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Abstract

This paper deals with the problem of noninteracting
force/motion control for manipulation systems with
possible kinematic defectivity. A geometric approach
is adopted in the paper. The main result of the pa-
per shows that a suitable choice of the outputs exists,
for which a structural noninteraction property holds,
and such that most practical manipulation tasks can
be naturally specified.

1 Introduction

The coordinated use of multiple fingers in a robot hand
or, similarly, of multiple arms in cooperating tasks; the
use of the inner links of a robot arm or finger to hold
an object, and the exploitation of parallel mechanical

structures, are examples of non-conventional usage of

mechanisms for manipulation. We will refer to such
devices as “general manipulation systems”.

The aspect of general manipulation systems that our
analysis is most focused on is defectivity of their kine-
matics. In many devices whose design is inspired to the
pursuit of the least complex solution to a given class of
manipulation tasks, a “defect” of the number of control
variables with respect to the problem dimensionality
frequently arises.

The main goal of dexterous manipulation tasks con-
sists of controlling the motion of the manipulated ob-
ject along with the grasping forces exerted on the ob-
ject. In the robotics literature, the general problem of
force /motion control is known as “hybrid control”. For
a broad overview of the manipulation control problem,
the reader is referred to [12] and the references therein.

The present paper is aimed at the synthesis of a non-
interacting control law with respect to the rigid-body
object motions and the reachable contact forces along
with the possible mechanism redundancy. The struc-
0-7803-3590-2/96 $5.00 © 1996 IEEE

tural decoupling of motion and force control in manip-
ulation is of paramount importance whenever advanced
robotic applications are considered, e.g. surgical appli-
cations or high precision tasks of micro-manipulation.

In this paper a geometric approach (cf. [1], [2], [14],
[7]) to the control problem is adopted.

We make use of a linearized model at an equilibrium
configuration of the general manipulation mechanisms
and we prove that the local noninteraction of “rigid—
body” object motions and reachable “internal” forces
is a structural property of general manipulation sys-
tems. The use of linearized model dynamics in the
analysis of general manipulation systems is believed to
be a significant advancement with respect to the lit-
erature, which is almost solely based on quasi-static
models, expecially for defective systems, and in fact
provides richer results and better insight. Furthermore,
the linearized analysis is considered as a fundamental
preparatory step towards full nonlinear analysis, which
at the moment appears to be too complex to achieve
in full generality. Finally, it is worth while to mention
that there exists a subclass of cartesian manipulators
where the linearized model provides an exact model of
the whole system dynamics.

2 Dynamic model

The linearized model of the dynamics of a manipula-
tion system is derived. For a detailed discussion of this
mode] refer to [9] and [5].

We denote by q € IR! the vector of manipulator joint
positions, 7 € IR? the vector of joint actuator torques,
1 € IR? the vector locally describing the position and
the orientation of a frame attached to the object, and
w € R? the vector of forces and torques resultant from
external forces acting directly on the object. In the
literature, w is usually referred to as the disturbance
vector.
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Figure 1: Vector notation for general manipulation sys-
tem analysis.

The force/torque interaction t; (fig. 1) at the i—th con-
tact is taken into account by using a lumped—parameter
(K;, B;) model of visco—elastic phenomena. According
to this model, the contact force vector t; is

t; = K,t(h‘ci - Ci) + Bi(héi - éi) (1)

where vectors "¢; and °c; describe the postures of two
contact frames, the first on the manipulator and the
second on the object, where the i-th contact spring
and damper are anchored. Matrices K; and B; are
symmetric and positive definite (p.d.) and their dimen-
sion depend on the particular model used to describe
the contact interaction (cf. [11]). To compact notation,
contact forces and contact points are grouped into vec-
tors t, ®c and °c. Similarly, K;’s and B;’s are grouped
to build the grasp stiffness and damping symmetric and
p.d. matrices K and B.

The Jacobian J and grasp matrix G are defined by the
linear maps relating the velocities of vectors "¢ and °c
with the joint and object velocities q and w, respec-
tively:

he =3q, °¢=GTa (2)
Note that, dually, JTt and Gt represent the effects of
contact forces t on the manipulation and object dy-
namics whose nonlinear models are:

Mpq+Qn=-J3Tt+1;

M,i+Q, = Gt +w. ®
Here, M, and M, are inertia symmetric and p.d. ma-
trices, while Q; and Q, are terms including velocity-
dependent and gravity forces of the manipulator and
of the object, respectively.
Let q = Qo u = u,, q = u = 0, 7=1,(=JTt,),
w = w,(= —Gt,), t = t,, be a reference equilibrium
configuration, the linear approximation of the dynam-
ics in the neighbourhood of such equilibrium point is
given by

x = Ax+B.67 + B, éw, (4)

where state, input and disturbance vectors are defined
as the departures from the reference equilibrium point:

[6q7,6u7, 647, su”]" =

X =

= la-a) @-w)T Q"
5t = 7-JTt,;
w = w+Gt,

and the dynamic, input and disturbance matrices A,
B, and B, are

0 0
0 1 0 0
{ Lk Lb ]7 M;l ’ 0 1 (6)
.0 M;!

respectively. To simplify notation we will henceforth
omit the symbol 6. Assuming a locally isotropic model
of visco—elastic phenomena, and assuming that gravity
and local variations of the Jacobian and grasp matrices
are negligible, all the dynamic contributions of terms
Qr and Q, can be neglected and simple expressions are
obtained for the blocks Li and Ly, as Ly = —M™ 1Py,
and Ly = ~M~!'P; where M = diag(My, M,), and

Pk:{fé]K[J —G7 |;

7 T
Py=| " [B[JI -G"].
The following grasp properties, based on matrices J
and G, have a relevant influence on the dynamic be-
haviour of the manipulation system.

Definition 1 A grasp (or manipulation system) is
said “defective” if ker (JT) # 0.

From (3) 37 € R"") where t is the number of com-
ponents of the contact force vector t. Thus, when-
ever the manipulation system has less degrees of free-
dom (DoF’s) ¢ than ¢, it exhibits a defective grasp.
When the system is defective, there exists directions
for t which do not influence manipulator dynamics (3).
Such a scenario may be considered as a common factor
of all defective manipulation systems and this is due
to their intrinsically low number of DoF’s. The reader
is referrd to e.g. [8] for a more detailed discussion of
defectivity.

Definition 2 A grasp s said “indeterminate” if

ker (GT) #£ 0.

If the grasp is indeterminate, there exist motions of
the objects under which no variations of contact force
occur (2). In other words, indeterminacy implies that
the object is not firmly grasped.

Definition 3 A manipulation system is said “gras-
pable” if ker (G) # 0.
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If the system is graspable it is possible to exert contact
forces with zero resultant forces on the object. Usu-
ally in the literature the forces belonging to the null
space of G are referred to as “internal forces”. Such
forces play a fundamental role in controlling the ma-
nipulation task. It is intuitive that. without internal
forces squeezing the object, a manipulator only accom-
modates the object, rather than grasping it. Whenever
the effect of a disturbance action on the object is in the
tangential direction of a manipulator contact. the sys-
tem cannot reject such a disturb by simply opposing a
contact force. It must generate an additional internal
force to keep the total contact force in the friction cone
and to keep the contact.

Finally. the well-known notion of manipulator redun-
dancy is formalized as follows.

Definition 4 4 grasp is said “redundant”™ if ker (J) #
0.

The concept of general manipulation system 1s formal-
ized as follows: every manipulation system. in a given
grasp configuration, defective or not, indeterminate or
not. graspable or not and finally redundant or not is re-
ferred to as a “general” manipulation system. In other
words the generality of a manipulation system is related
to its Jacobian and grasp matrices.

As far as stabilizability of the linearized dynamics is
concerned we report the following proposition stated

in 8]

Proposition 1 Ifthe system is not indeterminate. i.c.
ker (GT) = 0. then the minimal A~invariant subspace
containing the im(B;), min Z(A.B;). is externally
stable.

From now on we will assume that there is not inde-
terminacy. i.e. ker(GT) = 0. Such an assumption is
needed for the stabilizability of the manipulation sys-
tem dynamics (4).

3 Force/motion control

The main goal of manipulation tasks consists of con-
trolling the motion of the manipulated object. The
stimulating aspect of manipulation control is that the
manipulated object is not anchored to the robotic de-
vice, but this one acts on the object through passive
(not directly actuated) “joints” consisting of a mechan-
ical unilateral contact. Since contact constraints ensure
both the ohject grasp and motion control. their non-
violation is of paramount importance.

Assuming that a general task specification is given in
terms of object motion. the remaining degrees of free-
dom by which contact phenomena can be controlled

Figure 2: Representative motions for the subspace
. T
im [PL. TL]".

correspond to the “internal forces™. These forces be-
long to the null space of the grasp matrix G and, as
already pointed out. they are called “internal” as their
resultant action on the object dynamics is null.

In order to pursue our investigation into force/motion
control, the outputs of the dynamic system (4) must
be defined. In the spirit of [8] we consider the “rigid-
body coordinate object motions”, the “reachable in-
ternal contact forces” and the “manipulator dynamic
redundancy”.

3.1 Rigid-body coordinate object motions

Rigid-body kinematics are of particular interest in the
control of manipulation systems. Rigid-body kinemat-
ics have been studied in a quasi-static setting in [4] and
in terms of unobservable subspaces in [5]. In both cases
rigid kinematics were described by a matrix I' whose
columns form a basis for ker [J — GT] = im(I'} where

1 T, o
F“[o T.. rt]'

with JTge = GTT .

(7)

being I', a basis matrix (b.m.) of the subspace of re-
dundant manipulator motions ker (J)}. I'; a b.m. of
the subspace of indeterminate object motions ker {GT).
and I, and I',,. conformal partitions of a complemen-
tary basis matrix! (c.b.m.).

r .
The column space of Ty = | consists of coor-

ruc
dinated rigid-body motions of the mechanism. for the
manipulator (I'y.) and the object {I',,) components.
Physically rigid-body displacements are those that do
not involve variation of contact forces, from which the
name ‘rigid”". Figure 2 shows such subspaces for a sim-
ple devices.

The following proposition. proven in [5]. shows that
rigid-body motions are reachable. i.e. they belong to
the space of reachability of linear svstem (4) with input
the vector of joint torques 7.

W is called a complementary basis matrix of ¥V to X' if it is
fer. andim (W)= V = X

1954
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Proposition 2 Lel the subspace of rigid-body positions
and velocities be defined as the column space of T,,
where

Tee O
L. O

To=| o o | (8)
0 FILC

then it holds im(T.) C min ZT(A,B,).

Notice that the rigid-body subspace is only a subspace
of the reproducible one which also contains motions
due to deformations of elastic elements in the model.

Rigid-body kinematics are of particular interest in the
control of manipulation systems. Since they do not
involve visco—elastic deformations of bodies, they can
be regarded as low-energy motions. In a few words,
they represent the easiest way to move the object.

The object—position regulated output e, is chosen as
the projection, through I'P | of object positions u onto
the subspace of rigid-body object motions im (I'y.):

ey, = Ey.x; with E,, =TFP [0100]
where T, = I'y(TI.T,.)~ T .

uc

9

3.2 Reachable internal contact forces

The control of contact forces t is a fundamental part
of the manipulation control problem. Contact forces
are able to maintain the grasp, to reject disturbance
wrenches w and to control the object motion. In [9]
the reachable subspace of contact forces as outputs of
the dynamic system (4) was studied. The main relevant
result is reported in the next proposition.

Let us define 6t as the departures of contact force
vector t from the reference equilibrium t, (5). Its
first order approximation can be easily evaluated
by substituting differential kinematics (2) in t, the
grouped vector of t;’s (1). Hence t = C,x where
C: = [KJ —KGT BJ -BGT].

We assume that stiffness matrix K and damping matrix
B are proportional (cf. [6]). Such an assumption allows
us to extend easily some results obtained in previous
works ([9] and [5]), to the cases where B # 0. Under
the assumption of proportionality, those geometric re-
sults depend only on the im (K) = im (B), thus we will
henceforth disregard the explicit dependence on B.

Proposition 3
The reachable subspace of contact forces t is Ry, =
Cymin T(A,B;) = min Z7(KGTM;!G,KJ)

In this work we are interested in controlling those con-
tact forces belonging to the null space of the grasp ma-
trix G. In general the null space of G is not com-
pletely reachable. The importance of the reachabil-
ity of internal forces in grasping was clarified in [3],
where the principle of virtual work was used to de-
scribe the subspace of active internal forces, and in [§]

where the asymptotically reachable internal forces were
studied as steady state behaviour of a suitable transfer
function. Here we want to characterize the reachable
internal forces subspace Ry; ; as the intersection:

R'ti,r = 'R,ty-r M ker (G)

The following theorem, proven in [10], provides an ex-
plicit formula for the reachable internal forces subspace:

Theorem 1
Riir = im{Png C¢) =im(Pyng KJ)
with Pyg = I - KGT(GKGT)"!G,

According to this result, the subspace of reachable in-
ternal forces is obtained by the projector on the null
space of G, Pyg, acting on the column space of C,.
Notice that Theorem 1 states the equality of Ry; » with
the active forces in [3] and with the asymptotically
reachable forces in [8].

In order to specify consistent. control outputs, we follow
the suggestion of Theorem 1 and choose as regulated
force output e;; the projection of the contact force vec-
tor t on the null space of G, i.e. the reachable internal
contact forces:

where Q = (I - KGT(GKGT)~!G)KJ. (10)

4 Noninteraction as a structural property

The present section is aimed at the analysis of the
noninteracting control property for grasping mecha-
nisms with respect to the rigid-body object motions
and the reachable contact forces together with the pos-
sible mechanism redundancy. The geometric approach
is used in such analysis. It should be remarked that the
earliest geometric approaches to noninteracting control
are due to Basile and Marro ([1], [2]) and to Wonham
and Morse ([14], [7] [13]). The result of this section
regards the local force/motion noninteracting control
of general manipulation mechanisms and is based on
necessary and sufficient conditions for the existence of
the noninteraction control law given in [2] and [1].

Before attacking the problem of the structural nonin-
teraction, let us introduce the third output vector ey,
to take into account the possible redundancy of the
mechanism. Whenever the analysis is not static, the
inertia matrix M, play a key role in characterizing the
redundance displacements of the manipulator. There-
fore, we define the redundancy output matrix E,. as

e, = Eppx; with E,. = [TPM;, 0 0 0] (11)

where TP is the projection matrix onto ker (J) whose
b.m. is T,
r? =r.(rfr,)-'r7. (12)

19565
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Definition 5 A control law for the dynamic system
(4) is noninteracting with respect to the regulated out-
puts ey, ey and ey if there erists a partition T, 1y
and 74 of the input vector v such that for zero ini-
tial condition, each input 7y (with all the other inputs,
identically zero) only affects the corresponding oulput
€y

The following theorem shows that the noninteraction of
the regulated outputs e,..e;; and ey, for the dynamic
system (4). is an intrinsic structural property of general
(non-indeterminate} manipulation systems.

Assume that:

H1: The manipulation mechanism is not indetermi-
nate, ker (GT) = 0;

H2: im(T,.) is M} JTKJ-invariant and im(Ty.) is
M7 GKGT -invariant,

then, the following theorem holds

Theorem 2 (Noninteraction) Consider the lin-
earized manipulation system (f). Under the hypothesis
H1. there erists a noninteracting control law decou-
pling the following outputs:

a) rigid-body object motions ey.;

b} reachable internal forces ey;;

¢) mechanism redundancy ey ;

Remark 1 The technical hypothesis H2 is introduced
in order to simplify the proof of the theorem.

Remark 2 In [8] the authors discussed the consis-
tency of the outputs chosen in Theorem 2, where for
consistency we mean that the whole set of outputs is
pointwise controllable and that it directly accommo-
dates for specification of manipulation tasks. More-
over, in [8] it was shown that these outputs. e,., ey
and e,,. are functionally controllable and exhaust the
control capabilities, i.e. the input-output representa-
tion is invertible and square. In this paper we show
that there always exists an observer—based control law
which is locally noninteracting with respect to these
outputs. The theorem on noninteraction is stated for
the whole class of general (non-indeterminate) manip-
ulation systems, i.e. whatever be the Jacobian and
grasp matrices (with ker (GT) = 0) but, as pointed out
elsewhere, we underline the relevance of Theorem 2 to
the subclass of defective system characterized by a low
number of control variables.

5 Nomninteraction: sketch of the proof

In this section the proof of the main result is sketched.
It is based on the analysis of the svstem-theoretic

structural properties of manipulation systems, summa-
rized in a standard form for the linearized dynamics,
given in [5] and [9].

A detailed proof of the Noninteraction Theorem, is
given in [10].

Under the hypothesis H1, the couple (A, B;) is stabi-
lizable (cf. Proposition 1) and under H2 the linearized
system (4) 1s detectable from the informative output
y = (@7, tT)7 (cf. [5]). Then, according to [2], there
exists an observer—based controller noninteracting with
respect to the regulated outputs (9), (10) and (11):

e..=E.x = [0TF, 00]x (13)
e, =Eux = [Q0QO0]x; (14)
e =Epx = [IPM,000]x (15)

if and only if

a‘) EucR-IC,,C =im (Euc);

b_) E;Ri,, = im(Ey); (16)

¢) EgpRi, =im(Eqg);
where

Kue = ker (Ey;) Oker (Eyp );

K = ker (Eyc) Nker (Eyp); (17)

Kqr = ker (Ey;) Nker (Ey..)
By Rx,., we denote the K(.)—constrained controllability
subspace which is the subspace of all the points reach-
able through trajectories leaving the origin and belong-
ing to K¢,y.
In what follows we focus on equalities (16) and to
simplify the proof, we replace the intersection sub-
spaces Ky, Ky and Ky, in (17) with suitable subspaces
im (By.),im(By;) and im (B, ) whose constrained con-
trollability sets do suffice for complete noninteracion.
Proof of a) It can be shown that

Kue 2 im(Buy.) with
FqC 0 Fqc 0
_ ruc [t} "‘I‘uc 1]
B.. = 0 I, o r,
0 T. 0 ~T..

Clearly Rp,., the B, .—constrained controllahility sub-
space, 1s only a subset of Rx,. but it will suffice to
prove a).

In order to evaluate Rg,, we must face the iterative
nature of the algorithms (see [2]) computing the maz-
mmal controlled invariants maxV (-)'s and the minimal
conditioned tnvariants minS (+)’s. In fact the minimal
self-bounded controlled tnvariant Rp,, is computed
as follows Rp,. = maxV(A.im(B;),im(By.)) N
minS (A, im(B,.).im(B;)). :

After some algebraic manipulations reported, we ob-
tain that

r,, o
. .. 0

, ] 4
Re,. =2im 0 T,
0 T,

1956
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To complete the proof it remains to verify that
E,.Rn,. = im(Ey.) and this is trivial since from (9)
E,. = [..(PT.T..)"' [0 TZ, 0 0] n

Proof of b) Analogously,

K 2im(By) with
Irn o s, 0 0 0

B.-| 0 0 0 0 PO

"1 o I, o S o0 0|
0 0 o6 0 o0 P

where P = ker(I'Z7,)n S, and S, is the b.m. of
min Z (M;1JTKJ M; ' JTKGT) while S, is the b.m.
of min 7(M;'GKG?, M;'GKJ).

As before, Rp,, = maxV(A,im(B;),im(By)) N
minS (A,im (By;),im(B;)) is a subset of Rg,; but it
will suffice for this proof. We obtain (cf. [10]) that

ry 0 S,Z 0
6 o 0 0
0o I', 0 S,Z]|°
0o o0 0 0

Rp, 2im

where Z = ker(FT,M;!GKIJS,). To complete the
proof we must verify that Ey;Rp,, = im(Ey;), which
is equivalent to im(Q [ Ty S,Z ]) = im(Q), proven
in {10]. n

Proof of c¢) Condition ¢) is the easiest to prove. In
fact

and since from (12)
Ep =T (FLT) ' [T, Mr 0 0 O]

condition ¢) is verified and the proof of ¢) ends. n

6 Conclusions

In this paper we considered the problem of controlling
general manipulation systems. Due to the presence of
defective manipulators as a relevant subclass of the gen-
eral ones, the choice of the regulated outputs requires a
particular attention. In fact in defective manipulators,
contact forces are not completely reachable and this
involves a certain complexity in controlling the whole
system.

After characterizing the system outputs as the rigid-
body object motions, the reachable contact forces and
the possible mechanism redundancy, we focused on the
problem of force/motion noninteracting control.

The geometric approach is used throughout the paper
whose main result states that there always exists an

observer—based control law that is locally noninteract-
ing with respect to the aforementioned outputs.

Notice that the local force/motion noninteraction can
be considered as a structural property of manipulation
systems.
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