = [ c  0 ] [ : ] + [ : 1 ] y .  

(11) 
The implicit system (11) can be written in the com- 
pact form Ew = F w  + Gy, with obvious meanings. 
Notice that system (11) is obtained just rewriting the 
equations of system ( 5 )  as an implicit system. By ex- 
ploiting the non-directionality of implicit representa- 
tions, it is possible to exchange the role of input and 
output. Moreover, the system (11) is solvable, i.e., ad- 
mits unique solution, if and only if the system ( 5 )  is 
invertible (Lewis et al., 1987). 

According to (Caiti and Cannata, 1995), the dis- 

The following simulative cases have been analyzed. 
A beam of unitary length and homogeneous unitary 
mass has been considered. Two time-varying forces 
F l ( t )  and F2(t) in fig. 4 have been selected, one con- 
tinuous with discontinuous derivative, the other one 
discontinuous. The strain gauge has been considered 
as placed at h = 0.5 The strain gauge measurements 
(fig. 5) have been generated in both cases using a 
truncated model of the 4-th order ( N  = 4), while the 
estimation has been obtained by using in the inverse 
system a 3-rd order model. This has been purpose- 
fully done in order to investigate the effect of model 
mismatch disturbances. 

The results of the application of the inversion algo- 
rithm with Q = 1/2 in both cases are shown in fig. 6 
This figure has to be compared directly with fig. 4. It 
can be seen that in both cases the applied forces are 
well reconstructed, notwithstanding the model mis- 
match problem, except in t h e  case of j u m p  discontz- 
nuzty of the applied force.  In the case of a jump dis- 
continuity, the computed inverse solution shows, in 
correspondence of the jump instant, an impulse-like 
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Figure 5: (a): strain gauge measurement yl(t)  ob- 
tained for force F l ( t )  using a 4 modes approximation. 
(b): strain gauge measurement y2(t) obtained for force 
F2(t) using 4 modes. 

Figure 6: (a) Reconstructed signal using a 3-rd order 
approximation in building the inverse model, and the 
backward Euler algorithm for computing the solution. 
The input to the algorithm is the signal (a) of fig. 
5. The desired solution is the signal (a) of fig. 4. (b) 
Reconstructed signal using a 3-rd order approximation 
in building the inverse model, and the backward Euler 
algorithm for computing the solution. The input to 
the algorithm is the signal (b) of fig. 5.  The desired 
solution is the signal (b) of fig. 4. 

spurious response. However, in this case, by simply 
low-pass filtering the inverse solution (for instance, in- 
creasing the value of the parameter Q in the inversion 
algorithm, the signal reported in fig. 7 is obtained. It 
can be seen that low pass filtering allows for a faithful 
reconstruction of the input force even in the case of 
jump discontinuity 

6 Experimental Results 

The above simulative results have been presented 
to show that the proposed approach to dynamic 

Figure 7: (a) Desired solution ( F z ( t ) ) .  (b) Low-pass 
filtered signal obtained from signal (b), fig. 6. 

force/torque sensing is not only feasible, but can also 
overcome the obvious problem of model masmatch due 
to the modal truncation. A simple experiment is now 
reported in order to validate the approach used for the 
optimal dynamic sensor design. 

A steel beam of 0 . 2 ~ 1  length rigidly fixed at one end 
is solicited with impulsive forces at the free end. The 
impulsive forces are given by an operator with a ham- 
mer equipped with a piezoelectric sensor able to mea- 
sure the input signal to the system. A strain gauge 
has been placed at the position h = O.lm. This is the 
optimal position for the 3-modes approximation of the 
system. Direct measurements and a least mean square 
procedure has been used to identify the physical pa- 
rameters of the steel beam. Both the hammer input 
signal and the strain gauge output signal have been 
acquired with a 12-bit PIID converter with a sampling 
rate of 2 KHz. 

In fig. 8 the actual input signal is described. The 
normalized strain gauge measurement for this input 
signal is reported in fig. 9a. Notice that for such sig- 
nals the transient information is paramount and quasi- 
static relationships are not useful. Fig. 9b describes 
the prediction of the strain gauge output obtained 
with the 3-modes approximation and the input sig- 
nal in fig. 8. A simple inspection of signals in fig. 9 
shows that physical parameters of the system have 
been identified with satisfactory approximation, and 
also that three modes are enough to describe the sys- 
tem behaviour. The input estimation obtained by the 
inversion algorithm is shown in fig. 10. The estimated 
input must be directly compared with the real input 
reported in fig. 8. It follows that the input estimate is 
in excellent agreement with the measured input signal, 
showing good noise rejection properties and sufficient 
insensitivity to model mismatch. 
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7 Conclusions and Future Work 
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Figure 8: Normalized input force measured from the 
piezoelectric sensor on the hammer 

Figure 9: (a-top): normalized strain gauge measure- 
ment in correspondance of the input signal of fig. $; (b- 
bottom): predicted normalized strain gauge measure- 
ment obtained from the 3 modes model of the beam 
giving as input the signal of fig. 8 

.I I 

Figure 10: Estimated force input signal with the in- 
version algorithm based on the 3 modes truncated ap- 
proximation. 

In this paper an investigation of the optimal design 
of dynamic force-torque sensors was pursued. The case 
of a single flexible beam was considered and experi- 
mental results were presented. Experimental results 
show that it is possible to  obtain robust solutions to 
the inversion problem, notwithstanding the use of an 
approximated model in building of the inverse system. 
Future developments of this work are foreseen on fur- 
ther experimental investigation of the estimation al- 
gorithm, and on the extension of the approach to the 
case of multiple force/torques acting on the system. 
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