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Abstract 

The problem of planning a path for a robot vehicle amidst obstacles is considered. The 
kinematics of the vehicle being considered are of the unicycle or car-like type, i.e. are 
subject to nonhcJonomic constraints. Moreover, the trajectories of the robot are supposed 
not to exceed a iven bound on curvature, that incorporates physical limitations of the 
allowable minimum turning radius for the vehicle. The presented method attempts at 
extending Reeds and Shepp's results on shortest paths of bounded curvature in absence of 
obstacles, to the case where obstacles are present in the workspace. The method does not 
require explicit construction of the configuration space, nor employs a preliminary phase of 
holonomic trajectory planning. Successfull outcomes of the proposed technique are paths 
consisting of a simple composition of Reeds/Shepp paths that solves the problem. For a 
particular vehicle shape, the path provided by the method, if regular, is also the shortest 
feasible path. In its original version, however, the method may fail to find a path, even 
though one may exist (path-completeness not guaranteed). Most such empasses can be 
overcome by use of a few simple heuristics suggested in the text. Applications to both 
unicycle and car-like (bicycle) mobile robots of general shape are described and their 
performance and practicality discussed. 
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- _  1 Introduction 

Motion planning for nonholonomic vehicles is attracting a wide interest in Robotics because 
of both its application potentials (automated factories and highways, assisted parking 
maneuvering, etc.) and its theoretical challenges. One of the interesting features of this 
field is that its background is composed of work done in holonomic motion planning (a 
predominantly A.I. area) and in nonlinear systems theory. 
A nsnholonomic constraint is a non integrable equation involving the configuration pa- 
rameters and their derivatives (velocity parameters). Such constraints do not reduce the 
dimension of the robot configuration space (like hohomic constraints do), but reduce the 
dimension of the velocity space at  any given configuration. Thus, a kinematic model of a 
car-like vehicle can be parked everywhere in a free three-dimensional workspace, although 
it only possesses two control inputs. This comes at  the price of more complex planning 
for maneuvers such as parallel parking. In the case that obstacles are present, it has been 
shown by Barraquand and Latombe [1990] the non-trivial fact that a car with curvature 
Limitations moving amidst obstacles remains fully controllable, that is, whenever a free 
(holonomic) trajectory exists, the existence of a feasible path is also guaranteed. 
The presence of lower bounds on the minimum turning radius involves curvature con- 
straints on feasible trajectories that deeply affect the geometry of the problem. The 
problem of finding the shortest path between two configurations in the plane with curva- 
ture limitations is an interesting geometric problem per se, that was solved first by Dubins 
[1957] for smooth trajectories. Only recently, Reeds and Shepp I19901 solved the geodesic 
problem when reversals are allowed. They have shown that a path with shortest length 
can always be built by concatenating at  most five linear or circular segments, including at 
most two cusps. The radius of circular segments is the minimum allowed turning radius, 
and cusps correspond to reversals. The same result has recently been derived again by 
Sussmann and Tqng [1991] and Boissonnat, Cerezo, and Leblond [1992], using Pontryagin‘s 
maximum principle. These theoretical results ignited a new series of methods tending to 
find shortest nonholonomic paths with bounded curvature amidst obstacles, among which 
[Jacobs and Canny, 19891, [Jacobs, Laumond, Taix and Murray, 19911, [Mirtich and Canny 
(19921. 
The method presented in this paper is also inspired by Reeds and Shepp’s work. The 
path resulting is a simple concatenation of linear and circular segments, the latter having 
minimum turning radii. The principal worth of the method is in its simplicity and in the 
regularity of the resulting paths. Although the method is reminiscent of several others 
proposed in literature, it does not seem to have been discussed in this form for norholo- 
nomic vehicles. In particular, the method can be regarded as a generalization of visibility 
graph methods, to which it reduces as bounds on path curvature are Lifted. 
This paper reports on preliminary results in the implementation of the method, and leaves 
some important questions open. The method is not path-complete, although simple 
heuristics can help in solving most of the typical deadlocks encountered. Nevertheless. 
the optimality of visibility graph solutions is partially inherited by the proposed method 
when applied to the particular case of a circular robot. Taking this as a hint, the algorithm 
can be applied to more general types of mobile robots. Simulation results are reported in 
this paper, that support such an extension as one providing very reasonable paths. 

. 

2 The proposed planner 

Fig.1-a shows a mobile robot, modelled as a two dimensional object A moving in a 2- 
dimensional workspace. The configuration space of the robot is R2 x S’, and can be 
parameterized by the coordinates z and y of the robot reference point P, and by the angle 
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Figure 1: A generic car-like robot (a) and a particular unicycle vehicle (b). 

B (representing the robot orientation) between the z-axis of the base frame Fs and the 
main a x i s  of the robot. The robot shape is assumed symmetric with respect to its main 
axis, and its half-width is denoted by h. We restrict ourselves to consider o d y  polygonal 
obstacles in the workspace, that we indicate with O;, i = 1,. . . , I, while their n vertices 
are listed in X j ,  for j = 0 to n. A nonholonomic constraint arises because the wheels can 
roll and spin but not slip, hence the robot cannot move sidewise. For a unicycle vehicle 
such as that shown in fig.1-b, the nonholonomic constraint is written as 

The motion plahning problem can be stated as follows: 

Problem 1 Let q, = (zs,y,: 6,) and q, = ( ~ , , y ~ , 6 ~ )  be respectively the initial and final 
configuration of a robot A with minimum turning radius p,,,;,, and half-width h. Determine 
a path q( T )  that minimizes the cost functional 

t 

subject to 

I - q, = d W ,  y' - "-d, 1" - d 2 ! p ,  y" - d Z ( ; l .  where q - d7 
Finding a solution for this problem is in general quite difficult. In this paper we introduce 
an algorithm that exhibits some interesting properties when considering the particular 
type of mobile robot shown in fig.1-b, and that can be extended to more general cases. 

Algorithm 1 a) Draw n circles with mdius p = max{p,;,, h} centered in the vertices 
of the obstacles. Also draw two circles with radius Pmin passing through [xs, ya] and 
tangent to  the line through [xa, ys] with angle t?,, and an analogous patr of ctrcles 
for the final configuration qg. 
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consider the n+4 circles two at a time, and draw fhe  OUT linear segments belonging to 
the common tangent lines and comprised between the tangency points. Also consider 
all arcs on circles that join any two tangency points. Let a basic path diagram (BPD) 
be composed of two directed segments for each of these linear and circular segments. 

The basic path diagram may contain non-free paths, that is, paths that cannot be 
followed by the robot without collading with obstacles. Directed segments are then 
tested singdarly and those causing collisions are eliminated from the diagram. In 
general, a segment ma3 be @e if followed in one sense, but not otherwise. FOT robots 
that are simmetn‘c with respect to  a line through the reference point and normal to 
the main axis of the robot, the direction of motion along a path is not relevant, and 
a simpler basic path diagram can be considered. 

A directed graph G is built from the thus emended path diagmm (EPD) as follows: 

e the start and goal configurations are nodes of G ;  
e for all points of tangency between a h e a r  and a circular segment, two config- 

urations (corresponding to the possible orientations aligned with the common 
tangent direction) are nodes of G; 

e two nodes i and j of G are connected with an oriented link from i to j if the 
corresponding directed segment on the emended path diagram exists; 

0 a cost equal to the length of the corresponding segment is associated to each 
link. 

The directed graph G is searched for a path f iom the start to the goal configuration 
using the h g t h  of the overall path as the cost finction. 

s 
The above mentioned property of this algorithm is formalized in the following 

Theorem 1 For a circular mobile robot A with radius h equal to the minimum turning 
radius pmin moving in a bidimensional polygonal workspace S, a sufficient condition for a 
path to be the solution of problem 1 is that it is a regular output of algorithm 1. 

The proof is based on the application of techniques of optimal control in bounded phase 
spaces, that show that optimal trajectories (if any exists) are compositions of segments 
of Lines and of circles of minimal radius, along with pieces of the boundary of obstacles 
in configuration space. In the specific case of the circular robot under consideration, 
also obstacle boundaries are built of such segments. Finally, generalized visibility graph 
arguments are used to obtain the thesis. A detailed proof is reported in [Bicchi, Santilli, 
and Casalino, 19951. The geometric reasoning behind the second part of the proof is 
reported below. 
The configuration space V associated with a circular robot contains C-obstacles that are 
generalized straight cylinders. In this case, the orientation parameter 6 does not play a 
role in verifying holonomic constraints (4), nor does it influence the cost functional (1). 
Consider a two-dimensional configuration space V’ where C-obstacles are built simply by 
isotropycally growing the obstacles in S by p. Fig.:! shows the workspace S (a) and the 
corresponding 2D configuration space Y‘ (b) in a simple example. Let P denote the set of 
free paths ( i.e., triples (z(*), y ( - ) ,  e(.)) satisfying (4))  in Y ,  and P’ be the corresponding set 
of (;c(.),y(.)) pairs. Consider the visibility diagram Vd associated with Y‘ (fig.3-a), and 
the modified diagram Wd (fig.3-b). The latter differs from Vd because two “phantom” 
circular obstacles of radius p and tangent to the initial direction at qs, and two analogous 
obstacles at  q,, are considered (see fig.3-b). Start and goal phantom obstacles influence 
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Figure 2: Workspace (a) and corresponding 2D configuration space (b) illustrating Theo- 
rem 1. 

v’ I 

Figure 3: Extenqed visibility diagram without (a) and with “phantom” obstacles (b) for 
the example of fig. 2. 

t 

the visibility between two points only if either point is qa, respectively qg. Note that paths 
in Vd but not in wd do not satisfy the constraint on curvature (6). 
The BPD (and hence the EPD) built by algorithm 1 for the circular robot in S coincides 
with the modified visibility diagram wd by construction. Therefore, if the path obtained by 
algorithm 1 on the EPD is regular (i.e., it contains no cusps), this is also the shortest path 
on wd, and hence the shortest path in Vd subject to ( 6 ) .  From the properties of generalized 
visibility diagrams, the optimality of this path in P’ subject to ( 6 )  follows. On the other 

hand, for every path in P’ a corresponding path in P with f?(f) = arctan [ &k.l d r  ( XT1] 
(where the indeterminacy of the arctan ( - )  function is solved by continuity) exists that 
satisfy the nonholonomic constraint ( 5 ) .  Such path is the optimal solution to Problem 1, 
and corresponds to the path obtained by Algorithm 1. 

3 Discussion 

Theorem 1 is probably one of the f i s t  attempts in literature at  solving the optimal path 
planning problem 1. However, it only provides sufficient results in a very particular case. 
In this section we list some of the pitfalls of the proposed method along with simple 
heuristics that may help in applying the algorithm to more realistic robots. 
Remark 1. Note that only sufficiency results have been established because of two facts: 

0 If algorithm 1 results in a path that contains reversals, visibility graph arguments 
can not be applied in the proof. Piecewise optimality of paths between reversals 
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Figure 4: Impossibility to  maneuver with too few obstacles. 

Figure 5: A Reeds/Shepp inversion pattern (a) can be introduced to solve the deadlock 
of fig 4 (b). 

1 

i 

can still be argued, but Reeds/Shepp techniques are probably necessary to discuss 
global optimality. 

0 The method is not path-complete. For the circular robot of concern in theorem 1, 
incompleteness may be caused by the impossibility to maneuver without the support 
of an obstacle vertex. Consider for instance the case depicted in fig. 4, where the 
robot can use neither any of the obstacle circles to make the necessary reversal, nor 
the start and goal pairs of circles because of space limitations. A simple heuristic 
solution to this problem is to find a cell in free space where a Reeds/Shepp inversion 
pattern (see fig. 5--8) can be accomodated for, and to consider the corresponding 
additional pair of circles in the algorithm. In building the Reeds/Shepp inversion 
pattern, existing circles are considered first, as th i s  usually requires less clearance. 
In fig. 5-b, the problem in fig. 4 is solved. Notice that introduction of auxiliary 
circles produces a graph G’ that includes the original graph G, hence the search on 
G‘ provides a path whose length is at least equal to the shortest path on G. 
In fact, a characteristic of the proposed algorithm is its suitability t o  highly cluttered 
environments, where it accomplishes its best performance. The method’s weaknesses 
are more evident when the scarceness of obstacles does not offer support to  enough 
circles and, therefore, maneuver possibilities. An instance of such a problem is put 
into evidence by the parallel parking problem. In fact, the proposed algorithm can 
park a circular robot of radius R if the clearance is larger than three times R,  while 
from the above mentioned controllability results we know that parking is theoretically 
possible in slots just larger than 2R. There is probably no easy fix to  this problem, 
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Figure 6: A possible deadlock for the algorithm 

F igde  7: Modifications to the method to fix the deadlock in fig. 6 
i 

as its solution is only possible by approximating a non-feasible trajectory with a 
very high number of nonholonomic maneuvers (this is actually what the method of 
Jacobs et al. [1991] does in this case). 

Remark 2. 
If pmjn # h, the circular segments of BPD are drawn with radius p = m-pmin,h. If 
Pmin < h, the algorithm is applied similarly, except for circles at the start and goal, that 
are drawn with radius pmin. The optimality properties of algorithm 1 are still retained 
in this case. Also Reeds/Shepp inversion patterns can be introduced, if necessary, using 
circles of radius pmin. 
If pmin > h, path-completeness of the method is further reduced in cases such as that 
depicted in fig. 6, where the vertex-to-vertex distance L is such that 2 * h < L < h + pmin. 
An heuristic fix t o  this problem consists in replacing the circle drawn at each vertex with 
three circles of the same radius Pmin. The center of the first circle lies on the bisector 
of the angle between the edges concurring in Xi, at  a distance D = pmin - h from the 
vertex (see fig. 7-a). The centers of the second and third circles lie on the lines normal 
in X; to the obstacle edges, at a distance D = pmin - h (fig. 7-b). The rationale behind 
this heuristic is that the three circles approximate the envelope to the family of paths 
that “graze” the obstacle vertex. In fact, such envelope provides the shortest path on the 
extended visibility diagram (not necessarily the shortest bounded curvature path). 

Remark 3. For a polygonal vehicle, the proposed algorithm and heuristics can be applied 
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Figure 8: Planning the path of a Labmate with Merent  turning radii. a) EPD for 
pmin = h; b) corresponding path; C )  path corresponding to  pmin = 1.5h. 

without major modifications obtaining qualitatively good results, as i t  has been verified 
in a number of simulations and experiments. The latter were made using a LABMATE 
robot of Transition Research, Inc. (note that the LABMATE does not actually have 
lower bounds on the turning radius, that however have been simulated imposing software 
constraints). Consider for instance the simple planning problem for a Labmate in the 
environment depicted in fig. 8. The EPD obtained assuming pmin = h is reported in 
fig. 8-a. Note that, due to the axial simmetry of the Labmate, all segments in EPD can 
be followed either way. In fig. 8-b the corresponding shortest path on the EPD is shown. 
Finally, fig. 8-c shows the path resulting from application of the heuristic discussed in 
remark 2 in the case that pmin = 1.5h. Note that, in spite of the considerable increase of 
the minimum turning radius, the path is still very close to the intuitive optimum. 
The described path planner can also prdvide a solution for car-like robots, i.e. vehicles 
whose nonholonomic constraint equation involves the steering angle q5 and is of the form 

5 

- sin( 6) cos( 6 )  0 0 
s(q)q= [ -sin(6+q5) cos(8+4)  wcos(q5) 0 1  I I = 

The EPD of a parallel parking maneuver is reported in fig. 9-a (orientation of segments 
is not shown). The parking maneuver provided seems very natural, as shown in fig. 9-b. 
More complex planning problems for a car-like vehicle are shown in fig. 10. Note that, as 
compared to most current path planners, the proposed method behaves particularly well 
in much cluttered environments. 

4 Conclusions 

In this paper we have discussed a planning algorithm for nonholonomic, bounded curvature 
path planning among obstacles whose output is the shortest feasible regular path for a 
particular vehicle. Although the proposed method is not complete, nor its optimality 
properties are trivially carried over to more general vehicles, very reasonable paths are 
generated by using only a few additional.simple heuristics. 
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Figure 9: EPD (a) and h a 1  path (b) for the parallel-parking maneuver of a car-like 
vehicle. 

As compared with other methods known in the literature, the proposed planner does not 
need to build a supporting free path by means of configuration space methods nor does 
it require discretization of the configuration space. Paths generated by our method are 
typically very simple concatenations of Reeds/Shepp paths. An. important quality of the 
proposed method is that it can be easily implemented even in cluttered workspaces, where 
the method actually performs comparatively best. 
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Figure 10: EPD’s (a,c) and resulting paths (b,d) €or a cas-like vehicle in cluttered envi- 
ronment s. 
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