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Abstract 
We present a general framework for the modelling of 
a class of mechanical systems for robotic manipula- 
tion, consisting of articulated limbs with redundant 
tendinous actuation and unilateral constraints. Such 
systems, that include biomorphically designed devices, 
are regarded as a collection of rigid bodies, interact- 
ing through connections that model both joints and 
contacts with virtual sprin s. Methods previously d o  
veloped for the analysis odforce distribution in mul- 
tiple whololimb manipulation are generalised to this 
broader class of mechanisms, and are shown to provide 
a basis for the control of co-contraction and internal 
forces that guarantee proper operation of the system. 

1 Introduction 
The articular and tendinous structure of animal 

limbs provide an outstanding example of mechanical 
systems with extremely high performance, that at- 
tracts the interest of researchers in physiology, bio- 
materials, and robotics. The extremely low friction in 
articular joints and the remotisation of actuators made 
possible by tendon structures are two of the prominent 
advantages of biomorphic structures over conventional 
mechanical design. Besides the exceptional lubrica- 
tion properties of synovial fluid, low friction in artic- 
ular joints is achieved through the use of rolling pairs 
between bone processes. The large redundancy of the 
tendinous system allows actuators (muscles) to be lo- 
cated far away from articular joints, and offers the pot+ 
sibility of "co-contracting" the limbs so as to optimally 
tune their stiffness and configure the limbs for Merent 
tasks (precision movements, force exertion, etc.). 

The analysis of both the kinematics of articular 
joints and the redundancy in tendinous actuation of- 
fer non-trivial difficulties. Amon these are the non- 
holonomy of rolling pairs, and t%e unilateral action 
of tendons (no "pushing" is allowed). The literature 
on tendon-actuated mechanisms is relatively rich in 
robotics, where they have been used especially in the 
design of dextrous robotic hands. The necessity to 
avoid tendon cables to go slack has been often solved 
most simply by using two tendons per joint in push- 
pull (or agonistic-antagonistic configuration ([Jacob- 
sen et aZ., 19891). The use of 3 n cables and actuators 
for n joints however hampers the practicality of the 
design and affects its cost. Morecky et al. [1980] and 

Salisbury 119821 described the use of co-contraction 
in mechamsms using n + 1 tendons. A general analy- 
sis of tendon driven mechanisms has been attempted 
in most cases for systems where tendon are routed 
through joints by means of pulleys (see e.g. [Lee and 
Tsai, 19911). A qualitative description of more gen- 
eral systems composed of nets of tendons and actua- 
tors has been presented by Barbieri and Bergamasco 
[1991]. More complex models of tendon-actuated sys- 
tems have been considered in the biomechanical lit- 
erature ([Muslur I d &  et aZ., 19881; [Buchner et aZ., 
1988]), and some authors used anthropomorphic mod- 
els to attack the design of robot hands ([Backer et 
d., 19861). Recently, Deno et d. [1992] approached 
the dynamic modelbation and analysis of "finger-like" 
mechanisms by using graph theory. 

The approach proposed in this paper is meant to 
encompass a wide variety of configurations that can 
be encountered in biological systems or conceived for 
artificial devices. For the sake of the widest general- 
ity, we model articulated limbs with tendinous actua- 
tion and manipulated objects as a collection of rigid 
bodies, interacting through contacts with character- 
istic kinematic and visco-elastic properties ([wittem- 
burg, 19771). Distinction between manipulator "links" 
and "objects" to be manipulated is not intrinsic to 
the model, but can be recovered in the final stage of 
analysis. Contacts of any of the bodies with others 
are allowed, so that whole-limb manipulation is natu- 
rally investigated in this framework. Also, kinematic 
rolling pairs are allowed not only between a link and 
the manipulated object, but also between links in the 
same limb chain, so as to permit the above mentioned, 
high-efficiency biomorphic joints to be included in the 
analysis. 

A quasi-static, small4splacement analysis of force 
distribution between contacts and through tendons for 
these systems is proposed that follows the lines of [Bic- 
chi, 19931. As a result of the proposed analysis, one 
is able to describe how external and internal forces 
are distributed in the system in a given configuration. 
Internal forces are defined (as usual in grasp litera- 
ture) as the set of tendon tensions and contact forces 
that are self-balanced, i.e., do not affect motions of 
any part of the system. Among internal forces, uco- 
contraction" forces are further distinguished as those 
combinations of tendon tensions that influence contact 
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balance equation can be written as 
- -  

w = - G ~ - T x  

Figure 1: Characteristic connection points, tendon 
conduits, and forces applied on the i-th body. 

forces between finger links, but do not act upon ma- 
nipulated objects. The actual capability of the system 
to actively control such forces is investigated. By these 
means, a basis for the choice of internal forces that al- 
low to avoid loosing the grip on manipulated objects, 
as well as a basis for co-contraction forces to avoid 
tendon backlash and joint disruption, is provided. 

2 System Description 
We consider a system comprised of an arbitrary 

number n of rigid objects that may be connected one 
with any of the others and/or with the enviroment 
through contacts or rotoidal or prismatic joints. Bod- 
ies are numbered from 1 to n, while the enviroment is 
assigned the index 0. Let the location in base frame of 
the characteristic point of the connection between the 
i-th and j-th objects be q,j E Et8. For prismatic or ro- 
toidal joints, the characterlstic point can be chosen as 
the joint origin in usual Denavit-Hartenberg conven- 
tions, while the contact centroid definition of [Bicchi 
el d., 19931 is used for contacts. 

The actuation system is comprised of q motors and 
r tendons. Tendons always have one end fixed to one 
of the objects, while the other end may be connected 
to a motor or to another object (r 2 q) .  Tendons 
may be routed through idle pulleys or sheaths, possi- 
bly fixed to some of the bodies. The point on body 
i where tendon j is fixed or is passed through is vi,j. 
According to the indexing of bodies, the position of 
the j-th tendon actuator is denoted by V O , ~ .  Tendons 
are supposed uniformly stressed (frictionless transmis- 
sion), and tensions applied to each tendon are collected 
in a vector r = ( r l ,  rz, .. . , r, E W. We introduce 
the shorthand notation r = [rjr for similar juxtaposed 
vectors and matGces to be encountered. 

Denote with tij  E Et' the force/torque (wrench) 
exerted on the i-th object by the j-th object. Further, 
let Zi E Eth contain all vectors &,j with j # i ,  Zi = 
[&,j]y,j#i, and let the external wrench applied on the 
i-th object be wi E R' (see fig.1). The overall system 

where w = [wily E Rh, i = [&IT E Rh', and 

& = diag [a;]? E Ethxh' 

T E Ethx'. 

The construction of matrix T is detailed in the ap- 
pendix. To take into account that not all tendons are 
directly actuated, a suitable selection matrix I' E RqX' 
is introduced with rij = 1 if the j-th tendon is di- 
rectly connected to the i-th motor, and l'ij = 0 oth- 
erwise. Letting r denote the vector of tractions of the 
q motors, we write 

T = rr. 
To model costraints due to joints and to contacts be- 
tween bodies, consider two reference frames C;,i and 
Cj,i fixed with the object i and the object 3, re- 
spectively, and centered in q,j. Corresponding to 
a small displacement A4 and rotation A@i of the 
i-th object (summarized in the twist vector A& = 
(A4?, A@: E Et'), frame Ci,j is displaced by Avi,j 
and rotate d by A#i,j 

Connection (joint or contact) constraints impose that 
some components of the relative displacement A-,j - 
Axj,i are opposed by reaction forces while others are 
left free, depending upon the type of connection. The 
structure of the connection between the i-th and j- 
th bodies is summarized by another selection matrix, 
Hi,j E Ettiix6 such that forces and torques mutually 
exerted at the connection are written as 

ti,j = Ki,jHi,j(A-,j - Axj,i) + fi,j (2) 

where the stiffness matrix Ki,j E Rti,ixtiJ incorpo- 
rates the structural elasticity of the connection ele- 
ments [virtual springs"), and &,j is the contact force 
when t e relative displacement-ls zero. Note that in 

that only the components of connection wrench rele- 
vant to the interaction are present. The nz equation 
(2) can be summarized, using eq.(l), as 

eq.(2), ti,j E Ettii differs from ti,j = H&ti,j E Et6 in 

t = KHXAx+ P = KHXe' Au+;  

where Ax = [A-]? and A- = [ A ~ i , j ] y , ~ # ~ .  Ma- 
trix X E RhYxh' selects appropriate combinations 
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of displacements Aq,j .  The structure of H E a'"&', 
K E IR"', and X is described in the appendix. 

The model of tendon elasticity is obtained in t re  
ducing the tendon relative displacement Ax, and the 
displacements imposed by motors on tendon ends, Aq. 
Accordingly, the tension of tendons r is 

r = &A& + i = K,(TTAu - r'Aq) + i. 
where f are the tensions in the reference configuration 
Arc. = 0. The diagonal stiffness matrix K, E RrX' 
depends on the elastic characteristics of tendons. 

In view of the above definitions, the model of the 
system to be studied can be summarized by the fol- 
lowing equations: 

- -  
w = -Gt - 'h = - (GH' T) (:> e -Gi (3) 

T = I'r (4) 
t = KHXAr + E = KHXG' Au + i (5) 
r = K,Ax, + i = K,(T'Au - r*Aq) + i. (6) 

3 Force Distribution 
The force distribution problem consists of describ- 

ing the general solution to eq.(3), a linear system of 
6n equation in s + r unknowns. Note that eq.(3) ad- 
mits solution only if w belongs to the range space 
of G. Whithout loss of generality, we assume that 
R(G) = lRh. The general solution of eq.(3) can be 
written as the sum of a particular solution and (IIL ho- 
mogeneous solution. 
3.1 Particular solution 

The particular solution is in general not unique, 
since G admits infinitely many right inverses. How- 
ever, we expect a unique solution to the following prob- 
lem: 

Assume the system is in an equdibrium confisum- 
tion, under a set of ezternal loads I?, with contact 
forces t̂  and tensions of tendons E. Determine the con- 
tact forces and tendon tensions at the equilibrium that 
the system reaches when an additional load w is ap- 
plied, while the actuator position q b kept constant. 

Eq.(5) and ( 6 )  with Aq = 0, can be rewritten as 
follows 

KGTAu + 4, 
where G, = HXGT. Substituting eq.(7) in eq.(3), 

w + + = -GKGTAu - Gi. 
Hence, recalling that G is assumed full row rank and 
K is invertible, 

we have 

t' = - K G z ( G K G y w  + i !Ef -GEw + i 

where is the K-weighted right inverse of e. The 
tendon tensions and contact forces between any pair of 
bodies caused by the external wcench w can be easily 
recovered from the definition of t .  
3.2 Homogeneous solution 

Homogeneous solutions of eq.(3) correspond to ten- 
don tensions and connection forces that counterbal- 
ance each other, thus not affecting the overall equilib- 
rium of the system. However, internal forces are of fun- 
damental concem in grasp planning, since disruption 
of rolling-pair joints or slippage and loss of grasp sta- 
bility can often be avoided only through effective man- 
a ement of internal forces. In analogy with systems 
of whole-limb manipulators without tendons discussed 
in [Bicchi, 19931, in the present case we may be con- 
fronted with the impossibility of arbitrarily controlling 
everp combination of internal forces in the nullspace 
of G. Among internal tensions-forces, co-contraction 
tendon tensions can be further distinguished as those 
that do not affect contact forces between the links 
and the manipulated objects. Co-contraction tensions 
must be used to keep tensions positive in each tendon 
(to avoid them to go slack and to keep contact be- 
tween Merent links in the kmbs (when e.g. a rolling- 
pair joint is used). 

3.2.1 
Let us rewrite eq.(5) and (6) as 

Active internal tensions and forces 

We now prove that every active internal (contact and 
tendon) force can be written as the product of a ba- 
sis matrix E times an arbitrary coefficient vector y of 
suitable dimension. In fact, consider an equilibrium 
configuration of the system under the wrench ik and 
let i, 4 be the connection/tendon forces and positions 
of tendon actuated ends, respectively. Let S a  be a 
vector containing virtual displacements of the objects 
compatible with all connection costraints. Applying 
the Principle of Virtual Work and eq.(3), we have 

=T- 
i'6u = t GT6u = O, VSU 

Perturbe the equilibrium configuration by imposing 
displacemepts of the actuated ends of tendons by Aq, 
and let At, Au  be the change of tensions and forces 
and the change of position of bodies, respectively. A 
new equilibrium confi uration, under the same set of 
external forces i, w d  be reached on condition that 
the P.V.W. is satisfied: 

i T 6 u  = (f + AP)GTSu = AFG'6u = 0, V6u 

Substituting eq.(8), the P.V.W. condition is rewritten 
as 
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Let B E lR(h+q)xb be a matrix whose columns span 
the nullspace of GM; the subspace of internal forces 
that can be obtained at steady-state after a displace- 
ment of the tendon ends is commanded, i.e. the sub- 
space of active internal forces 3 h 4 ,  is given by the 
range space of MB. A basis matrix E E R'" is 
obtained by using only the independent columns of 
the product MB, and can be partitioned as E = 
([Ei]? E?), with Ei = [Ei,j]?,j#i. Therefore, 

cu 

Fho = {f : Eyly E Re} 

Blocks E ~ J .  E Rti,jxe correspond to contact forces be- 
tween the a-th and the j-th body contributing to ac- 
tive internal forces, while block E, contains the corre- 
sponding tensions of tendons necessary to apply the in- 
ternal forces. Note that the set of the "co-contraction" 
forces Fee is the subspace of active internal forces that 
do not change the forces between links and the manip 
ulated object: 

Figure 2: A finger with two phalanges and three ten- 
dons manipulating an object against a wall. 

.Fee = { e :  f = Ey,y E RelEi , jy  = 0 

if body i or j is "object" } 

3.2.2 Preload internal forces 

We consider preload tensions and forces as those inter- 
nal tensions and forces that can not be actively con- 
trolled by means of motor displacements. Preloading 
a system can avoid slippage due to a low value of non 
controllable normal forces. In the analysis of systems 
with tendinous structure and rolling pairs, preloading 
can be used to model the effects of articular kgaments. 
Letting rT = (0  r) E RQ'('+'), eq. (4) is rewritten 
as T = rTf and eq. (5) e (6) can be assembled in 

Because every preload force is internal and not con- 
trollable by motors, the following relations must be 
verified 

GK'(  f:) = 0;  

The subspace of preload tensions and forces Fhp is 
therefore given by 

Fhp = {i  : i = K'y,y E N(GK') nn/(rTK')} 

where N(-) indicates the nullspace of the argument. 
To evaluate a basis matrix P of the preload subspace, 
an algorithm for the such as that described in [Bicchi, 
19931 should be applied. Details are skipped for space 
limitations. 

4 Example 
Consider the system of fig.2 comprised of a finger with 
two phalanges pushing an object against a wall. The 
actuation system is comprised of three tendons. To 
deal with the bifurcation of one tendon, one fictitious 
link and two fictitious tendons are introduced. The 
coordinates of contact centroids are (in conventional 
measure units) 

C2,3 = Cg,2 = (14.6 9.76 O)=; Cs,o = (14.6 0 o)T 
Rolling-pair "hinges" in c1,o and C ~ J  allow only rota- 
tions around the z axis, hence n1,o = n1,z = (0 0 1)*. 
Contacts ~ 2 , 3  e cg,o are of "soft finger" type with nor- 
mal directions n2,3  = (0 - 1 O ) T ;  n8,o = (0 1 O)=. The 
tendon arrangement is described as follows: 

Tendon 1 is connected to finger 2 a t  v2,1 = 
(14.5 9.9 O)*, goes through a conduit fixed to finger 
1 at v1,1 = (9.4 12.30)T, and is connected to motor 1 
at V O , ~  = (0 12.3 O)=; 

Tendon 2 is connected to finger 1 and to motor 2 at 

Tendon 3 is connected to object 4 (fictitious) at 
v4,3 = (3.220.50)= and to motor 3 a t  V0,3 = (023.70)T; 

Tendon 4 is connected to object 4 (fictitious) at 
v4,4 = (3.220.50)T and to finger 1 at V O , ~  = (5.2170)=; 

Tendon 5 is connected to finger 2 at V2,6 = 
(10.5 13.90)*, goes through a sheath fixed to finger 
1 a t  v1,~ = (11.4 15.7 O)=, and is connected to object 
4 (fictitious) at v4,5 = (3.21 20.5 O)T. 

Dimensions of vectors and matrices are as follows: 
t = [t]: E R37; G E Rasxs7; H E R37x96; K E 
R37X37. x E ~ 9 6 x 0 6 .  T E ~ 2 4 x 6  ; r E Rsx6. To clar- 
ify nota)tion, the composition of vectors ti = [ti,j]:,j+i 

 VI,^ = (10.3 14.1 O)T and V O , ~  = (0 17 O ) T ;  
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is illustrated. The first three elements of t l o  E IR' 
contain the 2, y, and z components of the torce ex- 
erted by the enviroment on link 1, whereas the latter 
two are the torque components along z and y. Note 
that no torque is applied along the t axis in a hinge 
joint. Similarly, t l , 2  E IR' contains three force compo- 
nents and two torque components exerted by link 2 on 
link 1. Vectors t l s  = t1,4 = 0 E IR' because link 1 is 
not in contact with objects 3 and link 4. Analogously, 
t2 ,o = t2,4 = o E IR'. Vector t2,1 E R' is opposite 
to  t l , 2  (force exerted on link 2 by link 1 is opposite to 
the force exerted on link 1 by 2), and t 2  s E IR4 con- 
tains the z, y, and e components of the force exerted 
by object 3 on link 2 and the torque along Vec- 
tors t s , l  = ta,4 = 0 E R1 because of non-interaction, 
ta,2 = -ta,a, and ts,o E It4 contains the 2, y, and z 
components of the force and the torque along na,a ex- 
erted by the wall on object 3. Vector t 4  E Et4 is sero 
because link 4 is not in contact with any other body. 

We assume a value of lOON cm for stiffness of linear 

and 10N/cm for stiffness of tendons. Applying the 
algorithm shown in 3.2.1, the basis of active internal 
forces is found M: 

springs, 2ON/cm for the st d ness of rotoidal springs, 

f -1.2 L9 -0.45 0.76 \ 

-0.29 0.05 
0.82 0.13 

/ 0 o \  

E1,s  = E s , l  = E1,4 = E4,1 = 0 

E2,o = E2,r = E4,z = Es ,4  = E4,s  = 0 
E4,o = E4, i  = E4,2 = E 4 3  = 0 

Note that the second column of E forms a besis of 
the active internal co-contraction forces because no 
forces are applied to object 3 manipulated object). 

sults 
The preload force basis matrix 6 for this example re- 

P 1 , 0 =  P I , , =  -PZJ = ( 0 0 0 0 -1 )= 

P2,8 = -P8,2 = -Pa,() = ( 0 0 0 1 )* 
p l , S  = P l , 4  = p 2 , O  = p2 ,4  = pS,1 = PS,4 = 0 
p4,O = p 4 , l  = PI,> = P4,S = 0 p r  = 08x1  

Allowed preload forces correspond to torsion of the 
object between two soft-hger contacts, and is of no 
concern for the tendinous actuation system. 

We finally report the results of an opthisation al- 
gorithm (not described here that is used to calculate 
the combmation ofinternal orces to minimise the dan- 
ger of slippage a t  the contacts and negative tensions 
in the tendons, when an external unit force is applied 
to the centre of object 3 in the direction of the 2 axis. 
The following values of contact force/torque have been 
obtained: 

t1,o = (22.8-14.5000)T; t1,a = -till = (-4.411000)T 

ta,o = (-0.593.0700)*; ta,a = -ta,a = (0.413.0700)* 

ti,s = tali  = till = t 4 , i  = fz,o = t2,4 = t4,a = 0 
t s ,4  = t4 , s  = t4,o = t4 , i  = *4,2 = t4,a = 0 

71 = 7.8, r2 = 4.26, 7s = 10.02, r4  = 5.18, r6 = 
5.18. This results show that all tendons are correctly 
streched, that forces at the hinges are compressive (so 
that a rolling-pair joint can be adopted in the design), 
and that slippage of the object relative to the finger 
and to the wall is prevented. 

5 Conclusions 
The method presented is very general and allows 

to attack in a unified manner a very broad variety of 
mechanism. Although only discussed in a quasi-static 
setting, it can be easily modified to model the dynam- 
ics of such systems ( ittembarg, 19771). One of the 
main drawbacks o f t  6w e method is the introduction of 
rather large matrices even for simple systems, M shown 
in the example above. This is a price we pay to gener- 
ality, and more computstionally-efficient formulations 
can be derived by specializing the treatment of partic- 
ular cases. 
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Appendix 

Matrix T. Matrix T f lRhxr can be partitioned 
in 6 x 1-blocks Tij, i = 1 ,..., n, j = 1 ,..., r, that 
can be evaluated by the following rule: 

- ) if the tendon j is not connected to the i-th link 
and does not pass through a sheath fixed to the i-th 

- ) if the tendon j is connected to the i-th link and 
successively passee through a sheath fixed to the k-th 
link, 

link, Ti,j = 06x1  

- ) if the tendon j is connected to (or passes 
through) link h, passes through link i and is connected 
to (or passes through) link k, 
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Matrix H Matrix H E lRlxh" is nested block- 
diagonal, with diagonal blocks Hi E R"xh defined 
as Hi = diag [H;,j]7,jgf Blocks Hj,j E Rti,jxe em- 
body the motion constramts imposed by the particular 
type of connection between bodies i and j. Common 
contact types are 

Hi,j = b 
Hi,j = b 

for " hard finger" ; 
for "complete costraint"; 

Hi,j = (&) b o  for "soft finger"; 

where ni,j is the direction of the normal between the 
objects i and j. Another important type of connection 
is the "hinge" joint that only allows relative rotation 
around an & q,j: 

H i j  = 

where ai j e bi,j form a basis of the plane perpendic- 
ular to the direction w,,. 

Matrix K. The stiffness matrix K E R"' has the 
same block structure as H. Blocks Ki,j E Rt'~jXt'~j 
are diagonal, and depend upon the type of contact and 
the stiffness of the virtual spring interposed between 
objects i and j. In the easiest cases the elements of 
the matrix Ki are equal to pt for linear springs and 
to cc, for rotoidal springs. Some examples follow: 

- - if i-th object is in contact with the enviroment, 

- - if d th  object is in contact with j-th object: 
---if;> j, Xi;$ =b; 
- - -  if i < j, Xt;')*(j+') = Is; - blocks which do 

not hold the above properties are void matrices 6 x 6. 
If i # j (non diagonal block) matrix &,i: 
- if i-th object is not in contact with 3-th object, 

X:;: = 4; 
. .  

X*,j = O ~ n x ~ n i  - if i-th object is in contact with j-th object then 
just one block of &,j is not void. In particular we 
have: 

-b; - - if j > ; X{++l) = 
*J 

I 3  
- -  if j < i Xy$')Bi = -b. 
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