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Abstract 
In this paper we consider the structural properties 

of the dynamics of robotic manipulation systems of 
a rather general class, including multiple cooperating, 
possibly whole-arm limbs, interacting with a manip- 
ulated object by means of contacts. A geometric ap- 
proach t o  the analysis of the linearized dynamics of 
such systems is  presented, which provides much insight 
in some of their intrinsic characteristics in the light of 
classical system-theoretic concepts such as controlla- 
bility, observability, and canonical forms. 

1 Introduction 
A growing interest is developing in the robotics 

community towards manipulation systems with fea- 
tures such as multi-limb coordination, whole-arm ma- 
nipulation, and/or underactuated joints. Instances of 
such mechanisms are e.g. robotic hands, cooperating 
robot arms, or legged vehicles. By “whole-limb” ma- 
nipulation we design a style of manipulation where all 
the links in the limb (including proximal ones) are ex- 
ploited to interact with the manipulated object (Sal- 
isbury, [1987]), A peculiarity of whole-limb systems 
is their defect of d.0.f. in their operational space. 

The purpose of this paper is to analyze the dynam- 
ics and the system-theoretic structural properties of 
such class of systems. Although dynamics may not 
play a dominant role in the control of slow cooperating 
manipulative tasks, only a full dynamical model can 
explain and clarify the structural properties of com- 
plex manipulation systems. Thus, dynamic manipula- 
tion has been considered to  investigate grasp stability 
(e.g. by Nakamura e t  al. [1989], Montana 19911, Trin- 
kle [1992], and Howard and Kumar [1994] \ ; and coop- 
erative manipulability ([Chiacchio et al., 19911). As 
we consider more general manipulation systems, other 
structural properties enter the picture, related in par- 
ticular to  restrictions to controllability/observability 
entailed by kinematic defectivity. This point repre- 
sents the focus of the present paper. 

2 Dynamic Model 
A manipulation system is a constrained mechani- 

cal system, whose dynamical description can be de- 
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Table 1: Five simple examples of robotic manipula- 
tors. 

rived using Euler-Lagrange’s equations along with 
constraint equations. As already discussed elsewhere 
([Bicchi and Prattichizzo, 1993]), a rigid-body model 
of general manipulation systems (GMS) is not satis- 
factory because of two reasons. First, for kinemat- 
ically defective systems, dynamics cannot be com- 
pletely specified, and unmodelled elastic energy can be 
stored in non-independent (hyperstatic) constraints. 
Second, closed-loop force control in rigid-body mod- 
els entails algebraic loops, and unmodeled dynamics 
would show up in applications. We therefore introduce 
a model of visco-elastic interactions at the contacts 
between the links of the limbs and the object. For 
simplicity, we assume that bodies are linearly elastic. 
Also, we postulate that contact points do not change 
by rolling. The latter assumptions is motivated by 
the lack of a tractable model of rolling and compliant 
contacts ([Johnson, 19851). 

According to the above discussion, the model of a 
manipulation system can be written as follows. Let 
q E IRq denote the vector of joint positions, and let 
U E IRd be the vector locally describing the position 
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and orientation of a frame attached to  the object. Cor- 
respondingly, let 7 E IRq be the vector ofjoint actuator 
forces and torques, and w E Etd the vector of forces 
and torques resultant from actions applied directly at 
the object. The dynamics of the limbs (considered as a 
whole and henceforth indicated by the term "hand"), 
and that of the object can be written as 

respectively, where the Mi(.) (i = h ,o )  are inertia 
matrices, the Qi( e ,  e )  terms include velocity-dependent 
and gravity forces, J is the aggregated (pseudo)- 
Jacobian matrix for the hand, and G is the so-called 
"grasp" matrix. Finally, t is a t-dimensional vector of 
all components of contact forces between the links and 
the object, which, according to the lumped spring- 
damper model we assume, can be written as 

t = K((q, U) + B(J4 - GTU). (3) 

Here, K and B are aggregated matrices of contact 
stiffness and damping, respectively, and is a suit- 
able displacement function applied to the positions 
and orientations of surface (Gauss) frames a t  the con- 
tact points. 
2.1 Linearization 

For the analysis of most of the structural proper- 
ties of WAM systems, model (1)-(2) is still intractable. 
Henceforth, then, we will deal with the linearized dy- 
namic model 

x = AX + B,T + B,w, (4) 

where the state vector x E R2(9+d), inputs T' E IR9, 
and disturbances w' E IRd are defined as the de- 
partures from a reference equilibrium configuration 
x, = [q: U: OT OTIT at which contact forces are 
t(xo) = to. The dynamics matrix A, joint torque in- 
put matrix B,, and external wrench disturbance ma- 
trix B,,, have the form 

( 5 )  
In the general case, blocks Lk and Lb still have rather 

involved expressions in terms of the system's kine- 
matic and material properties, and depend on the in- 
tensity of forces at equilibrium. To the purpose of 
obtaining clearly intelligible results relating structural 
properties of manipulation systems to their more in- 
trinsic parameters, the linearized model is considered 
under the further assumptions that: i> gravity terms 
are negligible in Q h  and Qo; ii) stiffness and damping 
are isotropic at each contact, i.e. there exists posi- 
tive constants I C ~  and ,f3i such that, in a local frame, 
Ki = ICJ and Bi = PiI; and iii) contact forces at the 

reference equilibrium ar'e small, so that terms fi 4 
are negligible. Under these conditions, we have 

Lk = -M-'Pk; Lb = -M-lPb, 

where M = diag(Mui[h, MO), and 

-:ETT ] 1 

J ~ K J  T 
pk = [ -JG ] K [ J -(GT ] = [ -GKJ 

and Pb has the same form as Pk where K is replaced 
by B. 

3 Pointwise Controllability 
The subspace of states that are pointwise- 

controllable from joint torques for the linearized sys- 
tem (4) , denoted by < AIB, >, can be simply ana- 
lyzed if contact damping is neglected, i.e. if B = 0. 
In such a case, putting 

A = -K(JM~:'J* + G*M;'G), 

we have that the columnis of the controllability matrix 
can be written as 

A ~ ~ B ,  = (M; 'J~A~- 'K [ o o -JM,,-' G ~ M  0 -l ] I T ;  
A ~ ~ + ~ B ~  = (M; 'J~A~- 'K [ -JM,.-' o 0 1 ) ~ .  

< AIB, >= {X I AU,;. E <  M;'GKG~IM;'GKJ > } 
(6) 

After some calculations, one obtains 

The following cases may be encountered: 
1. If the Jacobian J and the grasp matrix G are full 
row rank (f.r.r.), the system is completely controllable. 
Such is the case for examples 4 and 5 in table 1. 
2. If ker(GT) # 8, the system is called indeterminate. 
If furthermore J is f.r.r., the controllable subspace is 

< AIB, >= {X I A U , ~  E ( M ~ ~ G ) } .  

Note that only object displacements and velocities be- 
longing to range(M;'G) are reachable. In particular 
(since MO is p.d.), the indeterminate subspace 

Xi = { x I Aq = q = 0, Au, U E ker(GT)} , 

is not reachable. 
3. If ker(JT) # 8, the system is called defective. De- 
fective systems with G f.r.r.) imay or may not loose 

case considered. Contrcillability of defective systems 
is generic (in the sense of algebraic geometry, cf. e.g. 
Wonham [1979]). For the device in example 3 of ta- 
ble l controllability of vertical and rotational move- 
ments of the object is lost due to the particular sym- 
metry of inertia, stiffness and damping parameters 
that were assumed in the introduction. The same 
holds for the example 1 of table 1. Table 3 reports 
graphical illustrations of' the uncontrollable modes in 

complete contro h ability, depending on the particular 
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these cases. Note that the loss of controllability in in- 
determinate systems is generic. 
4. If neither J nor G are f.r.r., the system is defective 
and indeterminate. This is the case of example 2 of 
table 1. 

Observing that the indeterminate subspace Xi is 
A-invariant, and applying a state space transforma- 
tion T1 = [T,lTiITd] whereof T, is a basis matrix 
(b.m.) of < AIB, >, Ti is a b.m. of Xi ,  and 
T d  is a complementary basis matrix (c.b.m.) of 
< AIB, > @Xi to the state space R2(gSd), a stan- 
dard controllability form for GMS is obtained as 

where the symbol “0” is for non-zero blocks, while the 
symbol “*” represents blocks that may be zero or not 
depending on the particular choice of the complemen- 
tary basis matrix. This form of the dynamics of a GMS 
points out that  uncontrollable modes may appear be- 
cause of two reasons. The modes associated with i A  
are the indeterminate modes of the system, and are 
strictly related to the existence of a nullspace of the 
transpose of the grasp matrix, in the sense that they 
correspond to motions left free by the grasp. Inde- 
terminate modes are double integrators. The uncon- 
trollable modes associated with d A  are the defective 
modes of the system, since a necessary condition for 
their existence is that the hand Jacobian has not full 
row rank. This case occurs in WAM systems but also 
in conventional robots a t  their kinematic singularities 
(see table 2). Defective modes are periodic in the as- 
sumption that the damping matrix B is zero, and are 
damped by positive definite B’s. 

In general, if damping is present a t  the contacts, 
the above standard form remains valid. However, the 
dimension of the pointwise-state controllable subspace 
is generically increased whenever the damping matrix 
B and the stiffness matrix K do not commute. 

4 Observability 
Being the goal of dextrous manipulation to control 

the position of the manipulated object through the 
contact forces with the fingers, it is natural to con- 
sider two possible outputs, namely the object position 
U and the contact force vector t. In the linearized 
model under consideration, the corresponding output 
matrices are written respectively as 

ct = [ KJ - K G ~  BJ - B G ~  1 ;  (7) 

C u = [ 0  I 0 0 1 .  (8) 

v is called a basis matrix of a subspace V if it is f.c.r. and 

W is called a complementary basis matrix of V to W if it 
v=v. 

is f.c.r. and (W) @ V = W .  

4.1 Observability from Object Motions 

positions of the object are 
The rows of the observability matrix Ou from the 

c ~ ( A ) ~ ~  = M ; ~ G A ~ - ~  K [ J - G T O O ] ;  

c ~ ( A ) ~ ~ + ~  = M;’GA~-’ K [ 0 0 J - G T ]  . 
The subspace of states unobservable from U is 

ker (0u)  = { x I Aq, q E V h ,  AU = U = 0 } (9) 

where v h  is the largest subspace contained in 
ker(GKJ) that is (MhlJTKJ)-invariant, i.e. 

q f d - 1  

Vh = r\ ker( [GKJ(MC1 JTKJ)i-l]). 
i=l 

The following remarks apply here: 
1. If J and G are f.c.r., the system is completely ob- 
servable from object motions, as  in example 2 of ta- 
ble l. 
2. If ker(J) # 0, the system is called redvndant. If fur- 
thermore G is f.c.r., the subspace unobservable from 
object motions is 

X ,  = { x I Aq, q E ker(J), AU = U = 0 } (10) 

that is, it is comprised of redundant joint displace- 
ments and velocities. The existence of an  unobserv- 
able subspace in redundant systems is generic. 
3. If ker(G) # 0, the system is called graspable 
(the name follows from the fact that contact forces in 
ker(G) are usually called internal (or grasping) forces, 
and play a fundamental role in resisting external dis- 
turbances with unilateral friction contact constraints). 
Graspable systems (assuming J is f.c.r.) may or may 
not loose complete observability, depending on the 
particular case considered (i.e., observability is generic 
for graspable, non-redundant systems). Elements of 
the unobservable subspace are joint displacements and 
rates that modify contact forces, but leave object dy- 
namics unmodified. The elements of the correspond- 
ing subspace of contact forces, 3 h  = Ctker(Ou), are 
called dynamically internal contact forces. The possi- 
bility of exerting internal forces without affecting the 
motions of the object is of great practical relevance to 
cases when the demand of accuracy of manipulation 
is highest, as for instance when the object of manip- 
ulation is a surgical tool. In the apparently similar 
systems of examples 1 and 3 in table 1 the possi- 
bility of exerting dynamically internal forces is illus- 
trated. No dynamically internal force can be exerted 
in example 1, being void the intersection between the 
column space of J and the nullspace of G (this is de- 
picted in table 3, first row). In example 3, however, 
this intersection is not void and, due t o  the particu- 
lar symmetry of kinematic and inertial parameters, a 
dynamically internal contact force can be exerted as 
illustrated in table 3, second row. 

4. If neither J nor G are f.c.r., the system is redun- 
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dant and graspable (see e.g. example 5 in table 1). No- 
tice that the subspace of redundant motions is mapped 
in null contact forces by C t .  

Observing that the subspace X, is A-invariant, a 
standard observability form can be obtained as 

CUT2 = [ 0 I 0 I 0 1 .  
where T 2  = [T,IT,ITh], and T, is a b.m. of X,, T h  
is a c.b.m. of X ,  to ker(Ou), and T, is a c.b.m. of 
ker(Ou) to  the state space IR2(q+d). 

Modes that are unobservable from object positions 
may arise because of two reasons. “Redundant” modes 
associated with ‘A are present whenever the Jacobian 
matrix has a nullspace (as in example 5 of table 1). 
The redundant modes are double integrators, but can 
be arbitrarily relocated by feedback of joint variables 
only. The modes associated with h A  are called “dy- 
namically internal” modes of the system, because of 
their relation with dynamically internal forces. The 
observability standard form is maintained for non-zero 
damping (B # 0 ) .  However, the dimension of the dy- 
namically internal subspace is generically decreased if 
B and K do not commute. 
4.2 Observability from Contact forces 

The analysis of state observability from the con- 
tact forces provides further insight in the kinematics 
of robotic systems. The rows of the observability ma- 
trix Ot from the output t can be written, for B = 0 ,  
as 

C t A Z k  = A k - l K [  J -GT 0 0 1 ;  
CtA2”’ = A k - l K [  0 0 J -GT 1 .  

The subspace of states unobservable from contact 
forces is therefore 

(11) 
and corresponds to displacements and velocities that 
leave the virtual springs and dampers unsolicited, i.e., 
to the rigid-body kinematics of the system. 

Rigid-body kinematics are of particular interest in 
the control of robotic manipulation systems, because 
the extent to  which displacements from the reference 
equilibrium comply with the linearized model is much 
limited for motions that involve visco-elastic deforma- 
tions of bodies. Rigid kinematics can be characterized 
in terms of a matrix I? whose columns form a basis for 
ker ([J - GT]), and that can be written as 

where I?, is a b.m. of ker(J), is a b.m. of ker(GT), 
and rnC and rue are conformal partitions of a c.b.m. 

to ker ([J - GT]) of diag(ker(J), ker(G)). The anal- 
ysis of the dimensions and the geometry of the sub- 
spaces spanned by the blocks of matrix r is instru- 
mental in describing fundamental kinematic charac- 
teristics of robotic manipulation systems, such as the 
mobility, connectivity, and manipulability of manipu- 
lation systems. For instance, the structure described 
in example 1 of table 1 has no possible rigid motion 
(I’ = 0 ) ,  as motions oil the object may only result 
from deformations of the compliant elements a t  the 
contacts. Bicchi, Melchiorri, and Balluchi [1994] de- 
rived a similar description of rigid-body kinematics 
from quasi-static considlerations, and had a detailed 
discussion on mobility and manipulability properties. 

Applying a state slpace transformation T3 = 
where T’, is a c.b.m. of X, @ Xi to 

and Tt is a c.b.m. of ker(0t)  to  R2(*+d), and observ- 
ing that range(T,) is A-invariant, a standard observ- 
ability form is obtained as 

Tg1AT3 = - 

[:: 0 0 “ A  
C t T 3  = [ I 0 I 0 I 0 3 .  

5 Standard Form for GMS 
The dynamic structu:re of a general manipulation 

system, analyzed from different viewpoints in the pre- 
ceding sections, can be summarized by a single re- 
sult to  be discussed shortly. As a necessary prelimi- 
nary, however, we briefly consider here the dual prop- 
erties to pointwise contirollability from joint torques 
and to observability froin object positions that were 
discussed previously. Such duals are observability 
from the position of joiiots (i.e., with output matrix 
Cq = P 0 0 O ] ) ,  and controllability from the distur- 
bance input matrix Bw,  respectively. In fact, one has 

ker(0q) = { x I A q  = ;1 = 0 ,  Au, U E Wh } ,  (14) 

where 

q+d-l 

Wh = ker( [JTKGT(M;lGKGT)i-l]) 
i=l 

and 

< AlBw >= { x I Aq, q I?< M,’JTKJIMi’JTKGT >} 

The following theorem provides a rather interest- 
ing standard form of G1LIS’s without indetermination 
(ker(GT) = 0). 

(15) 
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Theorem 1 The linearized model (4) of a robotic ma- 
nipulation system with ker(GT) = 0 admits a change 
of coordinates T such that the system matrices, in the 
new coordinates, have the form 

cu= [ . I . 10 I 0 I . ] i 

C s = [ .  I .  I .  I .  I O ] ;  

et'[ 0 1 . 1 0 1 .  I .  1 .  
where the symbol "*" represents a block that may be 
zero or not depending on the values of the dynamic 
and stiffness parameters (* blocks are however gener- 
ically non-zero). 

The following lemmata involving previously defined 
subspaces and basis matrices are instrumental to  the 
proof of theorem 1: 

Lemma 1 k e r ( 0 u )  C < A(B,  > and ker(Oq) & 

Proof. Directly from comparison of (9) and (6) and 

Lemma 2 range(T,) C < AJB, >. 
Proof. From comparison of (13) and (6), it appears 
that the thesis holds iff 

range(r,,) C< M;~GKG~(M;~GKJ > . 
Observe first that range(I',,) 5 
range((GKGT)-lGKJ), or, equiv- 
alently, that V a ,  3p : rue& = (GKGT)-lGKJp. 
From (12) in fact we get ,LJ = I' a. The thesis follows 
by application of Cailey-Hamson theorem to show 
that 

< AIB, >. 

of (14) and (15). 0 

range((GKGT)-lGKJ) C 
q+d-l 

range((MilGKGT)"'M,'GKJ) 0 
k = l  

Lemma 3 range(T,) n (X? range(Th)) = 0. 
Proof. It follows from the definition of T h  and from 
comparison of (13) with (9). 0 

Lemma 4 < AIB, > @ ker(0q) = JR.2(q'+d). 

Proof. We assume here that the representation of 
states is normalized so as to have homogeneous phys- 
ical dimensions for all states, and to allow the defini- 
tion of an  internal product in the state space. Since 

such a normalization can always be obtained by means 
of a linear transformation of coordinates that is p.d., 
no loss of generality will ensue from this procedure of 
proof. Under these conditions, the following relation- 
ship involving orthogonal complements holds 

Wk = ( 2 ker [JTKGT(M,lGKGT)i-l] r p+d-l 

q+d-l 

= MO range(M;lGKGT)k-lM,lGKJ 

= 
k = l  

MO < MilGKGTIMilGKJ > . 
The thesis is proved by comparing (6) and (14) and 
considering that M is p.d.. 0 

Lemma 5 < AIB, > @ ker(0u) = lR.2(q+d). 

Proof. Similar to  proof of lemma 4. 0 

Proof of Theorem 1. From lemmata 1, 2, and 3, a 
b.m. for the subspace of states controllable from joint 
torques can be written as T, = [T, T h  T, T,], where 
T, is defined as a c.b.m. of range(T,) @ range(Th) @ 
range(T,) to < AIB, >. Being X; = 0, lemma 4 
guarantees that T d  is a valid b.m. of ker(Oq) while 
lemma 5 guarantees that T h  is a valid c.b.m. of 
X,@ < AIB, > to  R2(qfd). The thesis follows from 
comparison of the canonical (Kalman) decompositions 
of systems (A, B,, CU) and (A, Bw, Cq), that  can 
be obtained by reordering the blocks of the following 
change of coordinates that is chosen as new basis, 

T = [T, T, T, Th T d ] .  0 

Remark 1. One useful aspect of the standard form 
of theorem 1 consists in the synthetic representation 
of information relating to  the structural properties of 
various subsystems. It can be shown in fact that it 
is always possible to choose T, and T h  such that the 
* terms vanish in the standard form of theorem 1. 
Therefore, as it can be easily recovered from applica- 
tion of the Popov-Belevitch-Hautus test, the lack of 
one of the five properties considered (controllability 
from joint torques and from disturbances, observabil- 
ity from object positions, from joint positions, and 
from contact forces) for a particular subsystem is in- 
dicated by the presence of a zero block in the corre- 
sponding position of the input or output matrices. 

6 Discussion 
In this paper, the structure of dynamic systems for 

manipulation of objects has been investigated from the 
viewpoint of linear systems theory. Although robotic 
systems are highly nonlinear in nature, the simplic- 
ity of results achievable by linearization appeared to  
be important at this rather early stage of investiga- 
tion of complex manipulation systems. For instance, it 
was possible to  show that the dynamics and structural 
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properties of whole-arm manipulation systems have 
nonnegligible differences from those of non-defective 
systems. Moreover, it is well known that some of the 
results on the linearized system imply analogous lo- 
cal properties for the full system. As one example 
of the possible practical relevance of the results of 
this paper, we should like to  point out the definition 
and characterization of “dynamically internal” contact 
forces, that  might be an  important tool in designing 
and controlling devices for high-precision, surgical- 
type (“steady-hand”) robotic applications. 
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Defective __ Defective & Indeterminate 
-- 

Defective I singular I Singular 

Table 2: Some uncontrollable modes for the examples 
of table 1. 

range(J) 

range(J) 

U 
ker(G) 

-0- 
ker(G) 

Table 3: Dynamically and steady-state (active) inter- 
nal contact forces for the systems of examples 1 and 3 
of table 1. Note that the existence of a nonvoid dy- 
namically internal subspace for example 3 depends on 
the particular values assigned to geometric and iner- 
tial parameters. 
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