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Abstract

In this paper, the robust tracking control of MIMO
systems by means of simple decentralized variable-
structure controllers is considered. The model of the
system that is assumed to be available is a linear
ifo map (e.g., a transfer function matrix) affected
by bounded uncertainties and subject to bounded in-
put disturbances. A sufficient condition is derived
for there to exist the possibility of exact tracking
by decentralized sliding-mode control. The condi-
tion can be seen as a time-domain counterpart to
Rosenbrock’s well-known diagonal dominance crite-
rion. The structure of a simple controller implement-
ing the technique is presented along with simulation
results.

1 Introduction

Decentralized controllers attracted much attention in
the last two decades, especially in relation with large-
scale systems such as In electric power systems, so-
cioeconomic systems, chemical processes, etc., where
reducing the controller complexity is a major concern
of the control system designer.

The literature on decentralized control can be
grossty divided in two main branches, dealing with
methods in the frequency and in the time domains,
respectively. Frequency domain methods have at-
tracted the interest of researchers due to the fact that
available models of large—scale systems are often of
the input—output type, mostly in the form of approxi-
mated transfer function matrices. Rosenbrock’s DNA
and INA techniques [Rosenbrock, 1974] for the design
of decentralized linear controllers for linear multivari-
able systems have proved to be among the most ef-
fective and practical tools for approaching large-scale
systems that exhibit weak coupling among SISO sub-
systems.

Rosenbrock’s necessary dominance conditions are
generally recognized to be rather difficult to achieve
in real applications. This led a number of researchers
to investigate techniques for relaxing the condition
and generalize the method. Generalized and block-
diagonal dominance conditions have been proposed
to thi)s effect (see e.g. [Ohta, Siliak, and Matsumoto,
1986)).

Tgme—domain methods can in turn be distin-
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guished between linear decentralized controllers for
robust tracking (see e.g. [Siliak, 1978P; [Chen et
al., 1991]), and variable—structure controllers ([Utkin
1977]). Lefebvre et al. §1982], Khurana et al. [IQSSj
studied decentralized VS stabilizing controllers, while
the tracking controller problem for a class of intercon-
nected multivariable systems has been given a solu-
tion by Matthews and DeCarlo [1988].

In this paper, the connections between frequency-
domain and VSC techniques for decentralized con-
trol of general multivariable systems are investigated.
In order to retain the practice-oriented flavour of
frequency—domain methods, the assumed model of
the plant is an input/output relationship represented
by a transfer function matrix G(s). As it is custom-
ary in such approach, nonlinearities in the system are
dealt with as uncertainties in the model, and input
disturbances of bounded norm are also included. As
an interesting result, this paper discusses a sufficient
condition for a system to allow the existence of a
VS decentralized controller guaranteeing zero track-
ing error in finite time. The condition is shown to be
closely related (in the time-domain) to Rosenbrock’s
frequency—-domain dominance condition.

2 Dominance condition

Let us consider the N x N transfer function matrix
G(s) of a MIMO system with inputs #; and outputs
%, which is decomposed as

G(s) = Gp(s) + Gel(s)
with
Gp(s) = diag {Gi(s)}, Gel(s) = {Gij(9)}

where Ge(s) reflects the uncertainty in the diago-
nal subsystems G;(s) and the subsystem interconnec-
tions. Consider N {respectively N?] SISO systems
i = (A, by, ¢, di) [ 5 = (Agj,bij, ¢4, diy) |, each
providing a minimal realization of order n; [n;,'] and
relative order 7; [r:;] of element G;(s) [Gij(s)]. The
i-th output y; of the plant can be expressed in terms
of the disturbed output of the diagonal system X;

Y%
where 14(t) is a bounded input disturbance,
[lvi(t)]| < Ni, representing noise on the actuators

de
:"I x?

Aix; +bi(ui + 1), x:(0)
eiX; + di(us +05) + 9

o
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and possibly nonlinear dynamic terms assolving the
matching condition (cf. eg. [Walkott and Zak, 1988}),
and the output disturbance is given by

4
%‘(i‘) 4 Ej:l,N vii(t),
Xij =  Ayxij +bi(u; +v5), xi5(0) = xf;
pij = cijxXij + dij(uj +v5)

Consider further N systems S;; of order n;,

{ zi = Ayzi+biy, 2;(0) =0 (1
w; = ¢z + iy

We are interested in conditions for ¥;(t) under which
outputs w;(t) match wi(t). To this regard, sim-
ple results can be obtained by choosing the pairs
(A, by, i, di) and (Ag, by, ¢, d;) to be algebraically
equivalent:

Lemma 1 Assume

inf  |Gi(s)] >0 Vi
H1 Re s>0

sup  Gij(s)l < M € Ry Vij
H2 Re 820 N
H3 minj{r;j — 7‘.'} >0, Vi

U.t.c., there ezist tempered generalized functions
() = wi(t) + vi(t) + ((t) such that wi(t) =
yi(t),Vt > 0. Distributions (;(t) may contain delta
functions and derivatives of delta functions up to the
(r;—1)-th order. Furthermore, if the plant is initially
relazed and v; € L?, then (; € L?.

Proof. Let g;;(t) denote the impulse response of
Gij(s), and A denote the algebra of stable impulse
responses (see e.g. [Vidyasagar, 1978]). By equating
(1) and w;(t),

gi * (i = ¢; exp (A;1)x{+

+ D (95 % (w5 +v5) + i exp (Agjt)xy)
i=1,N
By hypothesis H2, g;;(t) € A. Moreover, let g;(t} be

defined such that g;(t) # g;(t) = 8(t), the unit element
in A. Hence, by H1 and H3, g; x g;; € A, and

GO = D (9% 9i) * (w5 (2) + vi(2)+

j=1,N

x| DD i exp (Ayt)xg + o exp (At)x?
j=1,N
For arbitrary initial conditions, the second term on
the left-hand side contains singular functions §¢ with
d < (r; — 1). For relaxed initial conditions, it holds

UGl < D Mg * gislla (lusllp + l1vslls) =

j=1,N

2 (s il + G ()G (9)], . ) (sl + l1v3l1)
CI.‘

Consider now the synthesis of a variable structfire
control ui(t) for S,,, that is assumed without loss of
generality to be in canonical controller form,

zi

w;
To regulate the output to zero with prescribed dy-
namics a sliding manifold is designed as

Aizi +bi(vi + ) + bi(wi), 2:(0) =0
cizi + di(vs + G) + di(wy)

I

Zi: si(t) % mat) = 0 (2)

where 7; € IR™. Since (2) can be scaled without af-
fecting the dynamics of the sliding regime, we choose

7 = [ 7 1]so that g;b; = 1. Pole assignment
and optimal LQ techniques are usually employed for
choosing 7}, as described e.g. by Dorling and Zinober
[1986]. The equivalent control [Utkin, 1977] is

- d f
Ueqi(t) = Az —vi — G = —ui—vi— G

Convergence towards Z; after a certain time t,; is
gnaranteed by the sondition

si(t)si(t) < 0, Vi>t,,. {3)
By applying the variable structure control
wi(t) = —k; sign (mzi(t)), (4)
condition (3) is met if

i def
k; > ”utq.*(t)”; = ‘S>lltl) I"cq.‘(t)[-

In particular, by choosing

ko= [l + Im@lls + 1GWIS +e  (5)
with € > 0, the sliding manifold will be reached in a
finite time ¢,; + ¢,;, with ¢,; < |s.-(t,,v)|/e,-.
2.1 Existence conditions

We now indagate conditions under which trajectories
of system S;; will remain on the sliding manifold Z;,
given that they reach Z; at time t,;. In terms of the
transformed state variables 2

z d .1 O¢n._
[ 7 ] = Tyaz; T, ¢ [ I",',; P 'll)xk]

the sliding equation is z3 = 0 and the (n; — 1) — th
order sliding dynamics for ¢ > t,; are

él —¢ A.‘il, where €A; = [ O(n.'—z):;lll In;-2 ] )

The linear component of the equivalent control u}(t)
during sliding is given by

ui(t) = T],-Ai [ __];': ] - exp (CA.'t) . il(t"').
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Define a ball in the generic vector norm || - || as
B, {3 € R™|ia = 0;[liall < ;s € Ry} C 2.
Provided that €A, is (chosen to be) Hurwitz, for any

Z(t.;) € B;, the linear part of the equivalent control

is in Ly, and, in particular, there exist bounds Us(:) :
R4 — IR, such that

I
nA [ —; ]

where compatible norms are chosen. Furthermore, in
the hypotheses of lemma 1 and for any x§; € By,;,

gl < |

[~

| exp (R s < U

de . Xmis
By & {xij € R™ | |Ixisll < pij € Ry} C R™ ™,
and for any x{ € B,,,
det n; n;xn;
By, fxs € B[l < ps € Ry} C R,

there exist bounds V;(-) : R} — R, such that

|

ST sl [lexe (Asst)] ois + &l [lexe (Ast)] s

tei
gi* (E;‘=1,N cij exp (Aijt)xd; + ¢ exp (A.-t)xf) ”

< Vilpiry ... pin)
where (A.-j,x}’j,'ci,-) [resp. (A;,x%,&) ] is a min-
imal realization of the causal part of G7(s)c;;(sI -

Ai)'x% [G7(s)ei(sI- Ai)~*x?]. Finally, we can con-
clude that

ty ~ i i
Ml < 3 Mg s gaall (uslics + bl + Ve
j=1,N

Introducing the notation

k = [k1,....kn]T,

vV o= [W,... W,

U = [Ulo-' '|UN]T|

N = [N,...,N]T,
T

€ = [e1,...,€N]

and

P = {P;} = {lla:(t) » gi;(0)l1; } (6)
the sliding condition ( 5) can be written as
k = Pk+(I+P)N+U+V+e (7)

Based on the previous development, and under the
assumptions of lemma 1, we can state the following

Theorem 1 The following conditions are equivalent:

o There ezists a decentralized variable structure
control of type (4) that guarantees the ezistence
of a robust sliding regime on any assigned linear
manifold 1;z;(1) = 0 such that 7;b; #0;

o the specirum of P in (6) is sirictly within the unit
disc in C.

¢ App(P) < 1, where App(P) is the Perron-
Frobenius eigenvalue of P;

o there ezists an induced norm || -|| on R™*" such
that [P < 1;

e W =1I-P is an M-matriz.

Proof. Conditions above regard the existence of a
nonnegative k solving (7) for nonnegative U, Z,N
and e such that (I+P)N+U+Z+ ¢ # 0, and follow
directly from the theory of positive matrices (see e.g.
[Gantmacher, 1977)).

(m]

Remark 1. Under the conditions of theorem 1,
any k belonging to the cone in IR* with vertex in (I—
P)~!((I+P)N+U+Z) and positively spanned by the
columns of (I—P)~!, except the vertex, corresponds
to a set of amplitudes of discontinuous control actions
that maintains sliding.

Remark 2. Note that easy-to—check sufficient
conditions for (7) to have nonnegative solutions are
derived from Gershgorin’s theorem as

IPll, <1 11Pri< 1 (8)

i.e., in terms of conventional row or column dofi-
nance. Note also that, according to the theory of
generalized diagonal dominance (see e.g. [Araki and
Nwokah, 1975]), conditions in theorem 1 guarantee
the existence of an input-output scaling matrix S
with positive elements such that S~! PS satisfies one
of the (8). Conditions (8) can be stated in terms of
norms induced on the space of linear N x N operators
by Le and Ly norms on the space of input signals
II-Gp! Gliz. <1 - Gp! Gllz, < 1,
that show the intrinsic significance of the conditions.
Remark 3. Recall from [Ohta, Siljak, and Mat-
sumoto, 1980] that, for a multivariable plant G(s)
with diagonally decentralized linear feedback con-
troller K(s), the dominance condition is written

ppr(P(s)) <1 Vs €D (9)

where D is the Nyquist contour, and

P(s) = {||Gii(s)K;(s)[I+G;j(s)K;(s)] ||}

A particularly interesting case is when dominance
holds for arbitrarily large, constant feedback gains
K;, in which case (9) is replaced by

ppr(P'(s)) <1 Vs€D
where N
P(s) = {||Gii(9)Gi(s)*|}

Note that, in the case of no uncertainty on the diag-
onal subsystems, under hypotheses H1 and H2 we
have

Pij(s)

]

Ifo~ 955(7) * gi(7) exp (—wr)dr| <

Jo 19i5(7) # gi(r)ldr = Pyj.

IN
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Hence, from the theory of nonegative matrices,

ppr(P) > ppr(P')

Note that the frequency—domain dominance condition
is less restrictive than the corresponding time-domain
condition for the existence of a DVSC, in agreement
with the fact that the latter ensures the possibility
of imparting an arbitrary behaviour to the output,
while the same can not be afforded by static output
feedback.

Remark 4. It may be noted that, although we as-
sume an input—output description of the system, the
control law (4) employs states of a realization of trans-
fer functions on the diagonal. This involves in gen-
eral the necessity of setting up observers with suitable
dynamics to reject input disturbances ¢;(t). Nonlin-
ear, variable structure observers have been proposed
in the literature that can be applied in principle to
this problem (see for instance [Slotine, Hedrick, and
Misawa, 1987] and [Walcott and Zak, 1988]).

3 Applications

Results of previous section have important implica-
tions in practical applications. The one described in
this paper is to the synthesis of a tracking controller
for a MIMO, time-domain dominant system in input—
output form. One further hypothesis is added on the
system, i.e. that diagonal systems G;(s) have rela-
tive degree one. This helps in simplifying the control
scheme with regard to the state observation problems
discussed in remark 4 above. Note that this assump-
tion is less conservative than the strict positive re-
alness assumption necessary to use sliding-mode ob-
servers described e.g. by Walcott and Zak [1988].

The proposed control scheme is based on N ref-
erence models (A;, b;, ¢;), corresponding to minimal
realizations of G;(s), with inputs, states, and outputs
i, Z;, and W;, respectively (see fig. 1).

The desired trajectory to be followed is described

by
ri(t)
y,;(t)
Consider the linear manifold

2o () —ri(r) = 0

A,il‘i(t) + brivri(t)) l'(O) =To
ciri(t)

where ¥; € R'*™ is chosen such that 4;b; = 1. The
control law

() = —7iAizi(t) - I;:,'sign o;

with ) .
k,' = “‘y, 1‘,'”00 +€A¢

with é; € IRy, guarantees that o;(t) = 0 for all
t >ty = |¢7,-(0)f/€.~. After the onset of such slid-
ing motion, states z; converge to r; with the dynam-
ics imposed by the choice of v;, and consequently ;
asymptotically tracks y,;.

Consider now the system S, described by (1),
whose output w; coincides with the i-th output chan-
nel of the plant in the hypotheses of lemma 1. Since

Figure 1: The i-th channel of the proposed control
scheme. Note that {' = v; + (; represents the sum of
input disturbances and model inaccuracies as reduced
to inputs.

input. disturbances b;¢;() comply by definition with
matching conditions for disturbance rejection, the
next design step consists in setting up one further con-
trol loop to have w;(t) = wi(t) effectively track w;(t)
(and hence y,;(t)). As already noted, states z; of S,
are not accessible neither can they be reconstructed
since (;(¢) is not known a priori. In the assumption
that G.-Ea) has relative degree one, however, a linear
manifold

2! 4 cie; = 0,
eilt) Y oat) - wlt),

can be chosen such that an equivalent control is de-
fined on it as

_ ciAje; (i)

"
i) =
ugq(t) b

= Gi() + ().

From hypothesis H1, moreover, sliding motion on Z}'
is asymptotically stable. Note that, although the dy-
nami¢s of sliding motion on 2!’ can not be modified
by design, they have no influence on the character-
istics of tracking, since they are not observable from
the plant output.

The sliding condition ¢(2)s(t) < 0 can be met by
applying the control signal

ui(t) = () + wi(t)
with ;(t) = kisign ci(t) = kisign (% — ;) and

B =(I-P)Y (U +Z+¢),
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where € € IR; and the elements of U’ consist of

bounds for ”%ﬁ% tai

4 Simulation results

In this section, some simulation results relative to a 4
inputs,4 outputs system are presented. The plant is

G taln i
G = | T Gal) t wem
r—‘]- s ;"1 3 A5
a4 7 1
s46){ e (D]
2410 o444
* ‘o+11 atd ”:-n’;‘
Gs(s)+ ‘Tz‘)‘(ﬁ’ﬁ rzY) Tlu?;
GEITs) Gi(o) + 5y
where the only known elements are the diagonal ones,
10(s + 2)
G = Gone-m
G, = 6(s+3)
: (t+5(+7
_ 15(s+4)
G = (s =5)(s - 15)
G, = 5(s +3)

(s+2)(s+7)
The time-domain dominance condition evaluated on

0.1414 0.4557 0.3444 0.0726

P = 0.1296 0.0972 0.4051 0.1885
- 0.2721 0.0681 0.0795 0.3889
0.2291 0.3227 0.0646 0.0660

provides ppr(P) = 0.8311. Input disturbances on
the four channels are bounded in amplitude and fre-
quency by 7 and 2000 rad/sec, respectively. The out-
put trajectories to be tracked are generated for each
channel by filtering the synusoidal inputs

v,y = 50sin(60t)
v = 20cos(100t)
v,s = 30sin(40¢)
e = 60cos(801)

through a second-order filter with coincident poles in
—30. The sliding manifolds 2; have been chosen so as
to minimize an LQ index with identity state weight
matrix and 0.01 output weight, giving v = [100.5 1],
y2 = {59.6 1], 95 = [150.3 1], and 4 = [49.3 1

For the given refence dynamics and initial conditions,

discontinuous control gains k; = 101.5 > ||7i1]je =

84.6, k2 = 31.9 > ||lyr2lleo = 26.6, k3 = 100.9 >
ll7rslleo = 84.1, and ky = 81.1 > ||7a¥4}jeo = 67.6 are
chosen. Initial conditions of the off-nominal systems
have been assumed to be contained in balls of radius
0.05. Accordingly, the width of the discontinuous part
of the second variable structure control loop are cho-
sen as k = [ 64.8 50.1 55.1 53.0 ]. The output

of the plant and of the reference model are compared
with the desired trajectory in fig. 2 a,b,c, and d, for
channels 1,2,3,and 4, respectively. Time scales are in
seconds. The behaviour of the controlled output sys-
tem is quite satisfactory. Input signals are reported in
fig. 3. Excessive chattering in the control inputs could
be eliminated by suitable smoothing techniques for
VS controllers, such as the “boundary layer” method
of Slotine and Sastry [1983].
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Ouput 1:y_hirly_ref (o}
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Ouput 3:y_h(fy_ret (g}
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Figure 2: Desired trajectory (dotted) , reference
model (dash-dot), and plant output (continuous) for
the four channels

Figure 3: Variable-structure decentralized control in-
put signals for the four channels
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