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Abstract

This paper describes a technique for path planning
in environments cluttered with obstacles for mobile
robots with nonholonomic kinematics and bounded
trajectory curvature (i.e., limited turning radius). The
method is inspired by the results of Reeds and Shepp
regarding shortest paths of bounded curvature in ab-
sence of obstacles. It is proved that, under suit-
able assumptions, the proposed technique provides the
shortest path of bounded curvature among polygo-
nal objects for a particular class of vehicles (circu-
lar unicycles of radius A and minimum turning radius
Pmin < h). Although the class of vehicles this theo-
retical result is restricted to is rather narrow, the pro-
posed planner can be satisfactorily applied to other
nonholonomic vehicles yielding good practical results.

1 Introduction

Motion planning for nonholonomic vehicles is at-
tracting a wide interest in Robotics.

A nonholonomic constraint is an equation involv-
ing the configuration parameters and their derivatives
(velocity parameters) that is not integrable. - Such
constramnts do not reduce the dimension of the robot
configuration space (like holonomic constraints do),
but reduce the dimension of the velocity space at any
given configuration. A fundamental result of nonlin-
ear system theory shows that nonholonomic systems,
notwithstanding the reduced number of inputs, remain
completely controllable if the degree of nonholonomy
is sufficient ([9]). Barraquand and Latombe [2] proved
that a car—like robot with curvature limitations mov-
ing amidst obstacles remains fully controllable, that
is, whenever a free (holonomic) trajectory exists, the
existence of a feasible path is also guaranteed.

The presence of lower bounds on the minimum
turning radius involves curvature constraints on fea-
sible trajectories that deeply affect the geometry of
the problem. Dubins [6] and Reeds and Shepp [12]
solved the geodesic problem without and with rever-
sals, respectively, and showed that a path with short-
est length can always be built by concatenating at
most five linear or circular segments. Similar results
have been elegantly derived again by Sussmann and
Tang [13] and Boissopnat, Cerezo, and Leblond [3],
using Pontryagin’s maximum principle. These theo-
retical results ignited a new series of methods tend-
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Figure 1: A generic car-like robot (a) and a particular
unicycle vehicle (b).

ing to find shortest nonholonomic paths with hounded
curvature amidst obstacles, among which [7], [8], [11].
The method presented in this paper is also inspired
by Reeds and Shepp’s work, in that the resulting path
is a simple concatenation of linear and circular seg-
ments of maximum curvature. The main theoretical
result proved in this paper concerns shortest paths
of a particular vehicle (a circular unicycle of radius
h and minimum turning radius ppmi, < h) moving
among polygonal obstacles. Theorem 1 states that,
if the proposed planner succeeds in finding a path,
and if that path is regular Si.e., without reversals),
then that is a shortest feasible path of bounded cur-
vature for the given problem. The principal worth
of the proposed method is perhaps in its simplicity
and in the smoothness of the resulting paths. It does
not require explicit evaluation of the configuration
space, nor it employs a preliminary phase of holo-
nomic trajectory planning. The method can be ap-
plied to both unicycle and car-like mobile robots of
general shape, provided that some simple heuristics
are introduced to overcome most typical deadlocks for
the planner. Simulation and experimental results are
reported demonstrating the viability of the method in
medium-complexity environments.

2 Problem and Proposed Solution

Fig.1-a shows a mobile robot, modelled as a two
dimensional object A moving in a 2-dimensional
workspace.

The configuration space of the robot is IR® x §?,
and can be locally parameterized by the coordinates
z and y of the robot reference point P, and by the an-

— 1349 —

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on May 14,2010 at 09:57:09 UTC from IEEE Xplore. Restrictions apply.



gle 8 (representing the robot orientation) between the
z-axis of the base frame Fg and the main axis of the
robot. The robot shape is assumed symmetric with
respect to its main axis, and its half-width is denoted
by h. We restrict ourselves to consider only polygo-
nal obstacles in the workspace, that we indicate with
O;, i =1,...,1, while their n vertices are listed in X},
for j = 0 to n. A nonholonomic constraint arises be-
cause the wheels can roll and spin but not slip, hence
the robot cannot move sidewise. For a unicycle vehi-
cle such as that shown in fig.1-b, the nonholonomic
constraint is written as

x
S(q)q = [ —sin(8) cos(8) 0 ] [ y ] -0
6

The motion planning problem can be stated as follows:

Problem 1 Letq, = (z,,¥,,0,) and q4 = (24, Yy, 0y)
be respectively the initial and final configuration of a
robot A with minimum turning radius pmin and half-
width h. Determine a path q(7) that minimizes the
cost functional

T
NQM)@!/ SO T dr, ()
0

subject to
q(0) = q,: (2)
a(l) = qq; (3)
AQrNN0;=0:i=1,...,1, Yre[0,1]; (4)
S(@)q’ =0, vre(o,1]: (5)
q(r) e Ct, and 'y’ — 2y < L ) (6)

(wlz +y12)3/2 ~ Pmin

are of — Q) g de(r) g dy(r) n _ dla(r
where @' = =3+, ' = 5=y = =, 2" = 55
y,, _ d’y!r!
C.odr? . . . . .
Finding a solution to this problem is quite diffi-
cult in general. However, previous results on shortest
paths of bounded curvature in free environments can
be extended to give a qualitative description of the so-
lution of Problem 1, when considering the particular
class of mobile robot with circular shape of radius h,
and minimum turning rading pmin = h (see fig.1-b)

Proposition 1 The solution (if one exists) of Prob-
lem 1 for circular vehicles with pmin = h is a concate-
nation of line segments and arcs of circle of radius

Pmin -

Proof. Problem 1 can be cast in the standard op-
timal programming form by rewriting (5) in explicit
form as

T =vcosh
y = vsinf (7)
0=w

or. in compact form, as q = f(q,u). The curva-

ture constraint (6) is translated in bounds on the

input vector u = (v,w) € U C IRZ, where U =
{—1,4+1} x {=1/pmin, 1/pmin}. It is also possible to
rewrite holonomic constraints due to the presence of
obstacles, (4), in the form of a set of m inequality
constraints on functions of the states of the system as

Ki(q) <0,

i=1,...,m

According to the treatment of optimal control in
bounded phase space given by Chang [4], introduce
the variational Hamiltonian

H(q,u, A\, n) = J(q,u) + 7" K(q) + AT f(q,n)

where
3 = 01 Kl(Q) <0
W\ £0, Ki(q)=0

Correspondingly, the optimal trajectory will be com-
posed of free and constrained arcs. Along constrained
arcs (K;(q) = 0) the robot is in touch with an ob-
stacle. Due to the geometry of the robot and of the
obstacles, constrained arcs are composed of line seg-
ments (the robot is “grazing” an edge) and of circular
arcs of radius h (the robot is turning about a vertex).

To evaluate optimal trajectories along free arcs
(Ki(q) < 0,Vi), it is expedient to reformulate the
minimization problem by defining a new variable z(¢)

as
z=+vVz2+92, 2z(0)=0.

The corresponding Hamiltonian can be written as
H(q, «, ;\f) =< ;\f, q >= wz + pv cos 0 + qusin 6 + kw

where q = (2,q), and A = (w, p, q, k). Application of
Pontryagin’s maximum principle to this system with
the input bounds above described leads to distinguish
between unconstrained arcs along which 1) % =0,or
i1) % # 0. Full discussion of these cases is reported
by Boissonnat, Cerezo, and Leblond [3], and shows
that either the arc is a line segment (case 1), or an arc
of a circle of radius pmin . ]

Note that existence of a solution to problem 1 is not
always guaranteed, as shown by Desaulniers [5]. This
is not in contrast with the minimum principle, which
only gives necessary conditions.

Motivated by the ahove qualitative result on opti-
mal trajectories, we introduce the following algorithm,
which is described with reference to a generic vehicle:

Algorithm 1

a) Draw n circles with radius p = max{pmin, h} cen-
tered in the obstacle vertices. Also draw twe cir-
cles with radius pmin passing through [z,, y,} and
tangent to the line through (z,, y,] with angle 6,,
and an analogous pair of circles for the final con-

figuration qg.

b) Consider the n+4 circles two at a time, and draw
the four linear segments belonging to the common
tangent lines and comprised between the tangency
points. Also consider all arcs on circles that join
any two tangency points. Let a basic path diagram
(BPD) be composed of two directed segments for
each of these linear and circular segments.
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c) The BPD may contain non—free paths, that is,
paths that cannot be followed by the robot without
colliding with obstacles. Directed segments are
then tested singularly and those causing collisions
are eliminated from the diagram. In general, a
segment may be free if followed in one sense, but
not otherwise. For robots that are stmmetric with
respect to a line through the reference point and
normal to the main azis of the robot, the direc-
tion of motion along a path is not relevant, and a
simpler basic path diagram can be considered.

d) A directed graph G is built from the thus emended
path diagram (EPD) as follows:

e the start and goal configurations are nodes
of G;

e for all points of tangency between a linear
and a circular segment, two configurations
(corresponding to the possible orientations
aligned with the common tangent direction)
are nodes of G;

e two nodes i and j of G are connected with an
oriented link from i to j if the corresponding
directed segment on the emended path dia-
gram ezxists;

e a cost equal to the length of the correspond-
ing segment i3 associated to each link.

e) The directed graph G is searched for a path from
the start to the goal configuration using the length
of the overall path as the cost function.

The following theorem discusses a property of the
planner algorithm when applied to the special class of
circular robots above considered:

Theorem 1 For a circular mobile robot A with radius
h equal to the minimum turning radius pmin mMoving
in a bidimensional polygonal workspace S, a sufficient
condition for a path to be the solution of problem 1 is
that it is a regular oulput of the proposed planner.

Proof. Consider the problem (Problem 2) of finding
the shortest element in the class of paths composed
of line segments and circular arcs of radius ppmin and
avoiding the obstacles in the given workspace. A char-
acteristic of paths in this class is that their first (last)
arc or segment belong to one of the two circles of radius
Pmin tangent in the start (goal) to the initial (final)
direction, or on the line through the start (goal) with
the initial (final) direction.

Path(s) solving Problem 2 are shorter than, or equal
to, paths solving Problem 1. This follows trivially
from Proposition 1. Note that solutions to Problem 2
may fail to meet the condition on the correct orienta-
tion of the vehicle at the goal configuration.

It will now be proved that the path provided by
the planner algorithm 1, whenever is regular (without
cusps), coincides with the solution of Problem 2. In
fact, the EPD corresponds to a generalized visibility
diagram built taking into consideration the original
obstacles grown by pmin and the two pairs of circles

Figure 2: Impossibility to maneuver with too few ob-
stacles.

tangent in the start and in the goal to the initial and
final direction. Shortest paths on a generalized visi-
bility diagram are proved to be shortest feasible paths
and to be always regular (see e.g. Latombe [10]). The
thesis then follows from observing that the shortest
path on the EPD, if regular, coincides with the short-
est path on the visibility diagram and therefore is the
solution of Problem 2. O

3 Discussion

Although of some relevance to the as yet unexplored
problem of global optimal path planning amidst ob-
stacles, Theorem 1 ounly provides sufficient results for
a particular vehicle. In this section we list some of
the pitfalls of the proposed method along with simple
heuristics that may help in applying the planner to
more realistic robots.

Remark 1. Only sufficiency results have been es-
tablished because of two main reasons. Firstly, if the
planner results in a path that contains reversals, visi-
bility graph arguments can not be applied in the proof.
Piecewise optimality of paths between reversals can
still be argued, but global path optimality remains
unsolved.

Secondly, the method is not path-complete. For the
circular robot of concern in theorem 1, incompleteness
may be caused by the impossibility to maneuver with-
out the support of an obstacle vertex. Consider for
instance the case depicted in fig. 2, where the robot
can use neither any of the obstacle circles to make the
necessary reversal, nor the start and goal pairs of cir-
cles because of space limitations. A simple heuristic
solution to this problem is to find a cell in free space
where a Reeds/Shepp inversion pattern (see fig. 3) can
be accomodated for, and to consider the corresponding
additional pair of circles in the algorithm. In building
the Reeds/Shepp iuversion pattern, existing circles are
considered first, as this usually requires less clearance.
Notice that introduction of auxiliary circles produces
a graph G’ that includes the original graph G, hence
the search on G' provides a path whose length is at
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Figure 3: A Reeds/Shepp inversion pattern (a) can be
introduced to solve the deadlock of fig 2 (b).

least equal to the shortest path on G.

In fact, a characteristic of the proposed planner is
its suitability to highly cluttered environments, where
it accomplishes its best performance. The method’s
weaknesses are more evident when the .scarceness of
obstacles does not offer support to enough circles and,
therefore, maneuver possibilities. An instance of such
a problem is put into evidence by the parallel parking
problem. In fact, the proposed algorithm can park
a circular robot of radius R if the clearance is larger
than three times R, while from the above mentioned
controllability results we know that parking is theo-
retically possible in slots just larger than 2R. There
is probably no easy fix to this problem, as its solu-
tion is only possible by approximating a non—feasible
trajectory with a very high number of nonholonomic
maneuvers (this is actually what the method of Jacobs
et al. [8] does in this case).

Remark 2. If ppin # h, the circular segments of
BPD are drawn with radius p = max{pmin,h}. If
Pmin < h, the algorithm is applied similarly, except
for circles at the start and goal, that are drawn with
radius pin. The optimality properties of algorithm 1
are still retained in this case. Also Reeds/Shepp in-
version patterns can be introduced, if necessary, using
circles of radius pmin .

If pmin > h, path—completeness of the method is
further reduced in cases such as that depicted in fig. 4,
where the vertex-to-vertex distance L is such that
2+h < L < h+ pmin. An heuristic fix to this prob-
lem consists in replacing the circle drawn at each ver-
tex with three circles of the same radius ppmin. The
center of the first circle lies on the bisector of the
angle between the edges concurring in &, at a dis-
tance D = ppin — h from the vertex (see fig. b-a).
The centers of the second and third circles lie on the
lines normal in &; to the obstacle edges, at a distance
D = pmin — b (fig. 5-b). The rationale behind this
heuristic is that the three circles approximate the en-
velope to the family of paths that “graze” the obstacle
vertex. In fact, such envelope provides the shortest
path on the extended visibility diagram (not necessar-
ily the shortest bounded curvature path).

Remark 3. For a polygonal vehicle, the proposed al-
gorithm and heuristics can be applied without major

Figure 4: A possible deadlock for the algorithm

@ (U]

Figure 5: Modifications to the method to fix the dead-
lock in fig. 4

modifications obtaining qualitatively good results, as
it has been verified in a number of simulations and
experiments (see section 4). Consider for instance the
simple planning problem for a Labmate in the envi-
ronment depicted in fig. 6. The EPD obtained as-
SUMINg Pmin = h is reported in fig. 6~a. Note that,
due to the axial simmetry of the Labmate, all seg-
ments in EPD can be followed either way. In fig. 6-b
the corresponding shortest path on the EPD is shown.
Finally, fig. 6—c shows the path resulting from appli-
cation of the heuristic discussed in remark 2 in the
case that pmin = 1.5h. Note that, in spite of the con-
siderable increase of the minimum turning radius, the
path is still very close to the intuitive optimum. The
described path planner can also provide a solution for
car—like robots. The EPD of a parallel parking maneu-
ver is reported in fig. 7-a (orientation of segments is
not shown). The resulting maneuver looks quite nat-
ural, as shown in fig. 7-b. A more complex planning
problem for a car-like vehicle is shown in fig. 8.
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Figure 6: Planning the path of a Labmate with dif-
ferent turning radii. a) EPD for pmin = h; b) corre-
sponding path; ¢) path corresponding to pmin = 1.5h.

Figure 7: EPD (a) and final path (b) for the parallel-
parking maneuver of a car-like vehicle.

4 Experimental

Experimental verification of the practical feasibil-
ity of the proposed planner has been carried out in our
laboratory using a LABMATE robot of Transition Re-
search, Inc.. The LABMATE kinematics are those of a
unicycle, and its driving inputs are the torques applied
to two independent wheels. The shape of the vehicle
is loosely square, centered in the middle of the wheel
axle. In order to accurately track planned trajecto-
ries, a Lyapunov-based closed loop control scheme
has been employed, as described in [1]. The scheme
showed good performance and robustness with respect
to inaccuracies in the odometric measurement of posi-
tions caused by slippage at the wheels. The goal of our
experiments was to verify the preliminar feasibility of
an “automatic valet parking” of car-like vehicles in
both a front and parallel parking lot. To this purpose,
the shape of the LABMATE has been modified to re-
semble that of a car (in scale, approx. 80 x 160cm),

Figure 8 EPD (a) and resulting path (b) for a car-like
vehicle in a cluttered environment.

and software has been written to implement a bound
on the minimum turning radius of the vehicle (set to
40 cm). Detection of obstacles has been realized by
using a set of US detectors available with the vehicle.
US images are pre-processed and sent to the host com-
puter (an Intel-486 based PC), via a radio serial link
at 9600 baud. The host computer builds a simple 2D
depth map of the scene and updates it while the vehi-
cle moves down the parking lot corridor looking for a
vacant slot. When room enough to maneuver the vehi-
cle into is found, the planner process is started on the
salient features of the map, and the resulting plan is
executed directly after. In fig. 9 an experiment on par-
allel parking is described by the temporal sequence of
phases. The updating of the experimental depth map
superimposed to a picture of the actual environment
configuration is shown in fig. 9 (a) through (c¢). It
can be noted that sensor readings are rather accurate,
except for a certain number of outliers, which have
been taken care of by suitable processing. Fig. 9 (d

illustrates the construction of the EPD, while fig. 9 (e

shows the resulting parking maneuver. In fig. 9 (f) the
traking error between the planned path and the tra-
jectory actually followed by the Labmate is reported.
The planning phase of such and similar experiments
took less than 2 seconds, while the complete park-
ing detection, planning, and execution took about 2
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Figure 9: Sequence describing an experimental auto-
mated parallel parking maneuver. (a), (b), (¢): US
sensor signals are used to build a depth map of the
parking lot as the vehicle scans the row; (d): Emended
Path Diagram built by the planner; (e): parking ma-
neuver; (f): planned path (solid) and actual trajectory
(dashed).

minutes. This was mainly due to the necessity of pro-
ceeding very slowly in the detection phase to avoid
excessively large errors from the US sensors, and also
slippage of wheels. The sensorial equipment of the ve-
hicle resulted as one of the most critical components
in the experiment. On the overall, the above reported
experimental results confirmed the suitability of the
proposed planner to real-time applications in near—
future intelligent cars.

5 Conclusion

In this paper we have discussed a planning al-
gorithm for nonholonomic, bounded curvature path
planning among obstacles whose output is the short-
est feasible regular path for a particular vehicle. Al-
though the proposed method is not complete, nor its
optimality properties are trivially carried over to more
general vehicles, very reasonable paths are generated
by using only a few additional simple heuristics.

As compared with other methods known in the lit-
erature, the proposed planner does not need to build a
supporting free path by means of configuration space
methods nor does it require discretization of the con-
figuration space. Paths generated by our method are
typically very simple concatenations of Reeds/Shepp
paths. An important quality of the proposed method
is that it can be easily implemented even in cluttered
workspaces, where the method actually performs com-

paratively best.
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