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Abstract 

Within this paper it is shown that, provided a special choice 
for the system state equations is a-priori made, the use of the 
simplest quadratic form as candidate Lyapunov function, 
directly leads to the definition of smooth and effective 
closed loop control laws for unicycle-like vehicles, suitable 
to be used for steering, path following, and navigation 
among assigned via points. Some considerations about the 
curvature of the corresponding manoeuvres are also reported. 

1. Introduction 

As it is well known, the majority of the mobile robots made 
available for research or effectively employed within real 
applications are, for manoeuvrability reasons, very often 
characterized by a unicycle-like structure. The problem of 
steering vehicles of such a nature has always received a great 
deal of attention within the wide existing literature on 
mobile robots (see for instance [1],[2],[3]). The research 
topics have also recently received a new impulse as a 
consequence of many of the new results obtained related with 
the geometric based approach to non-linear control theory 
[4],[5], and the emerging field of the so called non- 
holonomic motion planning and control [3]. Moreover, it is 
a matter of fact that non-holonomic systems corresponding 
to unicycle-like vehicles have been very often considered as 
a basic prototype case for testing and validating many of the 
techniques and algorithms developed within the above 
mentioned research fields. 

It is however author's opinion that, at least with respect to 
the sole and specific case of unicycle-like vehicles steering, 
the generally made reference to the above mentioned set of 
sophisticated techniques, has always hidden what is 
believed to be the very simple nature of the problem, which 
can be handled also on the basis of a straightforward 
application of the widely known, and well established, 
Lyapunov stability theory. 

More precisely, within this paper it will be explicitly 
brought into evidence that, provided a special choice for the 
system state equations is a-priori made, the analysis of a 
simple quadratic Lyapunov candidate function, almost 
trivially leads to the definition of an effective closed loop 
control law for the vehicle steering. 

Moreover, an effective use of such control law can also be 
devised for both the cases of path following and navigation 
among (possibly on-line) assigned via points [ 6 ] ,  without 
requiring, in the latter case, any sort of a-priori trajectory 
planning or re-planning. The paper is organized as follows: 
in Section 2 the basic kinematic relationships and the 
choice of the state variables are discussed, whereas in 
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Section 3 the Lyapunov analysis is carried on with the 
support of some simulation examples. In Section 4 some 
comments on the curvature of the trajectories are made here 
again with simulation experiments. Conclusions in Section 
5 will conclude the paper. 

2. Kinematic Equations 

Let us consider a unicycle-like vehicle initially positioned 
at a non-zero distance with respect to a goal frame <g>, 
whose motion is governed by the combined action of both 
the angular velocity and the linear velocity vector U, 
always directed as one of the axis of its attached frame <a>, 
as depicted in fig. 2.1. 

Fig 2.1 

Then, one of the simplest set of kinematic equations can be 
directly devised, which involves the vehicle Cartesian 
position x, y and its orientation angle W, all measured with 
respect to the target frame-point <g>; i.e.the simple set of 
differential equations 

y = U s i n  (I 

being U the component of 11 along the vehicle principal axis. 

By representing the Cartesian position of the vehicle in 
terms of its polar coordinates, involving the error distance e 
> 0 and its orientation 8 with respect to <g>, and defining a 
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= e-$ as the angle measured between the vehicle principal 
axis and the distance vector c, the following equations are 
trivially obtained 

(k= -U c o s  a 
s i n  a 

e - 
s i n  a [eu 7 

(2.2) 

Notwithstanding the fact that an infinite number of others 
basic kinematic equations could obviously be devised, by 
simply employing any non singular transformation between 
the various kinematic state vectors, within this work a 
particular attention will be however deserved to the last 
obtained equations (2.2), since, as it will be shown later, 
their form will reveal to be very suitable for easily 
designing appropriate closed loop control laws for the 
vehicle manoeuvring. As a matter of fact, equations (2.2) 
also result in the use of a set of state variables which are 
most likely resembling the same ones everyday used within 
our car-driving experience. 

Note however that, since based on the use of polar 
coordinates, kinematic equations (2.2) (on the contrary of 
(2.1)) actually result to be valid only for non zero values 
assumed by the distance errors e, since both angles a and 8 
simply reveal to be undefined quantities in correspondence 
of e = 0; thus implying that the generally existing one-to- 
one correspondence with (2.1) is actually lost in 
correspondence of such singular points. 

3. Lyapunov Function Based Closed Loop 
Steering 

On the basis of the previous considerations concerning state 
equations (2.2). we are now ready to specify better the 
aforementioned closed loop steering problem in the 
following general terms: 

Let the unicycle-like vehicle be initially positioned at any 
non zero distance from the target frame cg> and assume the 
state variables [e, a ,  e]' be directly measurable in 
correspondence of any e > 0; then find a suitable (if any) 
state dependent control law [U, a]'= g(e, a ,  8) which 
guarantees the state to be asymptotically driven to the null 
limiting point [0, 0,  O] ' ,  while avoiding any attainment of 
the condition e=O in finite time. 

Clearly, while the former specification expresses the 
requirement of reaching the target frame with the appropriate 
orientation, the second one technically serves only for 
avoiding the complexities that could arise in 
correspondence of any finite time loss of validity of the 
considered model (2.2). To this respect, however note how 
the more general concept of "limiting point" had to be 
necessarily used in order to correctly specify the need of 
obtaining an asymptotic convergence of the state toward a 
point, namely the point (0, 0, O]', which is actually located 
on the frontier of the open set of validity of model equations 
(2.2) (i.e. the subset of R3 where e > 0). 

Theorem: There exists m h  f e e d m  laws u(e,a,0) and 
w(e,a ,0)  such that any trajectory of (2.2) starting from 
[e(O),  a(0). 0(0)] with e(O)>O tends to the limiting point 
[O,O,OI. 

Proof. Consider the simplest choice for the structure of a 
candidate Lyapunov function related with the considered 
control problem; i.e. the positive definite form (h, h > 0) 

(3.1) 

which allows for both the "error distance vector" g and the 
so called "alignment error vector" [ a ,  e]' exhibited by the 
vehicle with respect to the target frame <g>. The time 
derivative V along (2.2), given by 

V =  N + E  = he;+ ( a ' a + h e i ) )  = 
. . .  

= - h e u c o s a  + 
(3.2) 

sin a (a + h e )  + a [ - w + u -  a 

From the latter expression we can immediately see that the 
first term, corresponding to VI, can be made non-positive 
by simply letting the linear velocity U having the smooth 
form 

U = ( y c o s a ) e  ; y  > 0 (3.3) 

in such a way that the term kl actually becomes 

VI = - ~ ( y  cos2 a) e* I o (3.4) 

Thus meaning that the first term V1 of (3.1) is always non 
increasing in time and consequently, since lower bounded, 
asymptotically converging toward a non negative finite 
limit. Moreover, since V1 is simply proportional the square 
of the positive scalar variable e, this fact also implies that e 
is monotonically non increasing in time and that the zero 
distance condition e=O cannot ever be approached in finite 
time. 

Furtherly, note also that, accordingly with the choice (3.3), 
the second term b2 of (3.2) becomes 

(a + h 011 
cos a sin a h = a [ - w + y  a (3 .5)  

which can be made, it also, non-positive, by simply letting 
the angular velocity 0 taking on the smooth form (it also 
independent from the parameter h, but not from h) 

cos a sin a 
a w = k a +  y ( a + h 0 ) ;  k > O  (3.6) 

which allows V2 to become 

E =  - k a 2 , 0  (3.7) 

finally leading to the following expression for the time 
derivative of the original global Lyapunov function V 

V =  VI + W  = - ( Y c o s 2 a ) e 2  - k a 2 1 0  
a . .  

(3 .8)  

which results in a negative semi-definite form. The uniform 
continuity in time of Vimplies the convergence of the state 
trajectory toward some subset of the line [e, a ,  e]'= [O, 0, 81' 
(i.e. toward a part of the subspace where function V can 
attain the null value; see (3.8)). 

At this point, in order to show that the only possible 
convergence subset within the line [e, a ,  e]'= [0, 0, 81' is 
actually constituted by the sole origin point [0, 0, O ] ' ,  
consider the state equations (2.2) in presence of the 
established feedback laws (3.3),  (3.6). The closed loop 
equations ,which are now defined also for e=O, take on the 
form 
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e =  - (y cos2 a) e 

a= - k a  + Y  8 ; e(O) > o  (3.9) 
c o s  a s i n a  c a 

l e =  Y c o s a  s i n a  

From (3.9) it is easily seen that the line [0,0,0] does not 
contain any equilibrium point except that corresponding to 
the limiting point [O,O,O]'. This proves the theorem. A 

Remark. Note that the resulting smoothness property of 
the obtained feedback control law, apart from the use of a 
Lyapunov approach, is also a direct consequence of the 
special choice which has been made for the state variables. 
Such a property is not in contrast with the result contained 
in the theorem of the well known paper of Brockett [8], and 
a detailed theoretical discussion can be found in [7]. A 

d -I 
Fig. 3 . la  

d 

In the examples reported in figures. 3 . l a  and 3.lb, the 
unicycle vehicle is required to reach a final position and 
orientation starting from different initial configurations 
characterized by e(0)=1. More specifically, in figures 3. la, 
3 . lb  the initial orientations $(O) of the vehicle with 
respect to the target have been assumed to be zero and n/2 
respectively. 

4. On the Limiting Behaviour of the Trajectory 
Curvature 

Let us consider the resulting closed loop nonlinear equations 
(3.9), together with the control law expressions (3.3), (3.6) 
for U and 0, now considered outputs. Then, observe that in 
proximity of the limiting value [0, 01 for [a, 81 we can write 
a linear approximation, which corresponds to the following 
set of exponentially stable, partially decoupled, linear state 
equations: 

e =  - Y e  (4.2) 

with linear output equations 

u=ye (4.3) 

w = o( +y)a + hy I3 (4.4) 

which bring into evidence the fact that, while error distance 
e and linear velocity U converge to zero as exp (-Y t ), both 
angles a,  8 and angular velocity 6.) converge instead as 
ex ( o t ) ,  being -0 the real part of the dominant pole of 
suisistem (4.1). At this point, we can consider the local 
curvature c of the vehicle trajectory; that is the ratio 

w 
C =- 

U (4.5) 

and consequently conclude that, for such a quantity, an 
exponentially stable convergence toward the null value is 
established (i.e. the vehicle approaches the target frame by 
asymptotically proceeding along the rectilinear path aligned 
with the target itself) if and only if <J > ')', or, equivalently 

(4.6) h s 1 ; 2 ' ) ' <  k < ( h + l ) Y  

The following simulation examples considering the 
complete nonlinear model and corresponding to initial 
errors e(O)=lO, 8(0)=0.01 and a(0) =0.0075, support the 
theoretical analysis. 

0. I 

0.08 - 
0.06 - 
0.04 - 

0.02 - 

0 -  

-0.02 - 

U., u.3 1 

Fig. 3 . lb  
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A. Trajectory and curvature for p l ;  k=l,  h=50, implying 
0=0.5 (system (4.1) underdamped) 
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B. Trajectory and curvature for pl; k=SO, h=l, implying 
0=0.02 (system (4.1) overdamped) 
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C. Trajectory and curvature for y=l, k=4, h=4, implying 
0=2 ((4.1) critically damped) 

5. Conclusions 

Within this paper it has been brought into evidence that, 
provided a special choice for the system state equations is a- 
priori made, the use of a very simple and "natural" quadratic 
form as candidate Lyapunov function, almost trivially leads 
to the definition of very simple and effective closed loop 
control laws for steering unicycle-like vehicles. The 
naturality and simplicity of the approach, whenever 
compared with the more sophisticated ones based on 
advanced non linear systems concepts and differential 
geometric techniques, also seems to suggest the possibility 
of an extension of it toward the more complex case of car 
like vehicles, for which extensive investigations are 
currently under development [7]. 
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