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Abstract 
In this paper, the robust tracking control of MIMO 
systems by means of simple decentralized variahle- 
structure controllers is considered. The model of t,he 
system that is assumed to be avaiIahle is a linear 
i/o map (e.g., a transfer funct*ion mat8rix) affected 
by bounded uncertainties and subject to bounded in- 
put distwbancea. A sufficient condition is derived 
for there to exist the possibilit*y of exact, tracking 
by decentralized sliding-mode control. The condi- 
tion can be seen as a time-domain counterpart to 
Rosenbrock’s well-known diagonal dominance crite- 
rion. The structure of a simple controller implement- 
ing the technique is presented along with simulation 
results. 

1 Introduction 
Decentralized controllers attracted much at tention in 
the last two decades, especially in relation with large- 
scale systems such as in electric power systems, so- 
cioeconomic systems, chemical processes, etc., where 
reducing the controller complexity is a major concern 
of the control system designer. 

The literature on decentralized control can be 
grossly divided in two main branches, dealing with 
methods in the frequency and in the time domains, 
respectively. Frequency domain methods haw at- 
tracted the interest of researchers clue to the fact that 
available models of large-scale systems arc. often of 
the input-output type, mostly in the form of approxi- 
mated transfer function matrices. Rosenbrock’s DNA 
and INA techniques [Rosenbrock, 19741 for the design 
of decentralized linear controllers for linear multivari- 
able systems have proved to be among the most ef- 
fective and practical tools for approaching tar e-scale 
systems that exhibit weak coupling among SI80 suh- 
systems. 

Rosenbrock’s necessary dominance conditions are 
generally recognized to be rather dificult to achieve 
in real applications. This led a number of researchers 
to investigate techniques for relasing the condition 
and generalize the method. Geiirralizetl and block- 
diagonal dominance conditions have heen proposed 
to this effect (see e.g. [Ohta, Siliak, and Matsiinioto, 
198GI). 

Time-domain methods can in turn be dist in- 
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guished between linear decentralized controllers for 
robust tracking (see e.g. [Siliak, 1978 ; [Chen et 
aL, 1991]), and variable-structure control I ers ([Utkin, 
19771). Lefebvre et al. 19821, Khurana et al. [1986] 

the tracking controller problem for a class of int>ercon- 
nected mukivariable systems has been given a solu- 
tion by MatOhews and DeCarlo [1988]. 

In  this paper, the connections between frequency- 
domain and VSC techniques for decentralized con- 
trol of general multivariable systems are investigated. 
In order to retain the practice-oriented flavour of 
frequency-domain methods, the assumed model of 
the plant is an input/output relationship represented 
by a t,ransfer function matrix G(s). As it is custom- 
ary in such approach, nonlinearities in the system are 
dealt with as uncert,ainties in the model, and input 
disturbances of hounded norm are also included. As 
an interesting result, this paper discusses a sufficient 
condition for a system to allow the existence of a . 
VS decentralized cont,roller guaranteeing zero track- 
ing error in finite time. The condition is shown to be 
closely related (in the time-domain) to Rosenbrock’s 
frequency-domain dominance condition. 

studied decentralized V !J stabilizing controllers, while 

2 Dominance condition 
Let us consider the N x N transfer function matrix 
G(8) of a MIMO system with inputs U; and outputs 
yi, which is decomposed as 

G ( s )  = Gds)  t Gc(s) 

with 

G D ( ~ )  = diag {Gi(s)}l Gc(*) = {Gij(r)} 

where Gc(s) reflects the uncertainty in the diagG 
nal subsystems Gi(s) and the subsystem interconnec- 
tions. Consider N respectively N2] SISO systems 
C; = (A;,bi,c;,d;) I C;j = (Aijlbijlcijldij)], each 
providing a minimal realization of order n; [nij] and 
relative order r; [rij] of element Gi(s) [Gij(s)]. The 
i-th output y; of the plant can be expressed in terms 
of the disturbed output of the diagonal system Ci 

xi = Aix; + bi(zl; +v i ) ,  x;(O) %’ XI { yi = Cixi + di(& +vi) + 
wlicre vi(t) is a bounded input disturbance, 
IIvi(t)ll, < Ni, representing noise on the actuators 
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and possibly nonlinear dynamic ternis assolvirig the 
matching condition (cf. eg. [Walkott and Zak, 198X]), 
and the output disturbance is given by 

Consider further N syst,ems S,, of order n;, 

( 1 )  
i i  = A;x; +b;$;, z;(O) = 0 { wi = C;z; + d;$i 

We are interested in condit,ions for $ i ( t )  under which 
outputs wi(t)  match y ; ( t ) .  To this regard, sim- 
ple resultss can be obtained by choosing the pairs 
(A;, b;, C;, d;) and (A i ,  b;, ci ,  cli) to be algrhraically 
equivalent: 

Lemma 1 Assume 

U.t.c.,  there exist tempered generalized functions 
$;( t )  = u;(t)  + vi(t) + c; ( t )  such that w ; ( t )  = 
y;(t) ,Vt > 0. Distributions ci( t )  may contain delta 
functions and derivatives of delta functions up to  the 
( T ;  - 1)-th order. Furthermore, if the plant is initially 
relaxed and v; E Lp, then e; E LP. 
Proof. Let g ; j ( t )  denote the impulse response of 
G;j(s), and A denote t,he a1gel)ra of st,ahle iinpulse 
responses (see e.g. [Vidyasa.gar, 19781). By equat,iiig 

g; * c; = c; exp (Ail).:+ 

y;(t) and W i ( t ) ,  

+ C ( g i j  * (uj + vj)  + cij exp (A i j t )x : j )  
j=l,N 

By hypothesis €12, g ; j ( t )  E A. Moreover, let, g;(t )  be 
defined such that, g i ( t )  * g i ( t )  = b ( t ) ,  the unit element 
in A. Hence, by €11 and 113, g; * g;, E A, and 

~ i ( t )  = ( i i  * g i j )  * (u j ( t )  + v j ( t ) )+  
j = l , N  

) +i; ( cij exp (Aijt)x:j  + ci exp (Ait)xp 
j=l,N 

For arbitrary init,ial conditions, t,he second t,erm 011 

the left-hand side contains singi1la.r functions bd with 
d 5 ( T ;  - 1). For relaxed initial conditions, it. holds 

Consider now the synthesis of a variable structdre 
control ui(t)  for Sz,, that  is assumed without loss of 
generality to be in canonical controller form, 

= A i Z i  +b;(v; + C;) +b;(ui ) ,  z;(O) = 0 { ii = C i x ;  + di(v; + c; )  + di(zci) 

To regulate the output to zero with prescribed dy- 
namics a sliding manifold is designed as 

(2) 2; : s ; ( t )  def = q;z;(t)  = 0 

where 7; E Rn'. Since (2) can be scaled without af- 
fecting the dynamics of the _sliding regime, we choose 
7; = [ 17; 1 ] so that vibi = 1. Pole assignment 
and optimal LQ techniques are usually employed for 
choosing q:, as described e.g. by Dorling and Zinober 
[1986]. The equivalent control [Utkin, 19771 is 

ueq,( t )  = - 7 ; A i Z ;  - v; - c; d&' -U: - U; - c; 
Convergence towards 2; after a certain time t ,; is 
giiaran t eed by the eondi tion 

~ i ( t ) S i ( t )  < 0, V t  2 t a i .  (3) 

By applying the variable structure control 

u,( t )  = -k; sign ( ~ ; x ; ( t ) ) ,  (4 1 
condition (3) is met if  

In particular, by choosing 

k; = l l ~ ~ ( t ) l l ~  + ll~;(t)ll2 + llf;(t)ll2 + e; (5) 

with E; > 0, the sliding manifold will be reached in a 
finite time t,; + f,;, with t,; 5 l S i ( t , ; ) l / € ; .  

2.1 Existence conditions 
We now inda.gate conditions under which trajectories 
of system Szi will remain on the sliding manifold 2;, 
given that they reach 2; at time t ,;.  In terms of the 
transformed state wriables z 

the sliding equation is 22 = 0 and the (ni - 1) - th 
order sliding tlynamics for t > t,; are 

The linear component of the equivalent, control u:(t) 
during sliding is given by 
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Define a ball in the generic vector norm 11 - 11 as 

Bii dZ! (i E Htnilz~ = 0; 11z111 5 pi E R+} c Zi. 

Provided that 'A, is (chosen to  be) Hurwitz, for any 
z( t , i )  E Bi4 the linear part of the equivalent control 
is in Lp, and, in particular, there exist bounds Vi( . )  : 
R+ 4 IR+ such that  

where compatible norms are chosen. Furthermore, in 
the hypotheses of lemma 1 and for any xfj E Bpi j ,  

BPii %' (xij E IRniiI llxij)I 5 pij E R+} c IRnijx"ii, 

and for any xf E Bpi ,  

Introducing the notation 

k = [ k l , . . . , k N ] T ,  
v = [VI,. . .,VN]TI 
U = [ ~ l , . . . l ~ N l  I 

T 

N = [NI, ..., " I T ,  
T 

€ =  [Cl  1 . . . I eN] 

and 

the sliding condition ( 5) can be writ,ten ns 

P = (Pij} = {IIgii(t) * gij(t)IIl} 3 (6) 

k = P k + ( I + P ) N + U + V + c  (7) 

Based on the previous development, and under t.he 
assumptions of lemma 1, we can stat,e t,lie following 

Theorem 1 The following conditions are equivalent: 

There ezists a decentralized variable structure 
control of type (4) that guarantees the existence 
of a robust sliding regime on any afsigned linear 
manifold azi(t) = 0 such that qihi # 0; 

the spectrum of P in (6) w strictly wiihin the unit 
disc in C. 

App(P) < 1, d e r e  Xp~(p)  i s  the Pemn- 
h b e n i w  eigenvalue of P ;  

there ezists an induced nom 11 - 11 on Rnxn such 
that llPll 5 1; 

W = I - P is an M-mat*. 

Proof. Conditions above regard the existence of a 
nonnegative k solving (7) for nonnegative U, Z,N 
and e such that (I+ P)N + U + Z + c # 0, and follow 
directly from the theory of positive matrices (see e.g. 
[Gantmacher, 19771). 
0. 

Remark 1. Under the conditions of theorem 1, 
any k belonging to  the cone in lR" with vertex in (I- 
P)-'((I+P)N+U+Z) and positively spanned by the 
columns of (I - P)-', except the vertex, corresponds 
to a set of amplitudes of discontinuous control actions 
that  maintains sliding. 

Note that easy-to-check sufficient 
conditions for (7) to have nonnegat,ive solutions are 
derived from Gershgorin's theorem as 

IIPII, < 1 llPrl < 1 (8) 

i.e., in terms of conventional row or column dohi-  
nance. Note also that,  according to the theory of 
generalized diagonal dominance (see e.g. [Araki and 
Nwokah, 1975]), conditions in theorem 1 guarantee 
the existence of an input-output scaling matrix S 
with positive elements such that  S-' PS satisfies one 
of the (8). Conditions (8) can be stated in terms of 
norms induced on the space of linear N x N operators 
by L, and L1 norms on the space of input signals 

111 - G,' GIIL~ < 1, 

Remark 2. 

111 - G,' Gllz, < 1 

that  show the intrinsic significance of the conditions. 
Remark 3. Recall from [Ohta, Siljak, and Mat- 

sumoto, 1980 that,  for a multivariable plant G(8) 
with dia ona i ly decentralized linear feedback con- 
troller K f s ) ,  the dominance condition is written 

PPF(P(8)) < 1 V8 E z) (9) 
where 2> is the Nyquist contour, and 

= { IIGij(s)Kj (s)[I + ~ j ( 8 ) ~ j  (a)]-' 11) 
A particularly intmesting case is when dominance 
holds for arbitrarily large, constant feedback gains 
Kj, in which case (9) is replaced by 

p p F ( p ' ( 8 ) )  < 1 vs E 23 

Note that, in the case of no uncertainty on the diag- 
onal subsystems, under hypot.heses H1 and H2 we 
have 

P&.(8) = lJr gjj(T) * gij(T) CXp ( -wT)dTl  5 
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Hence, from the theory of nonegat.ive matrices, 

PPF(P) L PPFP’) 
Note that the frequency-domain dominance condition 
is less restrictive than the corresponding time-domain 
condition for the existence of a DVSC, i n  agreement 
with the fact that  the latter ensures the possibility 
of imparting an arbitrary behaviour to  the output, 
while the same can not be afforded by static output 
feedback. 

R e m a r k  4. It  may be noted that,  although we as- 
sume an input-outpnt description of the system, the 
control law (4) employsstates of a realization of trans- 
fer functions on the diagonal. This involves i n  gen- 
eral the necessity of setting up observers with suitable 
dynamics to reject input disturbances ( ; ( t ) .  Nonlin- 
ear, variable structure observers have been proposed 
in the literature that can be applied in principle to 
this problem (see for instance [Slotine, EIedrick, and 
Misawa, 19871 and [Walcott and Zak, 19881). 

3 Applications 
Results of previous section have important implica- 
tions in practical applications. The one described in 
this paper is to  the synthesis of a tracking controller 
for a MIMO, time-domain dominant system in input- 
output4 form. One further hypothesis is addrtl on the 
system, i.e. that  diagonal systems G i ( s )  have rela- 
tive degree one. This helps in simplifying the control 
scheme with regard to the state observation problems 
discussed in remark 4 above. Note that this assump- 
tion is less conservative than the strict positive re- 
alness assumption necessary to use sliding-mode ob- 
servers described e.g. by M‘alcott and Zak [1988]. 

The proposed control scheme is based on N ref- 
erence models A;, h;, c i ) ,  corresponding to minimal 
realizations of bits), with inputs, states, and outputs 
U;, z;, and w;, respectively (see fig. 1). 

The desired trajectory to  be followed is described 
by 

Consider the linear manifold 

de’ zi’ :a; = 7; (Z;(t)  - r;(t)) = 0 

where 7i E RIXni is chosen such t,hat 7ibi  = 1. The 
cont.ro1 law 

?i;(t) = --7;AiZ;(t)  - k; sign ’ U; 

with 
h; = 117; i*illw + t i .  

with t; E R+, uarantees that, q ( t )  = 0 for all 
t > toi = Iui(o)f/€i . After the onset of such slid- 
ing motion, states z; converge to 1-i with the dynain- 
ics imposed by the choice of 7i) and consequently zir; 
asymptotically tracks y r i .  

Consider now the system S,, described by ( l ) ,  
whose output w; coincides with the i-th oiitput chan- 
nel of the plant in the hypotheses of lemma 1. Since 

Figure 1: The i-th channel of the proposed control 
scheme. Note that C’ = vi + (i represents the sum of 
input. disturbances and model inaccuracies as reduced 
to inputs. 

input. disturbances b;(;(t) comply by definition with 
matching conditions for disturbance rejection, the 
next design step consists in  setting up one further con- 
trol loop to have w ; ( t )  5 y;(t) effectively track zir;(t) 
(and hence y,i(t)). As already noted, states zi of S,. 
are not accessible neit.Iier can they be reconstructed 
since C; t )  is not known a priori. In the assumption 
that G A S )  has relat,ive degree one, however, a linear 
manifold 

z/ : ‘A’ c;e; = 0, 
ei(t)  ’L’ z i ( t )  - ij(t), 

can be chosen such that  an equivalent control is de- 
fined on it as 

From hypothesis H1, moreover, sliding motion on 2;’ 
is asymptotically stable. Note that,  although the dy- 
namics of sliding motion on 2; can not be modified 
by design, they have no influence on the character- 
istics of tracking, since they are not observable from 
the plant output. 

The sliding condit.ion r ( t ) i ( t )  5 0 can be met by 
a.pplying t.he control signal 

~ i ( t )  = Ui( t )  G ( t )  

wit,li i i i ( t )  = &sign a ( t )  = &sign (y; - w;) and 

ki = (I - P)-’(u’ + z + c;), 
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where Z i  E IR+ and t,he e1ement.s of U' consist of 

4 Simulation results 
In this section, some simulation resu1t.s rela.t,ive to a 4 
inputs,4 outputs system are presented. The plant, is 

G(s) = 

where the only known elements are the diagonal ones, 

10(8 + 2) GI = 
( a  - 3)(s - 5) 

6(a + 3) 

15(s + 4) 
(s - 5)(a - 15) 

Ga = 

Gs = 

(s + 5)(s + 7) 

5(s + 3) 
(s + 2)(a + 7) '  

GI = 

The time-domain dominance condition evaluated on 

1 0.1414 0.4557 0.3444 0.0726 
0.1296 0.0072 0.4051 0.1885 

P = [  0.2721 0.0681 0.0705 0.3889 
0.2291 0.3227 O.OG46 0.0680 

provides p p ~ ( P )  = 0.8311. Input disturbances on 
the four channels are bounded in amplitude and fre- 
quency by 7 and 2000 rad/sec, respectively. The out- 
put trajectories to be tracked are generated for each 
channel by filtering the synusoidal inputs 

uvl = 50sin(GOt) 

uta = 30sin(40t) 
U r l  = 2 0 ~ 0 ~ ( 1 0 0 t )  

= GO COS(RO~) 

through a second-order filter wi th  coincident poles in 
-30. The sliding manifolds 2; have been chosen so as 
to minimize an LQ iiides with identity state weight 
matrix and 0.01 output weight, giving71 = [100.5 1 , 
7 2  = I59.6 11, 78 = [150.3 11, and 7 4  = [49.3 1 1 . 
For the given refence dynamics and initial conditions, 
discontinuous control gains 121 = 101.5 > I17i*llloo = 
84.6, k a  = 31.9 > I17i*alloo = '26.6, = 100.9 > 
I17;31100 = 84.1, and k4 = 81.1 > I174i.dlloo = 67.6 are 
chosen. Initial conditions of the off-nominal systems 
have been assumed to  be contained in balls of radius 
0.05. Accordingly, the width of the discontinuous part 
of the sccond variable structure control loop are cho- 
sen as k = [ 64.8 50.1 55.1 53.0 1. Tlie output 

of the plant and of the reference model are compared 
wit,h t.he desired trajectory in fig. 2 a,b,c, and d ,  for 
channels 1,2,3,and 4 ,  respectively. Time scales are in 
seconds. The behaviour of t,he cont?rolled output sys- 
tem is qiiite satisfact.ory. Input signals are reported in 
fig. 3. Escessive chattering in the cont,rol inputs could 
be eliminated by suitable smoothing techniques for 
VS controllers, such as the "boundary layer" method 
of Slotine and Sastry [1983]. 
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Figure 2: Desired trajectory (dott.ed) , reference 
model (dash-dot), and plant, output, (continuous) for 
the four channels 

I 

Figure 3: Variable-structure decent,ralized control in- 
put signals for t,he four channels 
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