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Abstract 
Nonholonomic constraintss in robotic syst,ems are 

the  source of some difficulties in planning a.nd con- 
trol; however, t,hey also int,roduce int,erest,ing proper- 
ties t,hat can be practically exploited. In this paper we 
consider the design of a robot hand that  achieves dex- 
t,erit,y (i.e., the  ability t o  arbitrarily locate and reorient, 
ma,nipulat,ed objects) through rolling. Some int,erest- 
ing issries arising in planning and cont,rolling motions 
of such device are considered, including exact plan- 
ning for a spherical object and a.pproximate pla.nning 
for general ohject8s. An experiment,al prot,otype of a 
t,liree--plus-one d.0.f. ha.nd achieving dext,erous ma- 
nipiila.tion capabilities i s  described along wit,h experi- 
mental results from manipulat,ion. 

1 Introduction 
Uexterous hands, i.e. cooperatsing multilimb robots 

with the ca.pabilit>y of manipulating an object so as 
t o  xbi t rar i ly  st~eer its configurattion in space, have at,- 
t,ra.ct,rd much inkrest, in the robotics lit,erature.  HOT^ 
ever, the high degree of sop1iist)ication in their me- 
cha.nica1 design prevented dext,rous robot,ics hand to  
succeed in applications where factors such as reliahil- 
it,y, weight, sma.11 size, or cost, were a.t a premium. 
One figure partially representing such complicacy is 
t8he number of actuators, tha t  ra,iiges bet’ween 9 and 
32 for t,ypical hands. In this pa.per, we consider the 
exploita.t,ion of the effects of rolling of t,he object, be- 
tween the fingers a,s a means of xhieving dexkrity 
while reducing the number of necessary actuat,ors in 
t,he ha,nd. 

Rolling between rigid bodies in three-dimensional 
space is a well-known case of nonholonomica.lly con- 
strained motmion. A knife-edge cutting a sheet, of p a p r  
and a. ca,t falling onto its feet are examples of nat,- 
ural nonholonomic systems, while bycicles and cars 
(possibly wit8h t,railers) are fa,miliar examples of arti- 
ficidly designed nonholonornic devices. The most no- 
h b l e  cha.racteristic of nonholonomic systems is t,liat. 
t8hey can be driven t,o a desired configuration in a 
d--dimensional configurat,ion mmifold using less than 
d input.s. Since “inputs” in engineering terms trans- 
lates int80 “actuators”, devices designed by intention- 
ally introducing nonholonomic, mechanisms can spare 
ha.rdware costs without sacrifying dext,erity. While 
nonholonomy in a. system is oftmen regarded as an an- 
noying side-effect of other design considerations (this 
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is how most people consider e.g. car maneuvering 
for parallel-parking), purposeful introduction o f  non- 
holonomy in robotic syst8em design has been consid- 
ered previously by Brockett [ 3 ] ,  and,  in a spirit closer 
to that  of t,he present paper, by Sordalen and Naka- 
mura [17]. 

Nonholonomic systems do have disadvantages, how- 
ever, among which the most notable are perhaps the 
difficulties in planning and controlling their motions. 
Planning finger movements t80 steer an  object between 
an initial and a final desired configuration is not triv- 
ial, and in most cases the ta,sk is beyond common hu- 
man ability. This i s  particularly true when t,he shape 
of the object is not known a priori, but  has to be recon- 
struct,ed from sensory da ta  during manipulation. This  
paper is devoted to describing tools that may render 
the design of a nonholonomic dextrous hand a viable 
means of achieving dexterity with simple mechanical 
design. 

2 Background 
We reed some basic definitions and facts tha t  are 

necessary t.0 undershnd the techniques used in the 
paper.  We will deal with mechanica.1 systems whose 
configurat,ions evolve in a, &dimensional manifold M, 
i.e. a differentiable va,riety locally diffeomorphic to 
R.d. To avoid unnecessary complication, we will be 
only concerned here with local representations of the 
syst,em. so that  local coordinat,es in IRd are assumed 
throughout,. According to t,he classical definition o f  
nonholonomy, a syst8em described by its generalized 
coordina.tes q E IRd is called nonholonomic if i t  is 
subject to constraints of the type 

c(q(t), il(t)) = 0 

and if there is no equation of t,lie form c’(q(t)) = 0 
such t,hat = c(q(t), q(t)) .  If also Pfaffian (as 
is our case), trhe const,raint is 1inea.r in q ,  

4% 4 = A(q) 4 = 0, 

and hence it can be rewritten in terms of a basis of 
t,he kernel of A(q) ,  denoted by G(q) ,  as 

4 = G ( ¶ )  ” 
This is t,he standard form of a nonlinear, driftless con- 
t,rol syst,ems. In the relat,ed vocabulary, components 
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of U are inputs, while columns of G(q) are input vec- 
tor fields. The collection of the subspaces spanned by 
G , P )  a t  every q E U c M is a distribution. A dis- 
tri ution is nonsingular if rank (G) is constant over 
its dornain. It is involutive if the Lie-Bracket between 
any of its vector fields is again a vector field in the 
distribution, i.e. if 

In terms of input vector fields, the nonintegrability 
of t,he original mechanical constmint has its counter- 
part in t,he well-known Frobenius theorem: 

Theorem 1 (Frobenius) . A nonsingular distribu- 
tion i s  integrable if and only i f  it i s  involutive. 

If a dist,ribution is not involut,ive, then motions in tthe 
Lie-bracket, directions are possible which are not, in 
the spa.n of the original vector fields. Hence, an al- 
ternative viewpoint on nonholonomy is that, a system 
q = G ( q ) u  is nonholonomic if G ( q )  is not involut,ive. 
A fiindament,a.l question a t  this point, is, under wha,t 
conditions can a d-dimensional nonholonomic system 
be steered by less than d inputs to  an arbitrary config- 
uration. Note that  also higher order Lie-brackets rep- 
resent tlirect,ions of possible motion. Therefore, one i s  
naturally led to  consider the filtration 

r k  = r k - 1  + I.rk-1, ro](brackets of order 5 k - 1); 

The const,ruction stops at, some level, say k = 
p ,  when dim!?k+l = d i m r k .  The number k is 
called “degree of nonholonomy” . Let, dim(ri )  = 
7; he constant in some open set. If p > 0 and 
7 p  = n, the system is completely controllahle and 
it is said “maximally nonholonomic” (Chow’s theo- 
rem). Vectors 7 = [ 70 71 7p  IT a.nd 7 == 

[ 70 71 - 70 yP - yP-l I T ,  are called “growth 
vector” and “relative growth vect,or”, respectively. 

The planning problem, i.e. to  explicitly find a con- 
trol U : [0, 11 + lRm that  steers the nonholonomic 
system q = G(q)u( t )  from given q(0) t,o an arbitrary 
q( l ) ,  has been given much at,tention in the literat,ure 
recent,ly. Murray a,nd Sast,ry [13] investiga.ted a class of 
systems for which a normal, or “chained” form, of sys- 
t8em equations can be obtained, and showed t.hat, opti- 
mal  inputs (in a certain sense) for systems in t h i s  form 
are sinusoids a.nd cosinusoids a t  int,egrally relat,ed fre- 
quencies. Their method, along with ext,ensions made 
hy  Sordalen [16], solved the problem of parking cars 
with an arbitrary number of t,railers. On t8he other 
hand,  Rouchon et al. [ 141 showed t,ha.t “differentially 

flat” systems can be conveniently planned looking a t  
their “flat” outputs only. Monaco and Normand- 
Cyrot, [IO] proposed to  apply nonlinear multirate con- 
t8rol to  the planning problem for systems that  admit 
an exact sampled model (while maintaining control- 
lability under sampling). Lafferrierc: a,nd Sussman [a] 
described a powerful “constructive” method for ex- 
actly steering nilpotent syst,ems, i.e. systems whose 
higher-lcvel Lieebrackets are. ident.ically null. 

We describe now some tools of surface geometry 
necessary to  deal with our specific problem of manip- 
ulat.ion by rolling. Both the object and finger surfaces 
are assumed to  be simple surfaces C embedded in IR3, 
to  which coordina,te patches (f, Uj;f : U c Et2 -+ 
Cu c I;, can be locally attached so as to  form an 
atlas. It1 these coordinates, a Gauss (normal) map 
n : G -+ Sa c Et3, can be written as n = 
It is also useful to  define a normalized Gauss frame 
[z, Y, 21 .= [fu/llfu.ll,fV/llf,ll, .I, with f,”fv = 0. The’ 
kinematics of rolling motions can be derived from ei- 
ther the cla.ssica1 differential geometric viewpoint (us- 
ing first and second funda,mental forms for C a t  p ,  
I p  and 11, resp., and Christoffel symbols of the first 
and second kind, [ i j , h ]  and r t ) ;  or using Cartan’s 
definitions of met,ric form MI: = diag (llfull, llfvll), 
curva,ture form Kx = [x, yIT[zU, zv]Mil ,  and torsion 
form TI; = yT [ x ~ ,  xV]Mil. While the latter descrip- 
tjion res]-dts more convenient,, we reca,ll that  t,he re- 
lationship between the two sets of forms is given by 
ME = A, K x  = MGTIIpMgl,  and TzMz = 
M?2M;;,[l’:,, r,f2] (cf. e.g. Sarkar [Is]). 

The kinematic equations of motion of the contact 
poink between two bodies rolling on top of each other 
describe the evolution of the (local) coordinates of the 
contact point on the finger surface, af E Et2, and on 
the object surface, a, E lR2,  along; with the (holon- 
omy) angle between the z-axes of t.he two gauss frames 
4 ,  as they cha.nge according to  the rigid relative mo- 
tion of tlie finger and the object, described by the rel- 
ative velocity v and a,rigular velocity w .  According 
to  tlie derivat,ion of Mont,ana [ll],  in the presence of 
friction (soft-finger contact model) one ha.s 

x f w  
Ilf:xf,ll). 

== TfMfdrf + T,N[,&,; 

where K, = Kf + R,+K0R+ is the relative curvature 
form, and 

s i n 4  -cos+ 1 * 

cos 1c, - sin,$ [ R+ = 

3 Hand Kinematics 
To completely describe the manipulation system, 

we need to  attach tlie rolling equations above to  the 
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kinematics of the manipula.ting hand by means of t,he 
constraint, equations imposed by the no-slippage con- 
dition. Let ci t Ci c SE(3)  describe the position 
and orientation w.r.t,. base frame of t,he Gauss frame 
at, t,he cont8act het.ween t,he i-t,h finger and the object. 
Denot,ing by pi E Qi c lRgi the  joint coordinat,es and 
by afi E U; c iR2 the contact coordinates for finger 
i ,  let Ai : U; x Qi + Ci represent the t,ranslat.ional 
part of ci(qi, af i ) ,  and n,(q;, aii) t8he norma,l map at 
the i - - t ,h  conta.ct point. For the contact pair bet,ween 
t,he object and the i-t,h finger, soft-finger frictional 
constraint's impose tha t  

nT W J .  ' . - nT bW 
a 2 %  - i 

where b~ are the velocit,y and angular velocity of 
the object in a base reference frame, and "Ji(qi,cx,f;) 
represents the rotational .Jacobian operat,or mapping 
joint velocities q; in the angular velocit,ies of the con- 
tact Gauss frame on the i-th finger. Note that, (3) 
is obtained by equating constra.ined velocit,ies of the 
contract point as part of the finger and of t,he object, 
respect,ively, and cancelling out, the contributions of 
rolling (terms in  &, bo)  t8hatm have already been t,akeii 
into a.ccount in deriving the equa.tions of rolling kine- 
matics. Int,roducing the notation 

and constructing a global hand "jacobian" matrix J = 
diag (J i )  and "grasp" matrix G = [GI G2 ...I, the 

hand kinematics can be written as 

where q = [;IT ;IT . . . I T ,  and bU = [bvT ' w T I T .  One 
further step is necessary to  relate joint motions to  the 
relat#ive velocities b&een the object and one of t,he 
fingers, used as a reference member. This involves 
expressing bU in terms of the sum of the velocity of 
the reference mpmber and of the relative velocity ii, 
and bringing t8he former part to  the right hand side 
of ( 3 ) .  Ha.ving modified the hand .Jacobian matrix 
accordingly, the hand kinematics equatioiis (dropping 
argument,s for simplicity) reads a.s 

Jq - GTii = 0 (4) 

Joint motions can be ea.sily solved in terms of object 
motions if t,he hand J x o b i a n  is invertible. However, 
in order for this condit,ion to  apply, it is necessary that  
the hand has at least four joints per finger. Note tha t ,  
in the design of a. hand system int,ended to  exploit, 
rolling t o  reduce the number of actuat,ors, the hand 
Jacobian i s  certainly not invertible (i.e., the hand is 
kinema.tica.lly defect,ive). The  kinemat,ics of defective 
hands ha.ve been studied by Bicchi, Melchiorri, and 
Balluchi [2]. Using t,heir t,erminology and methods, 
and assuming tha t  the system is graspable and not 

L 

t 

Figure 1: Kinematics of the hand developed for exper- 
imenting dextrous manipulation by rolling. 

redundant, one can evaluate two matrices U, and Q, 
such t'hat their columns span the subspaces of com- 
patible object and joint velocities, respectively. In 
these hy-pot,heses, t,liere is a bijection between rela- 
tive velocities U E range (U,) and joint velocities 
q E range (Q,), which can be expressed as 

q = QpU:U, U E range (U,). (5) 

Note tha t ,  by construction, only the w,, wy  compo- 
neiit,s of U E range (U,) result nonzero. Elements of 
the matrix QPU: are functions of finger configura- 
tions q and of contact coordinates on all fingers af;. 

Example 1. The kinematic structure of the 
ha.nd realized in our laboratory for studying dexter- 
ity through rolling is depicted in fig.1 

For t8he plane surface of fingers, described in Carte-, 
sian coordinates, the forms involved in the equations 
of rolling are M, = 1 2 ,  K, =, 0 ~ ~ 2 ,  and T,, = 0 ~ ~ 1 .  
For a spherical object of radius R, in  spherical coor- 
dinates, one has K, = RP1I2, and  

T, = [O - R-l tan(u , ) ]  . 
ITsing notation as described by fig.1, the finger kine- 

matics are written as 

a 11 d 

0 0 0  0 0  
A z =  [ a j z , i + q z ] ;  a f , , z  + 43 J z =  [ :];-1.= [ 00 : ] ,  
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Note that  for a sphere between two parallel fingers the 
vector A1 - A2 is constant and equal to  -2R. Using 
( 2 )  and ( 3 ) ,  and renaming contact coordinates on the 
lower finger as 2, y, and on the sphere as U, U ,  one gets 
(on an open subset of the state space not containing 
2, = cos-1(0)). 

- x -  

U 

v 

41 

?2 

Y 

* 
- 43 - 

- - 

0 
R 

cos1/) 

- sin 
t,an w cos II, 

0 
0 

2R 

cos n 

w~ + 

R 
0 

sin + 
cos n 

-~ 
- cos * 

ta.n w sin 1 ~ ,  
0 

2R 
0 

where the contact coordinates on the upper finger fin- 
ger are trivially obtained and not reported for brevity. 

4 Planning Manipulation by Rolling 
In this section we will discuss the planning problem 

for a hand system such a.s that  described in fig.l,  with 
pa.rt,icular reference to  the manipulation of a sphere. 
hlt,hough t,his is perhaps the simplest case, it stbill pro- 
vides important insight in the more general problem 
of manipulating objects of an arbitrary shape. 

Considering the filtmtion associated with system 
(6), one easily finds that  the growt,h vector for this 
system is [ a ,  3 ,  5, 5, e . . ] ,  whence it follows t,hat the 
ma.nipulation system is not, controllable as a whole. 
However, from closer inspection, it turns out that  sys- 
t8em (6) ca.n be effect,ively decoupled in the upper 5- 
dimensiona.1 part. (kinematics of the object rolling on 
a plane finger), which is controllable, and the lower 3- 
dimensional part (hand kinematics). Therefore, a.n ar- 
bitra,ry change of posit.ion and orienhtion of a sphere 
can he achieved by tlhe 1ia.nd of fig.1, provided tha.t an 
additional rigid translation of the hand-object system 
as a whole can be actuated by a fourth motor (not 
shown in fig.1). The final position of fingers will not 
be controlla.ble. For more general cases, the only re- 
sults ( to  our knowledge) are those of Li and Canny [9], 
showing that  controllability is lost in the rolling of a, 
sphere on t,op of another sphere only when the radii are 
coincident or either of them va.nishes. Motivat,ed by 
these results, it seems reasonable the conjecture that  
controllability of rolling motions bet,ween surfaces is 
generic. Note also tha t ,  in the hand shown in fig.l, 
actuation of joint 1 is only necessary in order to  main- 
tain contact and prevent slippage between surfaces, 
whic,h goal could be in principle redized by using pas- 
sive devices (e.g., preload springs). According to  the 
conjecture above, and recalling our previous definition 
of a dextrous hand as a device capable of arbitrarily 
positioning and orienting the object, a general remark 
can be stated a.s: 
a dexterous hand can be built in principle b y  using only 
three actuators. 

The study of t,he rolling motion of a sphere on a 
plane is a classical problem in rational mechanics, re- 
cently brought to  the attention of the control com- 
munity by Brocket,t and Dai [4], who provided opti- 
mal planning solutions for an approximated version 

of the problem. Jurdjevic [7] investigated optimal so- 
lutions of the original problem and showed its rela- 
tionship with the clasical problem of the elastica. Li 
a.nd Canny [9] proposed a planning algorithm based 
on the use of the Gauss-Bonnet t,heorem in differen- 
tial geometry, obtaining an  elegant algorithm capable 
of bringing the sphere to  the desired position and ori- 
entation by a sequence of three movements. However, 
t,hese techniques are special ' t o  the case of a spheri- 
cal object, and there is no clue as to  how they could 
generalize to  arhitary surfaces. 

In the broader repertoire of planning methods for 
nonholonomic systems, effect,ive planning algorithms 
a,re ava,ila.ble for systems tha.t, can be put in a. conve- 
nient form. However, it can be shown, based on the 
fact that  the relative growth vector of the system (6), 
i.e. 7 = [2 1 a]', that  it cannot be put in chained 
form, nor it is differentially flat (see Murray [12]). O n  
t,he other hand, system (6) is not in nilpotent form, 
so t,hat, application of the constructive method of Laf- 
ferriere and Sussmann [XI would only provide approx- 
imate results. Furt.hermore, direct application of mul- 
tirate digital control techniques to  the system (6) is 
not possible, since the corresponding exact sampled 
model is not available. 

Notwit,hst,anding the genericity of its growth vec- 
tor, the controllable part of the kinematic equations of 
mmipulation does possess a structure that  can be ex- 
ploit,ed t o  find efficient planning algorithms. An useful 
result in this sense is the following, holding for arbi- 
t,rary surfaces rolling on a p h a r  finger: 

Proposition 1 (Bicchi and Sastry, 1994). Assum- 
ing that either surface in contact is (locally) a plane, 
there exist a state difieomorphism and a regular static 
state feedback law such that the kinematic equations of 
contact (2) assume a strictly triangular structure. 

Proof. Rewrite (2) a,s 

crf = M ; ~ K ; ~ ~ ;  (7) 
dr,  = M ; ~ R + K ; ~ ~ ;  

4 = [TfR+ + T0]K;'w, 

where W* = [-wy w,]. Recall tha t  for plane fingers, 
Tf = [0 01, and MI = 1 2 .  Define the regular s ta te  
feedback w = /3(af,  ao, $) + 7 ( a f ,  a,, 4)W as 

and apply a change of coordinates tha t  suitably re- 
orders t8he stat,es. t80 obtain 

a, = w ; 
$ = TOMOW; 

i Y f  = R+MoW, 

which is strictly lower triangular 0 
As an instance of application of this t,echnique, con- 

sider again the case of a spherical object on a planar 
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finger, (6). The  s ta te  feedback law 

IW (9) 
cosv cos$ - s in$  
- c,osv sin$ - cos$ w =  [ 

transforms (6) in 

1 
0 

sin v 
- R sin $ cos v 
R cos $ cos v 

0 
-2Rsin $ cos v 
2Rcos4 cosv 

W l  + 

- 0  
1 
0 

- R COS $ 
- R sin $ 

0 
-2R COS $ 
-2Rsin$ 

T h e  relevance of st,rictly triangular forms to 1 
ning is in the relative ease by which the flows o 
vectorfields can be obtained. In our example, in 
one has (for the part concerning contact, variable 

U 0  + t  

$0 + t sin vo 
20 + tanvo [cos($o + t sin WO) - cos $01 l yo + & [sin(& + t sin vo)  - sin $01 l 1  vo 

R 
a;' = 

and 

ap 

A solution to  the planning problem for system (6) can 
now be applied, which is closely related t'o the mul- 
tirate technique, a.nd consists in concat,enating a se- 
quence of const,ant inputs of the form {Wl = 1,612 = 
0,O < t < Ti},  { W i  = 0,Zirz 1 1,Tl < t < Tz}, 
. . .{wl = 1, WZ = 0, T4 < t < Ts}. The 5 unknown 
variables Ti can be evaluated by solving the system 
of five nonlinear equations obt'ained by equating t'he 
final to t,he desired configuration, namely 

%-** 91 O % - T s  $72 o%*, O % - T 1  O@g,: (Xo)-Xdea = 0 
(13) 

Equivalently, one can fix t8irne interval lengths and 
vary t,he amplitude of inputs. Also, allowing a finer 
discretization of the t,ime scale, ot,her concerns such as 
minimizing the lengt,h of the  pat,h or avoiding limit,s of 
the workspace can he ta.ken int,o account by building 
a suit,able optimization problem const,rained by (13). 

Results of application of this technique to planning 
t,he manipulation of a sphere so as t o  rea.lize a rotation 
of 30 deg. about  the vertical direction. while bringing 
t,he contact points on the sphere and on the object 
back to the original position, are reported in fig.2. The 
lower left, diagram shows the path to  be followed by 
the c o n h c t  point on t,he finger surface. 

5 Experimental 
A iioriholonomic dextrous hand wit,h t,liree actna- 

t,ors has been built in our laboratory according to  t,lie 

I 
r? 

04/, 0 6 ,  

0 2 1  I 

p ,  
0 2 4 6 8  

-0 6 
0 2 4 6 8  
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0 2 4 6 8  
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Figure 2: Planned trajectories of the contact coordi- 
nates for a rotation of 30 deg., obtained with a se- 
quence of 7 piecewise constant inputs 

scheme of fig.1. Joints are actuated by three D.C. rno- 
t,ors, and positmion are sensed by linear potentiometers. 
One importa.nt feature of the  hand is tha t  itzs upper 
finger is equipped with an intrinsic tactile sensor ( [l]). 
which provides real-time sensing of the actual posi- 
tion of the contact point on the finger. Exploiting the 
capability of intrinsic tactile sensing t o  provide also 
the direction of the contact force (including tangen- 
tial components), the system is also able to detect the 
cont,act point position on the lower finger. T h e  verti- 
cal axis is controlled so as to ina inhin  a suitable level 
of contact force on t,he object, to avoid slippage. Ac- 
tive grasp force control is particularly important when 
manipulating objectss whose surface is not spherical. 

The main problem in realizing planned manipula- 
t,ioiis is relatsd t o  the fact that control inputs w used 
for planning are not the same as the physical inputs 
actmilally available to  the controller, tha t  is, joint ve- 
locities 4. While it, is possible t o  integrate (10) so as 
to  obtain the desired joint trajectory for the sphere, 
the same is much more complex for objects of general 
shape. Moreover, such process results in a completely 
open-loop control scheme tha t  is prone to a number of 
errors in practical implementation. T h e  approach we 
followed tends t80 exploit, tjhe possibility of using tac- 
t,ile sensing in real-time. In fact, having the system 
t,wo degrees of freedom, to follow a planned patjh for 
t,he whole system it will suffice t,hat two s ta te  variables 
are made t80 follow their planned trajectory accurately 
enough. In our case, we t ry  t o  control the coordi- 
nates of the contact point on the lower finger t o  track 
the trajectory resulting from planning, and use t,actile 
feedback t,o make this control effective. T h e  tracking 
controller is designed according t o  a st,andard P.D. + 
fcedforward scheme. In fig.3 are reported the planned 
trajectories for the contact coordinates (dotted line), 
a.nd the actual trajectories followed by the system are 
superimposed for comparison (solid line). A rather 
good tracking accuracy can be observed, which re- 
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Figure 3: Planned and experimental trajectories of 
the contact) point on the lower finger of the dexterous 
nonholononiic hand of fig.1 

sulted in an overall accuracy in the reorienttation ma- 
neuver of less than l m m  in position and a few degrees 
on the planned rotation. 

6 Discussion 
In order to  prove t*he practicality of the proposed 

approach to  t8he design of nonholonomic dext>rous 
hands, rnore work has to  be done under several re- 
spects. In pa,rticular, planning should be demon- 
strated for more general object shapes. At present, 
we a,re a.ble to  manipulate an object of arbitrary (reg- 
ular) shape by using an adapted version of a contin- 
uation method proposed by Sussmann [18]. However, 
in its practical implementation this method, just like 
other related approximate iterative techniques (see 
e.g. Fernandes, Gurvit,s, a,nd Li [GI; and Divelbiss and 
Wen, [5]) suffers from an excessive demand of time for 
planning. More effect’ive planners are being consid- 
ered for objects belonging to  classes of practical in- 
terest. Anot,her important topic of resmrch is con- 
cerned with manipulation of objects whose shape is 
not known a priori, and can be explored while manip- 
ulating through the use of tactile sensing. 
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